1
|
Tong X, Dong Y, Zhou R, Shen X, Li Y, Jiang Y, Wang H, Wang J, Lin J, Wen C. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Adv Healthc Mater 2024; 13:e2303975. [PMID: 38235953 DOI: 10.1002/adhm.202303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm-2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm-2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Runqi Zhou
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jinguo Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuie Wen
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| |
Collapse
|
2
|
Hu K, Hou Z, Huang Y, Li X, Li X, Yang L. Recent development and future application of biodegradable ureteral stents. Front Bioeng Biotechnol 2024; 12:1373130. [PMID: 38572363 PMCID: PMC10987965 DOI: 10.3389/fbioe.2024.1373130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Ureteral stenting is a common clinical procedure for the treatment of upper urinary tract disorders, including conditions such as urinary tract infections, tumors, stones, and inflammation. Maintaining normal renal function by preventing and treating ureteral obstruction is the primary goal of this procedure. However, the use of ureteral stents is associated with adverse effects, including surface crusting, bacterial adhesion, and lower urinary tract symptoms (LUTS) after implantation. Recognizing the need to reduce the complications associated with permanent ureteral stent placement, there is a growing interest among both physicians and patients in the use of biodegradable ureteral stents (BUS). The evolution of stent materials and the exploration of different stent coatings have given these devices different roles tailored to different clinical needs, including anticolithic, antibacterial, antitumor, antinociceptive, and others. This review examines recent advances in BUS within the last 5 years, providing an in-depth analysis of their characteristics and performance. In addition, we present prospective insights into the future applications of BUS in clinical settings.
Collapse
Affiliation(s)
- Ke Hu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanbin Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueying Li
- College of Computer Science and Engineering, Dalian Minzu University, Dalian, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Huang B, Yang M, Kou Y, Jiang B. Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development. Bioact Mater 2024; 31:272-283. [PMID: 37637087 PMCID: PMC10457691 DOI: 10.1016/j.bioactmat.2023.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Over the past two decades, advances in arthroscopic and minimally invasive surgical techniques have led to significant growth in sports medicine surgery. Implants such as suture anchors, interference screws, and endo-buttons are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers, absorbable bioceramics, and absorbable metals. In this paper, we will provide a comprehensive summary of these absorbable materials from the perspective of clinicians, and discuss their clinical applications and related research in sport medicine.
Collapse
Affiliation(s)
- Boxuan Huang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ming Yang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
4
|
Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, Deng H, Wang X, Liang Y, Li H, Zhao Y, Wen P, Li Y. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 2023; 27:488-504. [PMID: 37180641 PMCID: PMC10173180 DOI: 10.1016/j.bioactmat.2023.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Zinc (Zn) alloy porous scaffolds produced by additive manufacturing own customizable structures and biodegradable functions, having a great application potential for repairing bone defect. In this work, a hydroxyapatite (HA)/polydopamine (PDA) composite coating was constructed on the surface of Zn-1Mg porous scaffolds fabricated by laser powder bed fusion, and was loaded with a bioactive factor BMP2 and an antibacterial drug vancomycin. The microstructure, degradation behavior, biocompatibility, antibacterial performance and osteogenic activities were systematically investigated. Compared with as-built Zn-1Mg scaffolds, the rapid increase of Zn2+, which resulted to the deteriorated cell viability and osteogenic differentiation, was inhibited due to the physical barrier of the composite coating. In vitro cellular and bacterial assay indicated that the loaded BMP2 and vancomycin considerably enhanced the cytocompatibility and antibacterial performance. Significantly improved osteogenic and antibacterial functions were also observed according to in vivo implantation in the lateral femoral condyle of rats. The design, influence and mechanism of the composite coating were discussed accordingly. It was concluded that the additively manufactured Zn-1Mg porous scaffolds together with the composite coating could modulate biodegradable performance and contribute to effective promotion of bone recovery and antibacterial function.
Collapse
Affiliation(s)
- Zhenbao Zhang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiadong Fan
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Menglin Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Jin
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Xuan Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author. State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China.
| | - Yanfeng Li
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
5
|
Chen K, Ge W, Zhao L, Kong L, Yang H, Zhang X, Gu X, Zhu C, Fan Y. Endowing biodegradable Zinc implants with dual-function of antibacterial ability and osteogenic activity by micro-addition of Mg and Ag (≤ 0.1 wt.%). Acta Biomater 2023; 157:683-700. [PMID: 36521674 DOI: 10.1016/j.actbio.2022.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Infection remains the devastating complications associated with surgical fixation of bones fractured during trauma. In this study, we report a low-alloyed Zn-Mg-Ag that simultaneously has optimized strength degeneration profiles during degradation, outstanding antibacterial efficacy and osteogenic activity. Our results showed that Zn-0.05Mg-0.1Ag alloy had favorable mechanical properties (UTS: 247.8 ± 1.6 MPa, Elong.: 35 ± 2.2 %) and presented a better hold of mechanical integrity than pure Zn during 28 days corrosion, 2.6 % vs. 18.7 % reduction. After one-year of natural aging, the alloy still preserved an elongation of 24.07 ± 3.84 %. As verified by microbial cultures, Zn-0.05Mg-0.1Ag alloy demonstrated high antibacterial performance against Gram-positive and Gram-negative strains, as well as antibiotic-resistant strains (MRSA) in vitro and in vivo due to the synergistic antibacterial actions of Zn2+ and Ag+. Meanwhile, Zn-Mg-Ag alloy also exhibited enhanced viability, osteogenic differentiation, and gene expressions of osteoblasts in vitro, as well as promoted osteogenic activity than pure Zn in the femoral condyle defect repair model. The co-releasing of Zn, Mg and Ag ions did not induce toxic side effects. Collectively, low alloyed Zn-0.05Mg-0.1Ag indicated long-lasting mechanical integrity during degradation, and presented the ability to synergistically inhibit bacteria and promote osteogenesis, possessing tremendous potential in treating implant-associated infections. STATEMENT OF SIGNIFICANCE: Infection after fracture fixation (IAFF) remains the most common and serious side effects of orthopedic surgery. Additionally, widespread antibiotic use contributes to the development of multi-drug resistant bacteria such as methicillin-resistant staphylococcus aureus (MRSA), which exacerbates IAFF treatment and prevention. IAFF treatment and prevention remain clinically challenging, so implants with dual antibacterial and osteogenic functions are in high demand. The antibacterial efficacy and osteogenic activity of low-alloyed Zn-Mg-Ag (≤0.1 wt.% Mg, Ag) alloys were investigated in vitro and in vivo. The results showed that micro addition of Mg and Ag could significantly improve osseointegration function, mechanical properties, and antibacterial performance. These quantification findings shed new light on the development and understanding of dual functional Zn-based orthopedic implants.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wufei Ge
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Li Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
6
|
Zan R, Shen S, Huang Y, Yu H, Liu Y, Yang S, Zheng B, Gong Z, Wang W, Zhang X, Suo T, Liu H. Research hotspots and trends of biodegradable magnesium and its alloys. SMART MATERIALS IN MEDICINE 2023; 4:468-479. [DOI: 10.1016/j.smaim.2023.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Guo H, Huang J, Liang Y, Wang D, Zhang H. Focusing on the hypoxia-inducible factor pathway: role, regulation, and therapy for osteoarthritis. Eur J Med Res 2022; 27:288. [PMID: 36503684 PMCID: PMC9743529 DOI: 10.1186/s40001-022-00926-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic disabling disease that affects hundreds of millions of people around the world. The most important pathological feature is the rupture and loss of articular cartilage, and the characteristics of avascular joint tissues lead to limited repair ability. Currently, there is no effective treatment to prevent cartilage degeneration. Studies on the mechanism of cartilage metabolism revealed that hypoxia-inducible factors (HIFs) are key regulatory genes that maintain the balance of cartilage catabolism-matrix anabolism and are considered to be the major OA regulator and promising OA treatment target. Although the exact mechanism of HIFs in OA needs to be further clarified, many drugs that directly or indirectly act on HIF signaling pathways have been confirmed by animal experiments and regarded as promising treatments for OA. Targeting HIFs will provide a promising strategy for the development of new OA drugs. This article reviews the regulation of HIFs on intra-articular cartilage homeostasis and its influence on the progression of osteoarthritis and summarizes the recent advances in OA therapies targeting the HIF system.
Collapse
Affiliation(s)
- Hanhan Guo
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jianghong Huang
- grid.452847.80000 0004 6068 028XDepartment of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, 518035 China ,grid.12527.330000 0001 0662 3178Innovation Leading Engineering Doctor, Tsinghua University Shenzhen International Graduate School, Class 9 of 2020, Shenzhen, 518055 China
| | - Yujie Liang
- grid.452897.50000 0004 6091 8446Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 China
| | - Daping Wang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.452847.80000 0004 6068 028XDepartment of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 China
| | - Huawei Zhang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
8
|
The Potential of Magnesium-Based Materials for Engineering and Biomedical Applications. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00274-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Feng F, Chen M, Wang X, Zhang H, Nie H, Tang H. Translation of a spinal bone cement product from bench to bedside. Bioact Mater 2021; 10:345-354. [PMID: 34901551 PMCID: PMC8636668 DOI: 10.1016/j.bioactmat.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023] Open
Abstract
Spinal acrylic bone cements (ABCs) are used clinically for percutaneous vertebroplasty (PVP) and kyphoplasty (PKP) to treat osteoporotic vertebral compression fractures. Product translation of spinal ABC products followed the design control processes including design verification and validation. The bench to bedside translation of the first Chinese spinal ABC product (Alliment®, namely Alliment Cement) approved by National Medical Products Administration of China was investigated and another commercial product served as the control (Osteopal®V, namely Osteopal V Cement). Results of non-clinical bench performance verification tests of compression, bending and monomer release showed that the newly marketed Alliment Cement is similar to the Osteopal V Cement with properties of both meeting the criteria specified by standards. The Alliment Cement demonstrated good biocompatibility during the 26 weeks’ bone implantation test. Porcine cadaver validation tests further revealed that the Alliment Cement satisfied the needs for both PVP and PKP procedures. A post-approval, retrospective clinical investigation further demonstrated the safety and efficacy of the Alliment Cement, with a significant reduction of pain and the improved stability of the fractured vertebral bodies. A successful translation of biomaterial medical products needs close collaborations among academia, industry, healthcare professionals and regulatory agencies. Bench-to-bedside research of the first Chinese spinal acrylic bone cement product. •Pre- & clinical investigations demonstrate the product's safety and efficacy. •Translation of biomaterial medical products follows regulated processes.
Collapse
Affiliation(s)
- Fei Feng
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| | - Mengmeng Chen
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| | - Xuan Wang
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hongwei Zhang
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hongtao Nie
- Beijing Bonsci Technology Co Ltd, No.100, 6th Kechuang Street, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
10
|
Wang W, Blawert C, Zan R, Sun Y, Peng H, Ni J, Han P, Suo T, Song Y, Zhang S, Zheludkevich ML, Zhang X. A novel lean alloy of biodegradable Mg-2Zn with nanograins. Bioact Mater 2021; 6:4333-4341. [PMID: 33997510 PMCID: PMC8105637 DOI: 10.1016/j.bioactmat.2021.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Lean alloy (low alloyed) is beneficial for long-term sustainable development of metal materials. Creating a nanocrystalline microstructure is a desirable approach to improve biodegradability and mechanical properties of lean biomedical Mg alloy, but it is nearly impossible to realize. In the present study, the bulk nanocrystalline Mg alloy (average grain size: ~70 nm) was successfully obtained by hot rolling process of a lean Mg-2wt.%Zn (Z2) alloy and both high strength ((223 MPa (YS) and 260 MPa (UTS)) and good corrosion resistance (corrosion rate in vivo: 0.2 mm/year) could be achieved. The microstructure evolution during the rolling process was analyzed and discussed. Several factors including large strain, fine grains, strong basal texture, high temperature and Zn segregation conjointly provided the possibility for the activation of pyramidal slip to produce nanocrystals. This finding could provide a new development direction and field of application for lean biomedical Mg alloys.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Magnesium Innovation Centre (MagIC), Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Carsten Blawert
- Magnesium Innovation Centre (MagIC), Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahua Ni
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Pei Han
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Suo
- Zhongshan Hospital Fudan University, Shanghai, 200233, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., Jiangsu, 215513, China
| | - Mikhail L. Zheludkevich
- Magnesium Innovation Centre (MagIC), Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Zan R, Wang H, Ni J, Wang W, Peng H, Sun Y, Yang S, Lou J, Kang X, Zhou Y, Chen Y, Yan J, Zhang X. Multifunctional Magnesium Anastomosis Staples for Wound Closure and Inhibition of Tumor Recurrence and Metastasis. ACS Biomater Sci Eng 2021; 7:5269-5278. [PMID: 34618437 DOI: 10.1021/acsbiomaterials.1c00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biodegradable magnesium (Mg) implants spontaneously releasing therapeutic agents against tumors are an intriguing therapeutic approach for both tissue repair and tumor treatment. Anastomotic staples are extensively used for wound closure after surgical resection in patients with colorectal tumors. However, the safety of Mg anastomosis implants for intestinal closure and the effect of tumor suppression remain elusive. Here, we used a high-purity Mg staple to study these issues. Based on the results, we found that it has the potential to heal wounds produced after colorectal tumor resection while inhibiting relapse of residual tumor cells in vitro and in vivo. After implantation of Mg staples for 7 weeks in rabbits, the intestinal wound gradually healed with no adverse effects such as leakage or inflammation. Furthermore, the implanted Mg staples inhibit the growth of colorectal tumor cells and block migration to normal organs because of the increased concentration of Mg ions and released hydrogen. Such an antitumor effect is further confirmed by the in vitro cell experiments. Mg significantly induces apoptosis of tumor cells as well as inhibits cell growth and migration. Our work presents a feasible therapeutic opinion to design Mg anastomotic staples to perform wound healing and simultaneously release tumor suppressor elements in vivo to decrease the risk of tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Jiangsu 214002, China
| | - Jiahua Ni
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhui Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Lou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinbao Kang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongping Zhou
- Department of General Surgery and Translational Medicine Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Jiangsu 214002, China
| | - Yigang Chen
- Department of General Surgery and Translational Medicine Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Jiangsu 214002, China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
| |
Collapse
|
12
|
Zhang J, Jiang Y, Shang Z, Zhao B, Jiao M, Liu W, Cheng M, Zhai B, Guo Y, Liu B, Shi X, Ma B. Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2021; 6:4027-4052. [PMID: 33997491 PMCID: PMC8089787 DOI: 10.1016/j.bioactmat.2021.03.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Biodegradable metals are promising candidates for bone defect repair. With an evidence-based approach, this study investigated and analyzed the performance and degradation properties of biodegradable metals in animal models for bone defect repair to explore their potential clinical translation. Animal studies on bone defect repair with biodegradable metals in comparison with other traditional biomaterials were reviewed. Data was carefully collected after identification of population, intervention, comparison, outcome, and study design (PICOS), and following the inclusion criteria of biodegradable metals in animal studies. 30 publications on pure Mg, Mg alloys, pure Zn and Zn alloys were finally included after extraction from a collected database of 2543 publications. A qualitative systematic review and a quantitative meta-analysis were performed. Given the heterogeneity in animal model, anatomical site and critical size defect (CSD), biodegradable metals exhibited mixed effects on bone defect repair and degradation in animal studies in comparison with traditional non-degradable metals, biodegradable polymers, bioceramics, and autogenous bone grafts. The results indicated that there were limitations in the experimental design of the included studies, and quality of the evidence presented by the studies was very low. To enhance clinical translation of biodegradable metals, evidence-based research with data validity is needed. Future studies should adopt standardized experimental protocols in investigating the effects of biodegradable metals on bone defect repair with animal models.
Collapse
Affiliation(s)
- Jiazhen Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhizhong Shang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bao Zhai
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Yajuan Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Institute of Health Data Science, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
13
|
Jing X, Ding Q, Wu Q, Su W, Yu K, Su Y, Ye B, Gao Q, Sun T, Guo X. Magnesium-based materials in orthopaedics: material properties and animal models. BIOMATERIALS TRANSLATIONAL 2021; 2:197-213. [PMID: 35836647 PMCID: PMC9255805 DOI: 10.12336/biomatertransl.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
As a new generation of medical metal materials, degradable magnesium-based materials have excellent mechanical properties and osteogenic promoting ability, making them promising materials for the treatment of refractory bone diseases. Animal models can be used to understand and evaluate the performance of materials in complex physiological environments, providing relevant data for preclinical evaluation of implants and laying the foundation for subsequent clinical studies. To date, many researchers have studied the biocompatibility, degradability and osteogenesis of magnesium-based materials, but there is a lack of review regarding the effects of magnesium-based materials in vivo. In view of the growing interest in these materials, this review briefly describes the properties of magnesium-based materials and focuses on the safety and efficacy of magnesium-based materials in vivo. Various animal models including rats, rabbits, dogs and pigs are covered to better understand and evaluate the progress and future of magnesium-based materials. This literature analysis reveals that the magnesium-based materials have good biocompatibility and osteogenic activity, thus causing no adverse reaction around the implants in vivo, and that they exhibit a beneficial effect in the process of bone repair. In addition, the degradation rate in vivo can also be improved by means of alloying and coating. These encouraging results show a promising future for the use of magnesium-based materials in musculoskeletal disorders.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiuyue Ding
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qinxue Wu
- Department of Clinical Medicine, Hubei Enshi College, Enshi, Hubei Province, China
| | - Weijie Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Keda Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanlin Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tingfang Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Xiaodong Guo,
| |
Collapse
|
14
|
Luo Y, Wang J, Ong MTY, Yung PSH, Wang J, Qin L. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics. BIOMATERIALS TRANSLATIONAL 2021; 2:188-196. [PMID: 35836649 PMCID: PMC9255812 DOI: 10.12336/biomatertransl.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Biodegradable magnesium (Mg) or its alloys are desirable materials for development into new-generation internal fixation devices or implants with high biocompatibility, adequate mechanical modulus, and osteopromotive properties, which may overcome some of the drawbacks of the existing permanent orthopaedic implants with regard to stress-shielding of bone and beam-hardening effects on radiographic images. This review summarises the current research status of Mg-based orthopaedic implants in animals and clinical trials. First, detailed information of animal studies including bone fracture repair and anterior cruciate ligament reconstruction with the use of Mg-based orthopaedic devices is introduced. Second, the repair mechanisms of the Mg-based orthopaedic implants are also reviewed. Afterwards, reports of recent clinical cases treated using Mg-based implants in orthopaedics are summarised. Finally, the challenges and the strategies of the use of Mg-based orthopaedic implants are discussed. Taken together, the collected efforts in basic research, translational work, and clinical applications of Mg-based orthopaedic implants over the last decades greatly contribute to the development of a new generation of biodegradable metals used for the design of innovative implants for better treatment of orthopaedic conditions in patients with challenging skeletal disorders or injuries.
Collapse
Affiliation(s)
- Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jue Wang
- Hanglok-Tech Co., Ltd., Zhuhai, Guangdong Province, China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and The Chinese University of Hong Kong Shenzhen-Hong Kong Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patrick Shu-hang Yung
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and The Chinese University of Hong Kong Shenzhen-Hong Kong Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China,Corresponding authors: Jiali Wang, , Ling Qin,
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and The Chinese University of Hong Kong Shenzhen-Hong Kong Innovation and Technology Institute (Futian), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China,Corresponding authors: Jiali Wang, , Ling Qin,
| |
Collapse
|
15
|
Zhang Y, Cao J, Wang X, Liu H, Shao Y, Chu C, Xue F, Bai J. The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid. Bioact Mater 2021; 7:217-226. [PMID: 34466728 PMCID: PMC8379480 DOI: 10.1016/j.bioactmat.2021.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
With an upsurge of biodegradable metal implants, the research and application of Mg alloys in the gastrointestinal environment of the digestive tract have been of great interest. Digestive enzymes, mainly pepsin in the stomach and pancreatin in the small intestine, are widespread in the gastrointestinal tract, but their effect on the degradation of Mg alloys has not been well understood. In this study, we investigated the impacts of pepsin and pancreatin on the degradation of Mg-2Zn alloy wires. The results showed that the pepsin and pancreatin had completely different even the opposite effects on the degradation of Mg, although they both affected the degradation product layer. The degradation rate of Mg wire declined with the addition of pepsin in simulated gastric fluid (SGF) but rose with the addition of pancreatin in simulated intestinal fluid (SIF). The opposite trends in degradation rate also resulted in completely different degradation morphologies in wires surface, where the pitting corrosion in SGF was inhibited because of the physical barrier effect of pepsin adsorption. In contrast, the adsorption of pancreatin affected the integrity of magnesium hydrogen phosphate film, causing a relatively uneven degraded surface. These results may help us to understand the role of different digestive enzymes in the degradation of magnesium and facilitate the development and clinical application of magnesium alloy implanted devices for the digestive tract. The pepsin in SGF and pancreatin in SIF have opposite effects on the degradation rate of Mg. Both enzymes can adsorb on the surface of Mg wire and affect the formation of the degradation layer. The physical barrier effect of pepsin adsorption retarded the pitting corrosion and corrosion rate in SGF. Adsorbed pancreatin affected the integrity of the products layer in SIF, resulting in an accelerated corrosion rate.
Collapse
Affiliation(s)
- Yue Zhang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| | - Jian Cao
- Peking University People's Hospital, Xi Cheng, Beijing 100044, China
| | - Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Huan Liu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| |
Collapse
|
16
|
Tie D, Hort N, Chen M, Guan R, Ulasevich S, Skorb EV, Zhao D, Liu Y, Holt-Torres P, Liu H. In vivo urinary compatibility of Mg-Sr-Ag alloy in swine model. Bioact Mater 2021; 7:254-262. [PMID: 34466731 PMCID: PMC8379362 DOI: 10.1016/j.bioactmat.2021.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
A biodegradable metallic ureteral stent with suitable mechanical properties and antibacterial activity remains a challenge. Here we reveal the scientific significance of a biodegradable Mg-Sr-Ag alloy with a favorable combination of balanced mechanical properties, adjustable indwelling time in urinary tract and evident antibacterial activity via in vivo experiments in a swine model. Attributed to the rheo-solidification process, equiaxial microstructure and significantly refined grains (average grain size: 27.1 μm) were achieved. Mg17Sr2 and Mg4Ag were found as the primary precipitates in the matrix, due to which the alloy obtained ca. 111% increase in ultimate tensile strength in comparison to pure magnesium. Both the in vitro and in vivo results demonstrated the satisfactory biocompatibility of the alloy. Histological evaluation and bioindicators analysis suggested that there was no tissue damage, inflammation and lesions in the urinary system caused by the degradation process. The stent also improved the post-operative bladder functions viewed from the urodynamic results. Our findings highlight the potential of this alloy as antibacterial biodegradable urinary implant material. Innovative biodegradable antibacterial Mg-Sr-Ag alloy. In vivo study in pig ureter models. Enhanced mechanical properties and adjustable indwelling time. Outstanding urinary compatibility and evident antibacterial activity.
Collapse
Affiliation(s)
- Di Tie
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian, 116028, China
| | - Norbert Hort
- Magnesium Innovation Center, Helmholtz-Zentrum Geesthacht, D-21502, Geesthacht, Germany
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Renguo Guan
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian, 116028, China
| | - Sviatlana Ulasevich
- Infochemistry Scientific Center, ITMO University, St. Petersburg, 192007, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, St. Petersburg, 192007, Russia
| | - Dapeng Zhao
- College of Biology, Hunan University, 410082, Changsha, China
| | - Yili Liu
- Department of Urology, China Medical University, Shenyang, 110084, China
| | - Patricia Holt-Torres
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, CA, 92521, USA
| | - Huinan Liu
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, CA, 92521, USA
| |
Collapse
|
17
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
18
|
Peng H, Fan K, Zan R, Gong ZJ, Sun W, Sun Y, Wang W, Jiang H, lou J, Ni J, Suo T, Zhang X. Degradable magnesium implants inhibit gallbladder cancer. Acta Biomater 2021; 128:514-522. [PMID: 33964481 DOI: 10.1016/j.actbio.2021.04.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer can be difficult to detect in its early stages and is prone to metastasize, causing bile duct obstruction, which is usually treated by stent implantation in clinic. However, the commonly used biliary stents are non-degradable, which not only prone to secondary blockage, but also need to be removed by secondary surgery. Biodegradable magnesium (Mg) is expected to one of the promising candidates for degradable biliary stents due to its excellent physicochemical property and biocompatibility. In this work, we studied the influence of high-purity Mg wires on gallbladder cancer through in vitro and in vivo experiments and revealed that the degradation products of Mg could significantly inhibit the growth of gallbladder cancer cells and promote their apoptosis. Our findings indicate that Mg biliary stent possesses the function of draining bile and treating gallbladder cancer, suggesting that Mg has good application prospects in biliary surgery. STATEMENT OF SIGNIFICANCE: Current research and development of biomedical magnesium are mainly concentrated in the cardiovascular and orthopedics field. Degradable magnesium bile duct stents have great application prospects in the treatment of bile duct blockage caused by bile duct-related cancers. At present, the effect of magnesium implants on gallbladder cancer is not clear. Our work verified the effectiveness of magnesium wire implants in inhibiting gallbladder cancer through in vivo and in vitro experiments, and studied the effect of magnesium degradation products on gallbladder cancer cells from the perspective of cell proliferation, apoptosis and cycle. This study provided new understanding for the application of magnesium in biliary surgery.
Collapse
|
19
|
Yang N, Balasubramani N, Venezuela J, Almathami S, Wen C, Dargusch M. The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn-Ca-Cu alloys for absorbable wound closure device applications. Bioact Mater 2021; 6:1436-1451. [PMID: 33210035 PMCID: PMC7658446 DOI: 10.1016/j.bioactmat.2020.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu's therapeutic values to wound healing. The influence of Ca and Cu on the microstructure, mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system. The microstructure of Zn-0.5Ca-0.5Cu, Zn-1.0Ca-0.5Cu, and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution. The presence of CaZn13 phase and Cu as solute within the Zn matrix, on the one hand, exhibited a synergistic effect on the grain refinement of Zn, reducing the grain size of pure Zn by 96%; on the other hand, improved the mechanical properties of the ternary alloys through solid solution strengthening, second phase strengthening, and grain refinement. The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase, where the 0.5% and 1.0% Ca addition increased the corrosion rate of Zn from 11.5 μm/y to 19.8 μm/y and 29.6 μm/y during 4 weeks immersion test.
Collapse
Affiliation(s)
- Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Nagasivamuni Balasubramani
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Sharifah Almathami
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matthew Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia, QLD, 4072, Australia
| |
Collapse
|
20
|
Yao H, Xu J, Wang J, Zhang Y, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, Hu P, Ruan Y, Xue Q, Ho K, Qin L. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater 2021; 6:1341-1352. [PMID: 33210027 PMCID: PMC7658330 DOI: 10.1016/j.bioactmat.2020.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION We previously demonstrated that magnesium ions (Mg2+) was a novel therapeutic alternative for osteoarthritis (OA) through promoting the hypoxia inducible factor-1α (HIF-1α)-mediated cartilage matrix synthesis. However, oxidative stress can inhibit the expression of HIF-1α, amplify the inflammation that potentially impairs the therapeutic efficacy of Mg2+ in OA. Vitamin (VC), a potent antioxidant, may enhance the efficacy of Mg2+ in OA treatment. This study aims to investigate the efficacy of combination of Mg2+ and VC on alleviating joint destruction and pain in OA. MATERIAL AND METHODS Anterior cruciate ligament transection with partial medial meniscectomy induced mice OA model were randomly received intra-articular injection of either saline, MgCl2 (0.5 mol/L), VC (3 mg/ml) or MgCl2 (0.5 mol/L) plus VC (3 mg/ml) at week 2 post-operation, twice weekly, for 2 weeks. Joint pain and pathological changes were assessed by gait analysis, histology, western blotting and micro-CT. RESULTS Mg2+ and VC showed additive effects to significantly alleviate the joint destruction and pain. The efficacy of this combined therapy could sustain for 3 months after the last injection. We demonstrated that VC enhanced the promotive effect of Mg2+ on HIF-1α expression in cartilage. Additionally, combination of Mg2+ and VC markedly promoted the M2 polarization of macrophages in synovium. Furthermore, combination of Mg2+ and VC inhibited osteophyte formation and expressions of pain-related neuropeptides. CONCLUSIONS Intra-articular administration of Mg2+ and VC additively alleviates joint destruction and pain in OA. Our current formulation may be a cost-effective alternative treatment for OA.
Collapse
Affiliation(s)
- Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Yifeng Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Yechun Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, No. 5th Clinical Medical Collage, Health Science Center, Peking University, Beijing, PR China
| | - Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Dubey A, Jaiswal S, Garg A, Jain V, Lahiri D. Synthesis and evaluation of magnesium/co-precipitated hydroxyapatite based composite for biomedical application. J Mech Behav Biomed Mater 2021; 118:104460. [PMID: 33773238 DOI: 10.1016/j.jmbbm.2021.104460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Owing to its inductive attributes, hydroxyapatite is an ideal reinforcement to tailor the degradation kinetics of magnesium-based temporary orthopedic implants. However, the large difference in the melting temperature of hydroxyapatite and magnesium lead to an insignificant interaction between them during the sintering process, which has been a major limitation in their consolidation. Doping of pure HA with Mg2+ and Zn2+ ions could be a viable solution by making it coherent with the Mg matrix. Further, such doping also results in a chemistry more similar to the natural apatite in human bone. In this study, Mg2+ and Zn2+ ions doped hydroxyapatite (CoHA) is synthesized and reinforced to obtain high density in Mg-based composites, fabricated through spark plasma sintering. Composite with 15 wt % CoHA offered ~113% improvement in the ultimate compressive strength. Higher relative density, due to improved consolidation, might be the reason for higher mechanical strength. Hydrogen evolution (up to 64 h) and static immersion studies (up to 28 days) revealed comparatively higher corrosion resistance for 10 wt% CoHA composites. This study gives insight into the potential of fabrication and designing of the M3Z-CoHA composites for temporary orthopedic implants.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Akshit Garg
- Department of Metallurgical and Materials Engineering, Visversaya Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Vaibhav Jain
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
22
|
Dong Q, Zhou X, Feng Y, Qian K, Liu H, Lu M, Chu C, Xue F, Bai J. Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioact Mater 2020; 6:158-168. [PMID: 32817922 PMCID: PMC7426540 DOI: 10.1016/j.bioactmat.2020.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Self-healing coatings have been developed as smart surface coatings for Mg and its alloys to retain local corrosion from the coating damages. In this study, we prepared dicalcium phosphate dihydrate (DCPD) coating on biomedical Mg, and found that the artificial scratches in DCPD coating can be efficiently sealed by anti-corrosive products in both Hank's and normal saline (NS) solutions. Besides, the in-depth study revealed that DCPD was served as not only a physical barrier but also a self-healing agent, demonstrating an autonomous self-healing coating without embedded extra corrosion inhibitors. Moreover, Hank's solution provided foreign-aid film-forming ions to promote self-healing behavior. The findings might offer new opportunities for further studies and applications of efficient self-healing coatings on biodegradable Mg implants. DCPD coating on Mg exhibited self-healing behavior in Hank's and NS solutions. DCPD was acted as not only a physical barrier but also a self-healing agent. DCPD was sensitive to pH, and offered Ca2+ and PO43− ions for self-healing. Hank's solution provided extra film-forming ions to promote self-healing behavior.
Collapse
Affiliation(s)
- Qiangsheng Dong
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Xingxing Zhou
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yuanjia Feng
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Kun Qian
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Huan Liu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
| | - Mengmeng Lu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| |
Collapse
|