1
|
Mendiratta M, Mendiratta M, Ganguly S, Rai S, Gupta R, Kumar L, Bakhshi S, Dadhwal V, Pushpam D, Malik PS, Pramanik R, Aggarwal M, Gupta AK, Dhawan R, Seth T, Mahapatra M, Nayak B, Singh TD, Kumar S, Mir RA, Kaur G, GuruRao H, Singh M, Prasad CP, Prakash H, Mohanty S, Sahoo RK. Concurrent hypoxia and apoptosis imparts immune programming potential in mesenchymal stem cells: Lesson from acute graft-versus-host-disease model. Stem Cell Res Ther 2024; 15:381. [PMID: 39468660 PMCID: PMC11520827 DOI: 10.1186/s13287-024-03947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as promising candidates for immune modulation in various diseases that are associated with dysregulated immune responses like Graft-versus-Host-Disease (GVHD). MSCs are pleiotropic and the fate of MSCs following administration is a major determinant of their therapeutic efficacy. METHODS Human MSCs were derived from bone marrow (BM) and Wharton's Jelly (WJ) and preconditioned through exposure to hypoxia and induction of apoptosis, either sequentially or simultaneously. The immune programming potential of preconditioned MSCs was evaluated by assessing their effects on T cell proliferation, induction of Tregs, programming of effector T-cell towards Th2 phenotype, macrophage polarization in the direct co-culture of MSCs and aGVHD patients-derived PBMNCs. Additionally, efferocytosis of MSCs and relative change in the expression of immunomodulatory soluble factors were examined. RESULTS Our study demonstrated that hypoxia preconditioned apoptotic MSCs (BM-MSCs, WJ-MSCs) bear more immune programming ability in a cellular model of acute Graft-versus-Host-Disease (aGVHD). Our findings revealed that WJ-MSCsHYP+APO were superior to BM-MSCsHYP+APO for immune regulation. These induced the differentiation of CD4+T-cell into Tregs, enhanced Th2 effector responses, and simultaneously mitigated Th1- and Th17 responses. Additionally, this approach led to the polarization of M1 macrophages toward an M2 phenotype. CONCLUSION Our study highlights the potential of WJ-MSCs conditioned with hypoxia and apoptosis concurrently, as a promising therapeutic strategy for aGVHD. It underscores the importance of considering MSC apoptosis in optimizing MSCs-based cellular therapy protocols for enhanced therapeutic efficacy in aGvHD.
Collapse
Affiliation(s)
- Mohini Mendiratta
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Meenakshi Mendiratta
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Rai
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Raja Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mukul Aggarwal
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Kumar Gupta
- Department of Pediatric Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rishi Dhawan
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thoudam Debraj Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Riyaz Ahmed Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Hariprasad GuruRao
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Sector - 125, Noida, 201313, India.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Subramanian A, Ip CHL, Qin W, Liu X, W D Carter S, Oguz G, Ramasamy A, E Illanes S, Biswas A, G Perron G, L Fee E, W L Li S, K Y Seah M, A Choolani M, W Kemp M. Simulated lunar microgravity transiently arrests growth and induces osteocyte-chondrocyte lineage differentiation in human Wharton's jelly stem cells. NPJ Microgravity 2024; 10:51. [PMID: 38704360 PMCID: PMC11069510 DOI: 10.1038/s41526-024-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sμG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sμG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sμG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sμG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sμG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sμG-exposed hWJSCs. When returned to 1.0 G for 3 days, sμG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sμG significantly reduces the cell division potential of hWJSCs and suggest that acute sμG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Chelsea Han Lin Ip
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Wei Qin
- Department of Obstetrics and Gynecology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, No. 46 Chongxin Road, 541002, Guilin City, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University, 511436, Guangzhou, P.R. China
| | - Sean W D Carter
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, 7620001, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gabriel G Perron
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Sarah W L Li
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Michelle K Y Seah
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia.
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia.
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan.
| |
Collapse
|
3
|
Bobyleva PI, Rudimova YV, Buravkova LB. Oxygen Level Modifies the Expression of Genes Involved in the Epigenetic Regulation of Multipotent Stromal Cells In Vitro. Bull Exp Biol Med 2023; 175:371-375. [PMID: 37561376 DOI: 10.1007/s10517-023-05870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 08/11/2023]
Abstract
Changes in the transcriptional activity of genes involved in the epigenetic regulation of adipose tissue multipotent mesenchymal stromal cells were analyzed in vitro at different O2 levels. DNA microarray study showed that the most pronounced changes in gene expression, including genes responsible for the epigenetic regulation of mesenchymal stromal cells, occurred at 3% O2. A lower number of genes changed the expression at 1% O2, and a minimum response was observed at 5% O2 in comparison with standard culturing conditions (20% O2). The greatest number of differentially expressed genes were genes responsible for the regulation of histones; the genes encoding products that regulate chromatin, DNA, and RNA constituted a lower part. Thus, the degree of hypoxia can modify the response of multipotent mesenchymal stromal cells at the level of epigenetic regulators.
Collapse
Affiliation(s)
- P I Bobyleva
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Yu V Rudimova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - L B Buravkova
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
5
|
Vanawati N, Barlian A, Judawisastra H, Wibowo I. The combinatory effect of scaffold topography and culture condition: an approach to nucleus pulposus tissue engineering. Future Sci OA 2022; 8:FSO810. [PMID: 36248063 PMCID: PMC9540240 DOI: 10.2144/fsoa-2021-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Scaffold topography and culture medium conditions for human wharton's jelly mesenchymal stem cells (hWJ-MSC) are critical components of the approach to nucleus pulposus (NP) tissue engineering. Aim To evaluate the silk fibroin (SF) scaffold topography analysis (optimal thickness and pore diameter) and to determine culture medium conditions for the growth and differentiation of hWJ-MSC. Method hWJ-MSCs were seeded into different thicknesses and pore size diameters and grown in different concentrations of glucose, platelet rich plasma (PRP) and oxygen. The cell-seeded scaffold was evaluated for cell attachment, growth and differentiation potency. Results & discussion The results indicated that SF scaffold with a minimum thickness 3.5 mm and pore diameter of 500 μm with cells cultured under low glucose, 10% PRP and normoxia conditions induced the growth and differentiation of hWJ-MSCs, indicated by the accumulation of glycosaminoglycans content and the presence of type II collagen, as markers of NP-like cells.
Collapse
Affiliation(s)
- Noviana Vanawati
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia,Author for correspondence:
| | - Hermawan Judawisastra
- Faculty of Mechanical & Aerospace Engineering, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Indra Wibowo
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
6
|
Evaluation of the Impact of Pregnancy-Associated Factors on the Quality of Wharton's Jelly-Derived Stem Cells Using SOX2 Gene Expression as a Marker. Int J Mol Sci 2022; 23:ijms23147630. [PMID: 35886978 PMCID: PMC9317592 DOI: 10.3390/ijms23147630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
SOX2 is a recognized pluripotent transcription factor involved in stem cell homeostasis, self-renewal and reprogramming. It belongs to, one of the SRY-related HMG-box (SOX) family of transcription factors, taking part in the regulation of embryonic development and determination of cell fate. Among other functions, SOX2 promotes proliferation, survival, invasion, metastasis, cancer stemness, and drug resistance. SOX2 interacts with other transcription factors in multiple signaling pathways to control growth and survival. The aim of the study was to determine the effect of a parturient’s age, umbilical cord blood pH and length of pregnancy on the quality of stem cells derived from Wharton’s jelly (WJSC) by looking at birth weight and using SOX2 gene expression as a marker. Using qPCR the authors, evaluated the expression of SOX2 in WJSC acquired from the umbilical cords of 30 women right after the delivery. The results showed a significant correlation between the birth weight and the expression of SOX2 in WJSC in relation to maternal age, umbilical cord blood pH, and the length of pregnancy. The authors observed that the younger the woman and the lower the umbilical cord blood pH, the earlier the delivery occurs, the lower the birth weight and the higher SOX2 gene expression in WJSC. In research studies and clinical applications of regenerative medicine utilizing mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord, assessment of maternal and embryonic factors influencing the quality of cells is critical.
Collapse
|
7
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
8
|
Florenly F, Sugianto L, Lister INE, Girsang E, Ginting CN, Afifah E, Kusuma H, Rizal R, Widowati W. Protective Effect of Eugenol against Acetaminophen-Induced Hepatotoxicity in Human Hepatocellular Carcinoma Cells via Antioxidant, Anti-Inflammatory, and Anti-Necrotic Potency. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been widely reported.
AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP.
METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol at 6.25 and 25 μg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome (CYP)2E1 and GPX gene expression.
RESULTS: Eugenol at 6.25 and 25 μg/mL concentration can reduce TNF-α concentration, the apoptotic, necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best hepatoprotective effect was found when using the eugenol at 25 μg/mL.
CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.
Collapse
|
9
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
10
|
Khoury S, Haj Khalil T, Palzur E, Srouji S. A Multichamber Gas System to Examine the Effect of Multiple Oxygen Conditions on Cell Culture. Tissue Eng Part C Methods 2021; 27:24-34. [PMID: 33353455 DOI: 10.1089/ten.tec.2020.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The classic bone tissue engineering model for bone regeneration combines three elements: scaffolds, biomaterials, and mesenchymal stem cells (MSCs). Incorporation of MSCs and growth factors into a scaffold implanted into the area of bone injury is a proven strategy to achieve successful bone regeneration as demonstrated in the literature. However, a major limitation of using bone grafts or scaffolds is oxygen (O2) deprivation in the inner sections of the construct, due to lack of adequate vascularization. To address this limitation, we proposed two treatment strategies for MSC-seeded constructs or adipose tissue scaffolds before implantation: (1) O2 enrichment and (2) acclimation to hypoxia. Based on previous studies, the significance of the different O2 concentrations on MSC biological characteristics remains controversial. Therefore, the optimal O2 condition for engineered bone tissues should be determined. Thus, we designed an innovative multichamber gas system aimed to simultaneously assess the effects of different O2 levels on cell culture. This system was assembled using three isolated chambers integrated into a single incubator. To explore the efficacy of our method, we investigated the effect of hyperoxia, normoxia, and hypoxia, (50-60%, 21%, and 5-7.5% O2, respectively) on the biological characteristics of human adipose-derived MSCs: immunophenotyping, adhesion, proliferation, and osteogenic, and angiogenic differentiation. Our findings demonstrated that hypoxic adipose-derived mesenchymal stem cells (ASCs) conditions exhibited significantly lower levels of CD34 (p = 0.014), with significantly higher osteogenic and angiogenic differentiation capacities (p = 0.023 and p = 0.0042, respectively) than normoxia. Conversely, hyperoxia-cultured ASCs demonstrated significantly higher levels of CD73 and CD90 expression than both normoxic ASCs (p = 0.006 and p = 0.025, respectively) and hypoxic ASCs (p = 0.003 and p = 0.003, respectively). In addition, hyperoxic ASCs showed significantly reduced proliferation capacity by day 11 (p = 0.032) and significantly enhanced migration rates after 48 h (p = 0.044). The newly developed controllable multichamber gas system was cost-effective and easy to use. Different assays can be performed concurrently while preserving all other conditions identical, and the use of other ranges of O2 concentrations is feasible and also necessary to determine the ideal O2 concentration. Furthermore, the multichamber gas system has the potential for wide application, including other cell cultures, grafts, or scaffolds for in vitro and in vivo experimentation. This study was approved by the Galilee Medical Center Helsinki Committee (No. 0009-19-NHR). Impact statement The introduced multichamber gas system provides a custom-made setup for simultaneous control of three oxygen (O2) levels in a single incubator. The use of our innovative multichamber gas system is essential to determine the ideal O2 levels for engineered tissues by examining multiple O2 concentrations on cells in vitro. The determined ideal O2 concentration will then be used through this system to investigate the engrafted cell survival ex vivo, to ensure successful integration of the engineered tissues and tissue regeneration in vivo. Use of this method may promote a therapeutic tool for a major limitation in tissue engineering due to the problematic O2 insufficiency in tissue scaffolds.
Collapse
Affiliation(s)
- Samira Khoury
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tharwat Haj Khalil
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Oral and Maxillofacial Surgery and Oral Medicine Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
11
|
Keshtkar S, Kaviani M, Jabbarpour Z, Sabet Sarvestani F, Ghahremani MH, Esfandiari E, Hossein Aghdaei M, Nikeghbalian S, Shamsaeefar A, Geramizadeh B, Azarpira N. Hypoxia-Preconditioned Wharton's Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells Int 2020; 2020:8857457. [PMID: 33381188 PMCID: PMC7759420 DOI: 10.1155/2020/8857457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton's jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Esfandiari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
13
|
Pressure Stimuli Improve the Proliferation of Wharton's Jelly-Derived Mesenchymal Stem Cells under Hypoxic Culture Conditions. Int J Mol Sci 2020; 21:ijms21197092. [PMID: 32993025 PMCID: PMC7583852 DOI: 10.3390/ijms21197092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells’ niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton’s jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.
Collapse
|
14
|
Large-Scale Expansion of Human Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:9529465. [PMID: 32733574 PMCID: PMC7378617 DOI: 10.1155/2020/9529465] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.
Collapse
|
15
|
Widowati W, Gunanegara RF, Rizal R, Widodo WS, Amalia A, Wibowo SHB, Handono K, Marlina M, Lister INE, Chiuman L. Comparative Analysis of Wharton’s Jelly Mesenchymal Stem Cell (WJ-MSCs) Isolated Using Explant and Enzymatic Methods. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1374/1/012024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Obradovic H, Krstic J, Trivanovic D, Mojsilovic S, Okic I, Kukolj T, Ilic V, Jaukovic A, Terzic M, Bugarski D. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche. Placenta 2019; 82:25-34. [PMID: 31174623 DOI: 10.1016/j.placenta.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mesenchymal stem cells from Wharton's Jelly of a human umbilical cord (WJ-MSCs) are a potential tool in regenerative medicine based on their availability, proliferative potential and differentiation capacity. Since their physiological niche contains low oxygen levels, we investigated whether cultivation of WJ-MSCs at 3% O2 affects their main features. METHODS WJ-MSCs were cultured under 21% and 3% O2. Proliferation rate was followed by short and long term proliferation assays, clonogenic capacity by CFU-F assay and cell cycle and death by flow cytometry. Differentiation capacity was investigated by histochemical staining after induced differentiation. Pluripotency and differentiation markers' expression was determined by RT-PCR. Migration capacity was followed by scratch assay and mobilization from collagen, and the activity of proteolytic enzymes by zymography. Specific inhibitors of MAPK and Wnt/β-catenin pathways were used to investigate underlying molecular mechanisms. RESULTS Compared to standard 21% O2, cultivation of WJ-MSCs at 3% O2 did not influence their immunophenotype, while it modulated their differentiation process and enhanced their clonogenic and expansion capacity. 3% O2 induced transient change in cell cycle and prevented cell death. The expression of NANOG, OCT4A, OCT4B and SOX2 was increased at 3% O2. Both cultivation and preculturing of WJ-MSCs at 3% O2 increased their in vitro migratory capacity and enhanced the activity of proteolytic enzymes. ERK1/2 mediated WJ-MSCs' mobilization from collagen regardless of oxygen levels, while Wnt/β-catenin pathway was activated during migration and mobilization at standard conditions. CONCLUSION Culturing of WJ-MSCs under 3% O2 should be considered a credible condition when investigating their properties and potential use.
Collapse
Affiliation(s)
- Hristina Obradovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Jelena Krstic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Drenka Trivanovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Slavko Mojsilovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Ivana Okic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Vesna Ilic
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Dr Subotića 4, PO BOX 102, 11129, Belgrade, Serbia.
| | - Aleksandra Jaukovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| | - Milan Terzic
- Department of Obstetrics and Gynecology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia; Medical Faculty, University of Belgrade, Belgrade, Serbia.
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, dr Subotića 4, PO Box 102, 11129, Belgrade, Serbia.
| |
Collapse
|
17
|
Antoninus AA, Widowati W, Wijaya L, Agustina D, Puradisastra S, Sumitro SB, Widodo M, Bachtiar I. Human platelet lysate enhances the proliferation of Wharton's jelly-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bgm.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Widowati W, Wijaya L, Murti H, Widyastuti H, Agustina D, Laksmitawati DR, Fauziah N, Sumitro SB, Widodo MA, Bachtiar I. Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bgm.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|