1
|
Abraham DJ, Black CM, Denton CP, Distler JHW, Domsic R, Feghali-Bostwick C, Gourh P, Hinchcliff M, Kolling F, Kuwana M, Lafyatis R, Landegren U, Mahoney JM, Martin J, Matucci-Cerinic M, McMahan ZH, Mora AL, Mouthon L, Rabinovitch M, Rojas M, Rubin K, Trojanowska M, Varga J, Whitfield ML, Gabrielli A, Krieg T. An international perspective on the future of systemic sclerosis research. Nat Rev Rheumatol 2025; 21:174-187. [PMID: 39953141 DOI: 10.1038/s41584-024-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Systemic sclerosis (SSc) remains a challenging and enigmatic systemic autoimmune disease, owing to its complex pathogenesis, clinical and molecular heterogeneity, and the lack of effective disease-modifying treatments. Despite a century of research in SSc, the interconnections among microvascular dysfunction, autoimmune phenomena and tissue fibrosis in SSc remain unclear. The absence of validated biomarkers and reliable animal models complicates diagnosis and treatment, contributing to high morbidity and mortality. Advances in the past 5 years, such as single-cell RNA sequencing, next-generation sequencing, spatial biology, transcriptomics, genomics, proteomics, metabolomics, microbiome profiling and artificial intelligence, offer new avenues for identifying the early pathogenetic events that, once treated, could change the clinical history of SSc. Collaborative global efforts to integrate these approaches are crucial to developing a comprehensive, mechanistic understanding and enabling personalized therapies. Challenges include disease classification, clinical heterogeneity and the establishment of robust biomarkers for disease activity and progression. Innovative clinical trial designs and patient-centred approaches are essential for developing effective treatments. Emerging therapies, including cell-based and fibroblast-targeting treatments, show promise. Global cooperation, standardized protocols and interdisciplinary research are vital for advancing SSc research and improving patient outcomes. The integration of advanced research techniques holds the potential for important breakthroughs in the diagnosis, treatment and care of individuals with SSc.
Collapse
Affiliation(s)
- David J Abraham
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK.
| | - Carol M Black
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Christopher P Denton
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Robyn Domsic
- Division of Rheumatology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Pravitt Gourh
- Scleroderma Genomics and Health Disparities Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fred Kolling
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology. Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology. University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Research programme: Molecular Tools and Functional Genomics, Uppsala University, Uppsala, Sweden
| | | | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases and Inflammation, fibrosis and aging Initiative, IRCCS Ospedle San Raffaele and Vita Salute University San Raffaele, Milan, Italy
| | - Zsuzsanna H McMahan
- Department of Internal Medicine, Division of Rheumatology, UTHealth Houston, Houston, TX, USA
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luc Mouthon
- Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune and Auto-Inflammatory diseases in Île-de-France, East and West, Cochin Hospital, Public Assistance-Hospitals of Paris, Paris-Centre, Paris Cité University, Paris, France
| | - Marlene Rabinovitch
- Department of Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristofer Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Trojanowska
- Boston University, Department of Medicine, Arthritis & Autoimmune Diseases Research Center, Boston, MA, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Armando Gabrielli
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany.
- Foundation of Molecular Medicine and Cellular Therapy Polytechnic University of Marche, Via Tronto, Ancona, Italy.
| | - Thomas Krieg
- Translational Matrix Biology, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Tay SW, Low AHL. Is faecal microbiota transplantation ready for prime time in systemic sclerosis? THE LANCET. RHEUMATOLOGY 2025:S2665-9913(24)00376-X. [PMID: 39900090 DOI: 10.1016/s2665-9913(24)00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 02/05/2025]
Affiliation(s)
- Shu Wen Tay
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608; Duke-National University of Singapore Medical School, Singapore.
| |
Collapse
|
3
|
Bellando-Randone S, Russo E, Di Gloria L, Lepri G, Baldi S, Fioretto BS, Romano E, Ghezzi G, Bertorello S, El Aoufy K, Rosa I, Pallecchi M, Bruni C, Cei F, Nannini G, Niccolai E, Orlandi M, Bandini G, Guiducci S, Bartolucci GL, Ramazzotti M, Manetti M, Matucci-Cerinic M, Amedei A. Gut microbiota in very early systemic sclerosis: the first case-control taxonomic and functional characterisation highlighting an altered butyric acid profile. RMD Open 2024; 10:e004647. [PMID: 39557490 PMCID: PMC11574430 DOI: 10.1136/rmdopen-2024-004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVES In systemic sclerosis (SSc), gastrointestinal involvement is one of the earliest events. We compared the gut microbiota (GM), its short-chain fatty acids (SCFAs) and host-derived free fatty acids (FFAs) in patients with very early diagnosis of SSc (VEDOSS) and definite SSc. METHODS Stool samples of 26 patients with SSc, 18 patients with VEDOSS and 20 healthy controls (HC) were collected. The GM was assessed through 16S rRNA sequencing, while SCFAs and FFAs were assessed by gas chromatography-mass spectrometry. RESULTS In patients with VEDOSS, an increase in Bacteroidales and Oscillospirales orders and a decrease in Bacilli class, Blautia, Romboutsia, Streptococcus and Turicibacter genera was detected in comparison with HC. In patients with SSc, an elevated number of Acidaminococcaceae and Sutterellaceae families, along with a decrease of the Peptostreptococcaceae family and Anaerostipes, Blautia, Romboutsia and Turicibacter genera was found in comparison with HC. Patients with SSc and VEDOSS had a significantly lower butyrate and higher acetate with respect to HC. In VEDOSS, an increase in Oscillospiraceae family and Anaerostipes genus, and a decrease in Alphaproteobacteria class, and Lactobacillales order was identified with respect to SSc. Moreover, patients with VEDOSS exhibited higher acetate and lower valerate compared with definite SSc. CONCLUSION A GM dysbiosis with depletion of beneficial anti-inflammatory bacteria (especially butyrate-producing) and a significant decrease in faecal butyrate was identified in patients with VEDOSS. This early GM imbalance may foster the growth of inflammatory microbes, worsening intestinal dysbiosis and inflammation in early SSc stages. The potential butyrate administration in early disease phases might be considered as a novel therapeutic approach to mitigate gastrointestinal discomfort and progression preserving patient's quality of life.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulio Ghezzi
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Sara Bertorello
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Khadija El Aoufy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Martina Orlandi
- Department of Medical and Surgical Sciences for Children, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bandini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Haussmann AJ, McMahan ZH, Volkmann ER. Understanding the gastrointestinal microbiome in systemic sclerosis: methodological advancements and emerging research. Curr Opin Rheumatol 2024; 36:401-409. [PMID: 39189041 PMCID: PMC11588518 DOI: 10.1097/bor.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW This review highlights the role of the gastrointestinal (GI) microbiome in systemic sclerosis (SSc). We describe techniques for evaluating the GI microbiome in humans, and emerging research linking GI microbiome alterations (i.e., dysbiosis) and distinct SSc clinical manifestations. We also address the evolving treatment landscape targeting dysbiosis in SSc. RECENT FINDINGS Recent literature brings into focus the complex relationship between the GI microbiome and SSc pathogenesis. Advanced techniques (e.g., shotgun metagenomics, meta-transcriptomics) provide deeper insights into microbial taxonomy and active gene expression, exposing dysbiosis as a potential driver of SSc. New studies demonstrate that SSc patients who possess specific SSc clinical features, (e.g., interstitial lung disease), have unique GI microbiome profiles. SUMMARY Dysbiosis is associated with specific clinical features in patients with SSc. New tools for studying the GI microbiome have furthered our understanding of the relationship between dysbiosis and SSc complications. Therapeutic avenues such as dietary adjustments, probiotics, antibiotics, mindfulness practices, and fecal transplants offer potential for managing SSc and preventing its progression through GI microbiome modulation. By clarifying what is known about the relationship between the GI dysbiosis, GI dysfunction, and SSc, this review enhances our understanding of SSc pathogenesis and proposes targeted interventions.
Collapse
Affiliation(s)
- Alana J. Haussmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine; USA
| | - Zsuzsanna H. McMahan
- Department of Medicine, The University of Texas Health Science Center at Houston; USA
| | - Elizabeth R. Volkmann
- Department of Medicine, University of California, Los Angeles, David Geffen School of Medicine; USA
| |
Collapse
|
5
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Natalello G, Bosello SL, Campochiaro C, Abignano G, De Santis M, Ferlito A, Karadağ DT, Padula AA, Cavalli G, D'Agostino MA, Selmi C, Matucci‐Cerinic M, Dagna L, De Luca G. Adherence to the Mediterranean Diet in Italian Patients With Systemic Sclerosis: An Epidemiologic Survey. ACR Open Rheumatol 2024; 6:14-20. [PMID: 37916477 PMCID: PMC10789299 DOI: 10.1002/acr2.11627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Systemic sclerosis (SSc) is an orphan disease that can lead to severe involvement of the gastrointestinal tract with a significant impact on patients' quality of life (QoL). The Mediterranean diet (MD) was consistently demonstrated to have beneficial effects on chronic diseases based on biological bases. We aimed to evaluate the adherence to the MD of Italian patients with SSc to preliminarily assess its association with gastrointestinal symptoms and other disease features, mood, and QoL. METHODS In this cross-sectional study, adherence to the MD was measured in 387 patients from four SSc Italian referral centers through the 14-item Mediterranean Diet Adherence Screener (14-MEDAS) questionnaire. We also registered patients' reported outcomes related to the QoL and mood. RESULTS Overall, an optimal adherence to MD was observed in 14.7% of patients with SSc, a moderate adherence in 71.3%, and a low adherence in 14.0%. In univariate analysis, poor adherence to the MD was associated with a more prominent depressive mood, time missed at work, and perception of more severe Raynaud's phenomenon and digital ulcers, whereas the 14-MEDAS score inversely correlated with depression score and reflux. CONCLUSION In our cohort of patients with SSc, overall adherence to MD was moderate. Patients with lower adherence to MD also reported worse outcomes related to QoL and mood. Administration of the 14-MEDAS could be a reasonable choice to assess adherence to the MD in patients with SSc. Future initiatives to study the role of MD in the management of patients with SSc are warranted.
Collapse
Affiliation(s)
| | | | - Corrado Campochiaro
- IRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giuseppina Abignano
- San Carlo Hospital, Potenza, Italy, and University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS TrustLeedsUK
| | - Maria De Santis
- IRCCS‐Humanitas Clinical and Research Center and Humanitas UniversityMilanItaly
| | | | - Duygu Temiz Karadağ
- San Carlo Hospital, Potenza, Italy, and Canakkale State HospitalCanakkaleTurkey
| | | | - Giulio Cavalli
- IRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | | | - Carlo Selmi
- IRCCS‐Humanitas Clinical and Research Center and Humanitas UniversityMilanItaly
| | - Marco Matucci‐Cerinic
- Vita‐Salute San Raffaele University, Milan, Italy, and University of Florence and AOUCFlorenceItaly
| | - Lorenzo Dagna
- IRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giacomo De Luca
- IRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
7
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
8
|
Amarnani A, Silverman GJ. Understanding the roles of the microbiome in autoimmune rheumatic diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:177-187. [PMID: 38125641 PMCID: PMC10729600 DOI: 10.2478/rir-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/06/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiome represents a potential promising therapeutic target for autoimmune diseases. This review summarizes the current knowledge on the links between the gut microbiome and several autoimmune rheumatic diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) spondyloarthropathies (SpA), Sjogren's syndrome (SS), and systemic sclerosis (SSc). Evidence from studies of RA and SLE patients suggests that alterations in the gut microbiome composition and function contribute to disease development and progression through increased gut permeability, with microbes and microbial metabolites driving an excessive systemic activation of the immune system. Also, there is growing evidence that gut dysbiosis and subsequent immune cell activation may contribute to disease pathogenesis in SpA and SS. For SSc, there are fewer, but these are still informative, reports on alterations in the gut microbiome. In general, the complex interplay between the microbiome and the immune system is still not fully understood. Here we discuss the current knowledge of the link between the gut microbiome and autoimmune rheumatic diseases, highlighting potentially fertile areas for future research and make considerations on the potential benefits of strategies that restore gut microbiome homeostasis.
Collapse
Affiliation(s)
- Abhimanyu Amarnani
- Department of Medicine, NYU Grossman School of Medicine, New York, NYUSA
| | - Gregg J. Silverman
- Department of Medicine, NYU Grossman School of Medicine, New York, NYUSA
| |
Collapse
|
9
|
Hakuta R, Nakai Y, Oyama H, Noguchi K, Kanai S, Nomura Y, Suzuki T, Ishigaki K, Saito K, Saito T, Hamada T, Takahara N, Mizuno S, Kogure H, Moriya K, Fujishiro M. Increased risk of biliary infection after biliary stent placement in users of proton pump inhibitors. DEN OPEN 2023; 3:e129. [PMID: 35898828 PMCID: PMC9307719 DOI: 10.1002/deo2.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 04/08/2023]
Abstract
OBJECTIVES Proton pump inhibitors (PPIs) are widely prescribed medications for gastric acid-induced diseases. Despite the effectiveness of PPIs, recent evidence suggested an increased risk of various bacterial infections in PPI users. The current study was conducted to evaluate the risk of biliary infection after endoscopic biliary stent placement in regular users of PPIs. METHODS Consecutive patients with a native papilla who underwent endoscopic retrograde cholangiopancreatography and stent placement for biliary stricture between January 2010 and August 2019 were included in this retrospective study. The cumulative incidences of biliary infection were compared between regular and non-regular PPI users. RESULTS During the study period, 270 regular PPI users and 146 non-regular PPI users were included in the analyses. Age, gender, and indication of endoscopic retrograde cholangiopancreatography were not different between the two groups. The incidences of biliary infection were 43% in regular PPI users and 36% in non-regular PPI users but the time to biliary infection was significantly shorter in regular PPI users than in non-regular users (28 vs. 87 days, p = 0.01). The cumulative incidence of biliary infection was significantly higher in regular PPI users compared with non-regular users (p = 0.008). The multivariable Cox regression analysis also showed a significantly higher hazard ratio of biliary infection in regular PPI users (1.62 [95% confidence interval 1.16-2.26; p = 0.005]). CONCLUSIONS Regular PPI use was associated with a higher risk of biliary infection after endoscopic biliary drainage. Inappropriate PPI use should be avoided.
Collapse
Affiliation(s)
- Ryunosuke Hakuta
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of TokyoTokyoJapan
| | - Hiroki Oyama
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kensaku Noguchi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Sachiko Kanai
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yusuke Nomura
- Department of Infection Control and PreventionGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tatsunori Suzuki
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kazunaga Ishigaki
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kei Saito
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomotaka Saito
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tsuyoshi Hamada
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Naminatsu Takahara
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Suguru Mizuno
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hirofumi Kogure
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kyoji Moriya
- Department of Infection Control and PreventionGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Nguyen AD, Andréasson K, McMahan ZH, Bukiri H, Howlett N, Lagishetty V, Lee SM, Jacobs JP, Volkmann ER. Gastrointestinal tract involvement in systemic sclerosis: The roles of diet and the microbiome. Semin Arthritis Rheum 2023; 60:152185. [PMID: 36870237 PMCID: PMC10148899 DOI: 10.1016/j.semarthrit.2023.152185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Alterations in gastrointestinal (GI) microbial composition have been reported in patients with systemic sclerosis (SSc). However, it is unclear to what degree these alterations and/or dietary changes contribute to the SSc-GI phenotype. OBJECTIVES Our study aimed to 1) evaluate the relationship between GI microbial composition and SSc-GI symptoms, and 2) compare GI symptoms and GI microbial composition between SSc patients adhering to a low versus non-low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet. METHODS Adult SSc patients were consecutively recruited to provide stool specimens for bacterial 16S rRNA gene sequencing. Patients completed the UCLA Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (GIT 2.0) and the Diet History Questionnaire (DHQ) II and were classified as adhering to a low or non-low FODMAP diet. GI microbial differences were assessed using three metrics of alpha diversity (species richness, evenness, and phylogenetic diversity), as well as beta diversity (overall microbial composition). Differential abundance analysis was performed to identify specific genera associated with SSc-GI phenotype and low versus non-low FODMAP diet. RESULTS Of the 66 total SSc patients included, the majority were women (n = 56) with a mean disease duration of 9.6 years. Thirty-five participants completed the DHQ II. Increased severity of GI symptoms (total GIT 2.0 score) was associated with decreased species diversity and differences in GI microbial composition. Specifically, pathobiont genera (e.g., Klebsiella and Enterococcus) were significantly more abundant in patients with increased GI symptom severity. When comparing low (N = 19) versus non-low (N = 16) FODMAP groups, there were no significant differences in GI symptom severity or in alpha and beta diversity. Compared with the low FODMAP group, the non-low FODMAP group had greater abundance of the pathobiont Enterococcus. CONCLUSION SSc patients reporting more severe GI symptoms exhibited GI microbial dysbiosis characterized by less species diversity and alterations in microbial composition. A low FODMAP diet was not associated with significant alterations in GI microbial composition or reduced SSc-GI symptoms; however, randomized controlled trials are needed to evaluate the impact of specific diets on GI symptoms in SSc.
Collapse
Affiliation(s)
- Audrey D Nguyen
- Division of Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Zsuzsanna H McMahan
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Bukiri
- Division of Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Venu Lagishetty
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sungeun Melanie Lee
- Division of Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Elizabeth R Volkmann
- Division of Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
12
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232416154. [PMID: 36555792 PMCID: PMC9853331 DOI: 10.3390/ijms232416154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with unknown etiology characterized by multi-organ fibrosis. Despite substantial investigation on SSc-related cellular and molecular mechanisms, effective therapies are still lacking. The skin, lungs, and gut are the most affected organs in SSc, which act as physical barriers and constantly communicate with colonized microbiota. Recent reports have documented a unique microbiome signature, which may be the pathogenic trigger or driver of SSc. Since gut microbiota influences the efficacy and toxicity of oral drugs, evaluating drug-microbiota interactions has become an area of interest in disease treatment. The existing evidence highlights the potential of the microbial challenge as a novel therapeutic option in SSc. In this review, we have summarized the current knowledge about molecular mechanisms of SSc and highlighted the underlying role of the microbiome in SSc pathogenesis. We have also discussed the latest therapeutic interventions using microbiomes in SSc, including drug-microbiota interactions and animal disease models. This review aims to elucidate the pathophysiological connection and therapeutic potential of the microbiome in SSc. Insights into the microbiome will significantly improve our understanding of etiopathogenesis and developing therapeutics for SSc.
Collapse
|
13
|
Noviani M, Chellamuthu VR, Albani S, Low AHL. Toward Molecular Stratification and Precision Medicine in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:911977. [PMID: 35847779 PMCID: PMC9279904 DOI: 10.3389/fmed.2022.911977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Systemic sclerosis (SSc), a complex multi-systemic disease characterized by immune dysregulation, vasculopathy and fibrosis, is associated with high mortality. Its pathogenesis is only partially understood. The heterogenous pathological processes that define SSc and its stages present a challenge to targeting appropriate treatment, with differing treatment outcomes of SSc patients despite similar initial clinical presentations. Timing of the appropriate treatments targeted at the underlying disease process is critical. For example, immunomodulatory treatments may be used for patients in a predominantly inflammatory phase, anti-fibrotic treatments for those in the fibrotic phase, or combination therapies for those in the fibro-inflammatory phase. In advancing personalized care through precision medicine, groups of patients with similar disease characteristics and shared pathological processes may be identified through molecular stratification. This would improve current clinical sub-setting systems and guide personalization of therapies. In this review, we will provide updates in SSc clinical and molecular stratification in relation to patient outcomes and treatment responses. Promises of molecular stratification through advances in high-dimensional tools, including omic-based stratification (transcriptomics, genomics, epigenomics, proteomics, cytomics, microbiomics) and machine learning will be discussed. Innovative and more granular stratification systems that integrate molecular characteristics to clinical phenotypes would potentially improve therapeutic approaches through personalized medicine and lead to better patient outcomes.
Collapse
Affiliation(s)
- Maria Noviani
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
| | | | - Salvatore Albani
- Duke–National University of Singapore Medical School, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
- *Correspondence: Andrea Hsiu Ling Low
| |
Collapse
|
14
|
Rosenbaum JT, Gill T, Martin TM, Friedman M, Thompson R. Marking the 50th anniversary of a seminal paper in rheumatology: did Baruj Benacerraf and Hugh McDevitt get it right? Ann Rheum Dis 2022; 81:618-621. [PMID: 35236660 DOI: 10.1136/annrheumdis-2022-222131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 01/22/2023]
Affiliation(s)
- James Todd Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, Oregon Health & Science University, Portland, Oregon, USA .,Legacy Devers Eye Institute at Legacy Good Samaritan Medical Center, Portland, Oregon, USA
| | - Tejpal Gill
- Department of Medicine, Oregon Health & Science University Hospital, Portland, Oregon, USA
| | - Tammy M Martin
- Department of Ophthalmology and Department of Molecular Biology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Marcia Friedman
- Department of Medicine, Oregon Health & Science University Hospital, Portland, Oregon, USA
| | - Reid Thompson
- Radiation Medicine, Biomedical Engineering, Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hospital and Special Medicine, Portland VA Hospital, Portland, Oregon, USA
| |
Collapse
|
15
|
Li J, Zhang R, Ma J, Tang S, Li Y, Li Y, Wan J. Mucosa-Associated Microbial Profile Is Altered in Small Intestinal Bacterial Overgrowth. Front Microbiol 2021; 12:710940. [PMID: 34421869 PMCID: PMC8372370 DOI: 10.3389/fmicb.2021.710940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
The overall gut microbial profile of patients with small intestinal bacterial overgrowth (SIBO) has not been thoroughly investigated. We investigated the microbial communities of mucosal specimens from the duodenum, ileum, sigmoid colon, and feces of patients with and without SIBO, as diagnosed by lactulose breath testing. The bacteria present in the mucosal and fecal samples were identified using 16S rRNA gene sequencing. Further analysis was performed using the linear discriminant analysis (LDA) effect size method, random forest analysis, and receiver operating characteristic analysis. The microbial diversities of the fecal samples were significantly lower than those of the mucosal samples from the duodenum, ileum, and sigmoid colon (P < 0.001, P < 0.001, and P < 0.001, respectively), while the bacterial compositions of the ileac mucosal samples and sigmoid mucosal samples were similar. The bacterial composition of either the fecal or duodenal mucosal samples were significantly different from those of the other three groups (ANOSIM R = 0.305, P = 0.001). The bacterial compositions of the mucosal samples of the duodenum, ileum, and sigmoid colon in the SIBO + subjects were significantly different from those of the SIBO− subjects (ANOSIM P = 0.039, 0.002, and 0.007, respectively). The relative abundances of 7, 18, and 8 genera were significantly different (LDA score > 3) in the mucosal samples of the duodenum, ileum, and sigmoid colon between the SIBO + and SIBO− groups. Four genera (Lactobacillus, Prevotella_1, Dialister, and norank_f__Ruminococcaceae) showed similar changes among the mucosal samples of the duodenum, ileum, and sigmoid colon in the SIBO + subjects. A signature consisting of four genera in the duodenal mucosa, three genera in the ileac mucosa, or six genera in the mucosa of the sigmoid colon exhibited predictive power for SIBO (area under the curve = 0.9, 0.93, and 0.87, respectively). This study provides a comprehensive profile of the gut microbiota in patients with SIBO. Dysbiosis was observed in the mucosa-associated gut microbiome but not in the fecal microbiome of patients with SIBO. Furthermore, we identified mucosa-associated taxa that may be potential biomarkers or therapeutic targets of SIBO. Further investigation is needed on their mechanisms and roles in SIBO.
Collapse
Affiliation(s)
- Jia Li
- Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Gastroenterology, The 983th Hospital of Joint Logistic Support Force of PLA, Tianjin, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jinxia Ma
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|