1
|
Poomani MS, Regurajan R, Perumal R, Ramachandran A, Mariappan I, Muthan K, Subramanian V. Differentiation of placenta-derived MSCs cultured in human platelet lysate: a xenofree supplement. 3 Biotech 2024; 14:116. [PMID: 38524240 PMCID: PMC10959853 DOI: 10.1007/s13205-024-03966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
In the last few decades, mesenchymal stem cells (MSCs)-based regenerative therapies in clinical applications have gradually become a hot topic due to their long-term self-renewal and multilineage differentiation ability. In this scenario, placenta (p) has been considered as a good source of MSCs. As a tissue of fetal origin with abundant number of stem cells compared to other sources, their non-invasive acquisition, strong immunosuppression, and lack of ethical concerns make placenta an indispensable source of MSC in stem cell research and therapy. The mesenchymal stem cells were derived from human term placenta (p-MSCs) in xenofree condition using platelet lysate (PL) as a suitable alternative to fetal bovine serum (FBS). Upon isolation, p-MSCs showed plastic adherence with spindle-shaped, fibroblast-like morphology under microscope. p-MSCs flourished well in PL-containing media. Immunophenotyping showed classical MSC markers (> 90%) and lack expression of hematopoietic and HLA-DR (< 1%). Surprisingly, differentiation study showed differentiation of p-MSCs to mature adipocytes in both induced cells and control (spontaneous differentiation), as observed via oil red staining. This is in line with gene expression data where both control and induced cells were positive for visfatin and leptin. Thus, we propose that p-MSCs can be used for clinical applications in the treatment of various chronic and degenerative diseases.
Collapse
Affiliation(s)
- Merlin Sobia Poomani
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Rathika Regurajan
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | | | | | - Iyyadurai Mariappan
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Krishnaveni Muthan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Venkatesh Subramanian
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| |
Collapse
|
2
|
Price J, Gardiner C, Harrison P. Platelet-enhanced plasma: Characterization of a novel candidate resuscitation fluid's extracellular vesicle content, clotting parameters, and thrombin generation capacity. Transfusion 2021; 61:2179-2194. [PMID: 33948950 DOI: 10.1111/trf.16423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Platelet transfusion is challenging in emergency medicine because of short platelet shelf life and stringent storage conditions. Platelet-derived extracellular vesicles (PEV) exhibit platelet-like properties. A plasma generated from expired platelet units rich in procoagulant PEV may be able to combine the benefits of plasma and platelets for resuscitation while increasing shelf life and utilizing an otherwise wasted resource. STUDY DESIGN AND METHODS Freeze-thaw cycling of platelet-rich plasma (PRP) followed by centrifugation to remove platelet remnants was utilized to generate platelet-enhanced plasma (PEP). An in vitro model of dilutional coagulopathy was also designed and used to test PEP. Rotational thromboelastometry and calibrated automated thrombography were used to assess clotting and extracellular vesicles (EV) procoagulant activity. Capture arrays were used to specifically measure EV subpopulations of interest (ExoView™, NanoView Biosciences). Captured vesicles were quantified and labeled with Annexin-V-FITC, CD41-PE, and CD63-AF647. Platelet alpha granule content (platelet-derived growth factor AB, soluble P-selectin, vascular endothelial growth factor A, and neutrophil activating peptide 2-chemokine (C-X-C motif) ligand 7) was measured. Commercially available platelet lysates were also characterized. RESULTS PEP is highly procoagulant, rich in growth factors, exhibits enhanced thrombin generation, and restores hemostasis within an in vitro model of dilutional coagulopathy. The predominant vesicle population were PEV with 7.0 × 109 CD41+PS+ EV/ml compared to 4.7 × 107 CD41+PS+ EV/ml in platelet-free plasma (p = .0079). Commercial lysates show impaired but rescuable clotting. DISCUSSION PEP is a unique candidate resuscitation fluid containing high PEV concentration with preliminary evidence, indicating a potential for upscaling the approach using platelet concentrates. Commercial lysate manufacturer workflows may be suitable for this, but further optimization and characterization of PEP is required.
Collapse
Affiliation(s)
- Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chris Gardiner
- Haemostasis Research, University College London, London, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX. Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci 2021; 22:ijms22031269. [PMID: 33525349 PMCID: PMC7865277 DOI: 10.3390/ijms22031269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient’s quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
Collapse
Affiliation(s)
- Ling Ling Liau
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Muhammad Najib Fathi bin Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Yee Loong Tang
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
- Correspondence: ; Tel.: +603-9145-7677; Fax: +603-9145-7678
| |
Collapse
|
4
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
5
|
The effects of human platelet lysate versus commercial endothelial growth medium on the endothelial differentiation potential of human amniotic fluid mesenchymal stem cells. Heliyon 2020; 6:e04873. [PMID: 32995597 PMCID: PMC7509187 DOI: 10.1016/j.heliyon.2020.e04873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/01/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
To differentiate stem cells into endothelial cells, vascular endothelia growth factors (VEGF) serve as the major signal for stimulating the cells. However, there are other cytokines or growth factors associated with endothelial cell development and differentiation. Human platelet lysate (hPL) has been a promising reagent in cell-based therapy since it is considered as a source of bioactive molecules and growth factors. The aim of this study was to investigate the in vitro differentiation of human amniotic fluid mesenchymal stem cells (hAF-MSCs) into endothelial-like cells under hPL together with VEGF or endothelial cell growth medium 2 (EGM-2), a commercially induced medium. In this study, hAF-MSCs were isolated from human amniotic fluid cells (hAFCs) using the direct adherence method. The cells expressed CD44, CD73, CD90, and HLA-ABC at high levels and expressed Oct-4 (octamer-binding transcription factor 4) at low levels. The cells were negative for CD31, CD34, CD45, CD105 and HLA-DR. This study found that hAF-MSCs induced with hPL and VEGF had the ability to differentiate into endothelial-like cells by presenting endothelial specific markers (vWF, VEGFR2 and eNOS), forming a network-like structure on Matrigel, and producing nitric oxide (NO). This outcome was similar to those of experiments involving EGM-2 induced cells. The present findings indicate that hPL + VEGF can induce hAF-MSCs to express endothelial cell characteristics. Our findings represent an important step forward in the development of a clinically compliant process for the production of endothelial cell-derived hAF-MSCs, and their subsequent testing in future clinical trials.
Collapse
|
6
|
Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors. Int J Mol Sci 2020; 21:ijms21176284. [PMID: 32877987 PMCID: PMC7503902 DOI: 10.3390/ijms21176284] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Manufacturing of mesenchymal stromal cell (MSC)-based therapies for regenerative medicine requires the use of suitable supply of growth factors that enhance proliferation, cell stability and potency during cell expansion. Human blood derivatives such as human platelet lysate (hPL) have emerged as a feasible alternative for cell growth supplement. Nevertheless, composition and functional characterization of hPL in the context of cell manufacturing is still under investigation, particularly regarding the content and function of pro-survival and pro-regenerative factors. We performed comparative analyses of hPL, human serum (hS) and fetal bovine serum (FBS) stability and potency to support Wharton’s jelly (WJ) MSC production. We demonstrated that hPL displayed low inter-batch variation and unique secretome profile that was not present in hS and FBS. Importantly, hPL-derived factors including PDGF family, EGF, TGF-alpha, angiogenin and RANTES were actively taken up by WJ-MSC to support efficient expansion. Moreover, hPL but not hS or FBS induced secretion of osteoprotegerin, HGF, IL-6 and GRO-alpha by WJ-MSC during the expansion phase. Thus, hPL is a suitable source of factors supporting viability, stability and potency of WJ-MSC and therefore constitutes an essential raw material that in combination with WJ-MSC introduces a great opportunity for the generation of potent regenerative medicine products.
Collapse
|
7
|
Widowati W, Gunanegara RF, Rizal R, Widodo WS, Amalia A, Wibowo SHB, Handono K, Marlina M, Lister INE, Chiuman L. Comparative Analysis of Wharton’s Jelly Mesenchymal Stem Cell (WJ-MSCs) Isolated Using Explant and Enzymatic Methods. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1374/1/012024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Pasztorek M, Rossmanith E, Mayr C, Hauser F, Jacak J, Ebner A, Weber V, Fischer MB. Influence of Platelet Lysate on 2D and 3D Amniotic Mesenchymal Stem Cell Cultures. Front Bioeng Biotechnol 2019; 7:338. [PMID: 31803733 PMCID: PMC6873824 DOI: 10.3389/fbioe.2019.00338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
The mechanobiological behavior of mesenchymal stem cells (MSCs) in two- (2D) or three-dimensional (3D) cultures relies on the formation of actin filaments which occur as stress fibers and depends on mitochondrial dynamics involving vimentin intermediate filaments. Here we investigate whether human platelet lysate (HPL), that can potentially replace fetal bovine serum for clinical-scale expansion of functional cells, can modulate the stress fiber formation, alter mitochondrial morphology, change membrane elasticity and modulate immune regulatory molecules IDO and GARP in amnion derived MSCs. We can provide evidence that culture supplementation with HPL led to a reduction of stress fiber formation in 2D cultured MSCs compared to a conventional growth medium (MSCGM). 3D MSC cultures, in contrast, showed decreased actin concentrations independent of HPL supplementation. When stress fibers were further segregated by their binding to focal adhesions, a reduction in ventral stress fibers was observed in response to HPL in 2D cultured MSCs, while the length of the individual ventral stress fibers increased. Dorsal stress fibers or transverse arcs were not affected. Interestingly, ventral stress fiber formation did not correlate with membrane elasticity. 2D cultured MSCs did not show differences in the Young's modulus when propagated in the presence of HPL and further cultivation to passage 3 also had no effect on membrane elasticity. In addition, HPL reduced the mitochondrial mass of 2D cultured MSCs while the mitochondrial mass in 3D cultured MSCs was low initially. When mitochondria were segregated into punctuate, rods and networks, a cultivation-induced increase in punctuate and network mitochondria was observed in 2D cultured MSCs of passage 3. Finally, mRNA and protein expression of the immunomodulatory molecule IDO relied on stimulation of 2D culture MSCs with pro-inflammatory cytokines IFN-γ and TNF-α with no effect upon HPL supplementation. GARP mRNA and surface expression was constitutively expressed and did not respond to HPL supplementation or stimulation with IFN-γ and TNF-α. In conclusion, we can say that MSCs cultivated in 2D and 3D are sensitive to medium supplementation with HPL with changes in actin filament formation, mitochondrial dynamics and membrane elasticity that can have an impact on the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Markus Pasztorek
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Eva Rossmanith
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Christoph Mayr
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Fabian Hauser
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Andreas Ebner
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Viktoria Weber
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Christian Doppler Laboratories, Department for Biomedical Research, Danube University Krems, Krems an der Donau, Austria
| | - Michael B. Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Christian Doppler Laboratories, Department for Biomedical Research, Danube University Krems, Krems an der Donau, Austria
| |
Collapse
|
9
|
Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med 2019; 68:5-16. [PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Collapse
Affiliation(s)
- L L Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - B H I Ruszymah
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - J X Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Tancharoen W, Aungsuchawan S, Pothacharoen P, Bumroongkit K, Puaninta C, Pangjaidee N, Narakornsak S, Markmee R, Laowanitwattana T, Thaojamnong C. Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells. Mol Med Rep 2019; 19:5123-5132. [PMID: 31059024 PMCID: PMC6522963 DOI: 10.3892/mmr.2019.10182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Human amniotic fluid (hAF) mesenchymal stem cells (MSCs) are commonly cultured in medium containing FBS. However, there are concerns about using animal serum in therapeutic applications due to the potential for immunogenic reactions and the risk of transmission of pathogens. For safety reasons, human platelet lysate (hPL) has been suggested as a replacement for FBS because it appears to be a natural source of growth factors. In this present study, it was investigated whether FBS could be substituted with hPL in hAF-MSCs culture without affecting their properties. Pooled hPL was generated by the freeze-thaw method. The concentration of hPL was selected after evaluation by MTT assay. The hAF-MSCs were cultured in FBS- or hPL-supplemented conditions and shared a fibroblast-like morphology. Cell proliferation assays showed that the growth characteristic of hAF-MSCs cultured in 10% hPL-supplemented media was similar to those cultured in 10% FBS-supplemented media. The expression of MSC markers did not differ between the cells cultured in the different conditions. The endothelial differentiation potential was also investigated. Reverse transcription-quantitative (RT-q)PCR revealed that induced cells supplemented with hPL showed an increase level of endothelial specific gene expression compared to the FBS-supplemented cells. Immunofluorescence analysis showed specific protein localization in both induced cell groups. Additionally, induced cells supplemented with hPL had the potential to form networks on Matrigel. This present study indicated that hPL could be used to culture and enhance the endothelial differentiation potential of hAF-MSCs.
Collapse
Affiliation(s)
- Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine of Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokkan Bumroongkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathaporn Pangjaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chawapon Thaojamnong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Wiese DM, Ruttan CC, Wood CA, Ford BN, Braid LR. Accumulating Transcriptome Drift Precedes Cell Aging in Human Umbilical Cord-Derived Mesenchymal Stromal Cells Serially Cultured to Replicative Senescence. Stem Cells Transl Med 2019; 8:945-958. [PMID: 30924318 DOI: 10.1002/sctm.18-0246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
In preclinical studies, mesenchymal stromal cells (MSCs) exhibit robust potential for numerous applications. To capitalize on these benefits, cell manufacturing and delivery protocols have been scaled up to facilitate clinical trials without adequately addressing the impact of these processes on cell utility nor inevitable regulatory requirements for consistency. Growing evidence indicates that culture-aged MSCs, expanded to the limits of replicative exhaustion to generate human doses, are not equivalent to early passage cells, and their use may underpin reportedly underwhelming or inconsistent clinical outcomes. Here, we sought to define the maximum expansion boundaries for human umbilical cord-derived MSCs, cultured in chemically defined xeno- and serum-free media, that yield consistent cell batches comparable to early passage cells. Two male and two female donor populations, recovered from cryostorage at mean population doubling level (mPDL) 10, were serially cultivated until replicative exhaustion (senescence). At each passage, growth kinetics, cell morphology, and transcriptome profiles were analyzed. All MSC populations displayed comparable growth trajectories through passage 9 (P9; mPDL 45) and variably approached senescence after P10 (mPDL 49). Transcription profiles of 14,500 human genes, generated by microarray, revealed a nonlinear evolution of culture-adapted MSCs. Significant expression changes occurred only after P5 (mPDL 27) and accumulated rapidly after P9 (mPDL 45), preceding other cell aging metrics. We report that cryobanked umbilical cord-derived MSCs can be reliably expanded to clinical human doses by P4 (mPDL 23), before significant transcriptome drift, and thus represent a mesenchymal cell source suited for clinical translation of cellular therapies. Stem Cells Translational Medicine 2019;8:945&958.
Collapse
Affiliation(s)
| | | | | | - Barry N Ford
- Casualty Management Section, DRDC Suffield Research Centre, Medicine Hat, Alberta, Canada
| | | |
Collapse
|
12
|
Romaldini A, Mastrogiacomo M, Cancedda R, Descalzi F. Platelet Lysate Activates Human Subcutaneous Adipose Tissue Cells by Promoting Cell Proliferation and Their Paracrine Activity Toward Epidermal Keratinocytes. Front Bioeng Biotechnol 2018; 6:203. [PMID: 30622945 PMCID: PMC6308153 DOI: 10.3389/fbioe.2018.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Skin chronic wounds are non-healing ulcerative defects, which arise in association with a morbidity state, such as diabetes and vascular insufficiency or as the consequence of systemic factors including advanced age. Platelet Rich Plasma, a platelet-rich blood fraction, can significantly improve the healing of human skin chronic ulcers. Given that the subcutaneous adipose tissue is located beneath the skin and plays a role in the skin homeostasis, in this study, we investigated the in vitro response of human subcutaneous adipose tissue cells to platelet content in a model mimicking in vitro the in situ milieu of a deep skin injury. Considering that, at the wound site, plasma turn to serum, platelets are activated and inflammation occurs, human adipose-derived stromal cells (hASC) were cultured with Human Serum (HS) supplemented or not with Platelet Lysate (PL) and/or IL-1α. We observed that HS sustained hASC proliferation more efficiently than FBS and induced a spontaneous adipogenic differentiation in the cells. PL added to HS enhanced hASC proliferation, regardless the presence of IL-1α. In the presence of PL, hASC progressively lessened the adipogenic phenotype, possibly because the proliferation of less committed cells was induced. However, these cells resumed adipogenesis in permissive conditions. Accordingly, PL induced in quiescent cells activation of the proliferation-related pathways ERK, Akt, and STAT-3 and expression of Cyclin D1. Moreover, PL induced an early and transient increase of the pro-inflammatory response triggered by IL-1α, by inducing COX-2 expression and secretion of a large amount of PGE2, IL-6, and IL-8. Media conditioned by PL-stimulated hASC exerted a chemotactic activity on human keratinocytes and favored the healing of an in vitro scratch wound. In order to bridge the gap between in vitro results and possible in vivo events, the stimuli were also tested in ex vivo cultures of in toto human adipose tissue biopsies (hAT). PL induced cell proliferation in hAT and outgrowth of committed progenitor cells able to differentiate in permissive conditions. In conclusion, we report that the adipose tissue responds to the wound microenvironment by activating the proliferation of adipose tissue progenitor cells and promoting the release of factors favoring wound healing.
Collapse
Affiliation(s)
- Alessio Romaldini
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiorella Descalzi
- Department of Experimental Medicine (DIMES) and Department of Internal Medicine (DIMI), University of Genoa; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
Hassan G, Bahjat M, Kasem I, Soukkarieh C, Aljamali M. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett 2018; 23:11. [PMID: 29568314 PMCID: PMC5859745 DOI: 10.1186/s11658-018-0080-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Purpose Articular cartilage has a poor capacity for self-repair, and thus still presents a major challenge in orthopedics. Mesenchymal stem cells (MSCs) are multipotent stem cells with the potential to differentiate into chondrocytes in the presence of transforming growth factor beta (TGF-β). Platelet lysate (PL) contains a relatively large number of growth factors, including TGF-β, and has been shown to ameliorate cartilage repair. Here, we investigated the ability of PL to direct chondrogenic differentiation of MSCs along with other standard differentiation components in a pellet culture system. Methods We isolated and expanded MSCs from human umbilical cords using a PL-supplemented medium and characterized the cells based on immunophenotype and potential for differentiation to adipocytes and osteocytes. We further cultured MSCs as pellets in a chondrogenic-differentiation medium supplemented with PL. After 21 days, the pellets were processed for histological analysis and stained with alician blue and acridine orange. The expression of SOX9 was investigated using RT-PCR. Results MSCs maintained their stemness characteristics in the PL-supplemented medium. However, the distribution of cells in the pellets cultured in the PL-supplemented chondrogenic differentiation medium had a greater similarity to cartilage tissue-derived chondrocytes than to the negative control. The intense alician blue staining indicated an increased production of mucopolysaccharides in the differentiated pellets, which also showed elevated expression of SOX9. Conclusions Our data suggest that MSCs could be differentiated to chondrocytes in the presence of PL and absence of exogenous TGF-β. Further research needs to be conducted to understand the exact role and potential of PL in chondrogenic differentiation and chondrocyte regeneration.
Collapse
Affiliation(s)
- Ghmkin Hassan
- 1Faculty of Pharmacy, Damascus University, Damascus, Syria
| | | | - Issam Kasem
- 2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Chadi Soukkarieh
- 2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Majd Aljamali
- 1Faculty of Pharmacy, Damascus University, Damascus, Syria.,2Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| |
Collapse
|
14
|
Chisini LA, Conde MCM, Grazioli G, Martin ASS, Carvalho RVD, Nör JE, Demarco FF. Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review. Braz Dent J 2017; 28:657-668. [PMID: 29211118 DOI: 10.1590/0103-6440201701646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Although the biological properties of mesenchymal stem cells (MSC) are well-characterized in vitro, MSC clinical application is still far away to be achieved, mainly due to the need of xenogeneic substances for cell expansion, such as fetal bovine serum (FBS). FBS presents risks regarding pathogens transmissions and internalization of animal's proteins, which can unleash antigenic responses in patients after MSC implantation. A wide range of venous blood derivatives (VBD) has been reported as FBS substitutes showing promising results. Thus, the aim of this study was to conduct a systematic scoping review to analyze whether VBD are effective FBS substitutes for MSC ex vivo expansion. The search was performed in SciVerse ScopusTM, PubMed, Web of ScienceTM, BIREME, Cochrane library up to January 2016. The keywords were selected using MeSH and entry terms. Two independent reviewers scrutinized the records obtained considering specific inclusion criteria. The included studies were evaluated in accordance with a modified Arksey and O' Malley's framework. From 184 found studies, 90 were included. Bone marrow mesenchymal stem cells (BMMSC) were presented in most of these studies. Overall, VBD allowed for either, maintenance of MCS's fibroblast-like morphology, high proliferation, high colony-formation ability and maintenance of multipotency. Besides. MSC expanded in VBD supplements presented higher mitogen activity than FBS. VBD seems to be excellent xeno-free serum for ex vivo expansion of mesenchymal stem cells. However, an accentuated heterogeneity was observed between the carried out protocols for VBD isolation did not allowing for direct comparisons between the included studies.
Collapse
Affiliation(s)
- Luiz A Chisini
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcus C M Conde
- Graduate Program in Dentistry, School of Dentistry, UNIVATES - Universidade do Vale do Taquari, Lajeado, Brazil
| | | | - Alissa S San Martin
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Flávio F Demarco
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Karaöz E, İnci Ç. Umbilical Cord Tissue and Wharton’s Jelly Mesenchymal Stem Cells Properties and Therapeutic Potentials. PERINATAL TISSUE-DERIVED STEM CELLS 2016. [DOI: 10.1007/978-3-319-46410-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|