1
|
Zheng S, Sun X, Chen K, Zhang M, Zou C, Wang L, Guo Z, Jin Z, Ma Z, Li G, Wu G. Metal-Phenolic Modified Coaxial Electrospun Biomembrane Combined with the Photothermal Effect Enhances Bone Regeneration by Ameliorating Oxidative Stress and Mitochondrial Dysfunction via the PI3K/Akt Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15019-15034. [PMID: 40016904 DOI: 10.1021/acsami.4c21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Critical-sized bone defect regeneration remains a significant clinical challenge due to the complex cascade of biological processes involved. To address this, we developed a sophisticated hierarchical biomembrane (PCS@MPN10) designed to modulate the osteogenic microenvironment. Using coaxial electrospinning, we fabricated a core-shell structure with polylactic acid (PLA) as the membrane base, incorporating simvastatin in the core and chitosan in the shell. The membrane surface was further modified with a tannic acid-iron metal-polyphenol network coating. Our results demonstrated that the biomembrane exhibits excellent biocompatibility, photothermal properties, and significant antibacterial activity. Additionally, the membrane regulates the microenvironment by promoting M1-to-M2 macrophage polarization, showing strong osteogenic potential both in vitro and in vivo. Furthermore, PCS@MPN10+NIR modulates mitochondrial function through the PI3K-AKT pathway, clears mitochondrial reactive oxygen species (ROS), and alleviates cellular oxidative stress, thereby enhancing bone regeneration. Overall, these findings suggest that this biomembrane holds great promise as a strategy for improving bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Shikang Zheng
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Kai Chen
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Chentong Zou
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Zhipeng Guo
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Zhaoyi Jin
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Ziyi Ma
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guanyu Li
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guomin Wu
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Frączek W, Kotela A, Kotela I, Grodzik M. Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6162. [PMID: 39769763 PMCID: PMC11677186 DOI: 10.3390/ma17246162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Nanotechnology, delving into the realm of nanometric structures, stands as a transformative force in orthopedics, reshaping diagnostics, and numerous regenerative interventions. Commencing with diagnostics, this scientific discipline empowers accurate analyses of various diseases and implant stability, heralding an era of unparalleled precision. Acting as carriers for medications, nanomaterials introduce novel therapeutic possibilities, propelling the field towards more targeted and effective treatments. In arthroplasty, nanostructural modifications to implant surfaces not only enhance mechanical properties but also promote superior osteointegration and durability. Simultaneously, nanotechnology propels tissue regeneration, with nanostructured dressings emerging as pivotal elements in accelerating wound healing. As we navigate the frontiers of nanotechnology, ongoing research illuminates promising avenues for further advancements, assuring a future where orthopedic practices are not only personalized but also highly efficient, promising a captivating journey through groundbreaking innovations and tailored patient care.
Collapse
Affiliation(s)
- Wiktoria Frączek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Andrzej Kotela
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland
| | - Ireneusz Kotela
- National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
3
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Wang K, Peng X, Zhang R, Wu X, Mao L. COL6A3 enhances the osteogenic differentiation potential of BMSCs by promoting mitophagy in the osteoporotic microenvironment. Mol Biol Rep 2024; 51:206. [PMID: 38270688 DOI: 10.1007/s11033-023-08918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. METHODS In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. RESULTS This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. CONCLUSIONS In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| | - Lu Mao
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
6
|
Zhang J, Wang T, Zhang H, Deng H, Kuang T, Shen Z, Gu Z. Biomimetic Polyphenolic Scaffolds with Antioxidative Abilities for Improved Bone Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4586-4591. [PMID: 37856084 DOI: 10.1021/acsabm.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bone defects have a severe impact on the health and lives of patients due to their long-lasting and difficult-to-treat features. Recent studies have shown that there are complex microenvironments, including excessive production of reactive oxygen species. Herein, a surface functionalization strategy using metal-polyphenolic networks was used, which was found to be beneficial in restoring oxidative balance and enhancing osseointegration. The surface properties, biocompatibility, intracellular ROS scavenging, and osseointegration capacity were evaluated, and the therapeutic effects were confirmed using a skull defect model. This approach has great potential to improve complex microenvironments and enhance the efficiency of bone tissue regeneration.
Collapse
Affiliation(s)
- Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tairong Kuang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, P. R. China
| |
Collapse
|
7
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
8
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
9
|
Li G, Li Y, Zhang X, Gao P, Xia X, Xiao S, Wen J, Guo T, Yang W, Li J. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε-caprolactone) scaffolds promote vascularized bone regeneration. J Mater Chem B 2023; 11:1115-1130. [PMID: 36636931 DOI: 10.1039/d2tb02309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.
Collapse
Affiliation(s)
- Gen Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Tao Guo
- Department of Orthopaedics, Guizhou Provincial People's hospital, Guiyang 550002, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Song Q, Zhou D, Du J, Li T, He X, Wang J, Chao A, Yu B, Shan C. Andrographis paniculata ameliorates estrogen deficiency-related osteoporosis by directing bone marrow mesenchymal stem cell fate. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:52. [PMID: 36819520 PMCID: PMC9929840 DOI: 10.21037/atm-22-1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Although Andrographis paniculata (AP) exhibits various biological functions such as anticancer, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cardioprotective and immunomodulatory, its role in estrogen deficiency-related osteoporosis remains unclear. Methods Ovariectomy (OVX)-induced estrogen deficiency-related osteoporotic mouse models and sham mouse models were established using 8-week-old female C57BL/6J mice. Micro-computed tomography (µCT) scanning was performed to assess the skeletal phenotype. The differentiation potential of bone marrow mesenchymal stem cells (BMSCs) from the OVX and sham groups was assessed by osteogenic or adipogenic induction medium in vitro. To verify the effects of AP, alizarin red S (ARS) staining, alkaline phosphatase (ALP) staining and oil red O (ORO) staining, reverse transcription assay and quantitative real-time polymerase chain reaction were applied to detect the lineage differentiation ability of BMSCs. Results µCT scanning showed that AP treatment attenuated the osteoporotic phenotype in OVX-induced estrogen deficiency-related osteoporotic mice. The results of ARS staining, ALP staining, ORO staining and quantitative real-time polymerase chain reaction indicated that BMSCs from OVX-induced osteoporotic mice displayed a significant reduction in osteogenic differentiation and an increase in adipogenic differentiation, which could be reversed by AP treatment. Conclusions Our findings suggested that AP regulated the differentiation potential of BMSCs and ameliorated the development of estrogen deficiency-related osteoporosis, which might be an effective therapeutic method for estrogen deficiency-related osteoporosis.
Collapse
Affiliation(s)
- Qian Song
- Department of Osteo-internal Medicine, Tianjin Hospital, Tianjin, China
| | - Dongming Zhou
- Department of Traumatic Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shenshan Central Hospital, Shanwei, China
| | - Xueyu He
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shenshan Central Hospital, Shanwei, China
| | - Jianxiong Wang
- Department of Endocrinology, Tianjin Hospital, Tianjin, China
| | - Aijun Chao
- Department of Osteo-internal Medicine, Tianjin Hospital, Tianjin, China
| | - Bingbing Yu
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China;,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunyan Shan
- Department of Nephrology, Tianjin Medical University, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin, China
| |
Collapse
|
11
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Chen M, Sun Y, Hou Y, Luo Z, Li M, Wei Y, Chen M, Tan L, Cai K, Hu Y. Constructions of ROS-responsive titanium-hydroxyapatite implant for mesenchymal stem cell recruitment in peri-implant space and bone formation in osteoporosis microenvironment. Bioact Mater 2022; 18:56-71. [PMID: 35387165 PMCID: PMC8961459 DOI: 10.1016/j.bioactmat.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
To solve the issue of unsatisfactory recruitment of mesenchymal stem cells (MSCs) around implant in osteoporotic fractures, we fabricated a ROS-responsive system on titanium surface through hydroxyapatite coating and biomolecule grafting. The porous hydroxyapatite and phosphorylated osteogenic growth peptides (p-OGP) were introduced onto titanium surface to synergistically improve osteogenic differentiation of MSCs. After the p-OGP-promoted expression of osteogenic related proteins, the calcium and phosphate ions were released through the degradation of hydroxyapatite and integrated into bone tissues to boost the mineralization of bone matrix. The ROS-triggered release of DNA aptamer (Apt) 19S in the osteoporotic microenvironment guides MSC migration to implant site due to its high affinity with alkaline phosphatase on the membrane of MSCs. Once MSCs reached the implant interface, their osteogenic differentiation potential was enhanced by p-OGP and hydroxyapatite to promote bone regeneration. The study here provided a simple and novel strategy to prepare functional titanium implants for osteoporotic bone fracture repair.
Collapse
Affiliation(s)
- Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuting Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Yujia Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
13
|
Xu C, Guan S, Hou W, Dong X, Qi M. Magnesium-organic framework modified biodegradable electrospun scaffolds for promoting osteogenic differentiation and bone regeneration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
The effect of simvastatin-loaded methoxy poly(ethylene glycol)-polylactic acid nanoparticles on osteoblasts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Simvastatin encapsulated in exosomes can enhance its inhibition of relapse after orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2022; 162:881-889. [PMID: 36117030 DOI: 10.1016/j.ajodo.2021.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Relapse after orthodontic treatment is a major clinical issue in the dental field. Studies indicate that simvastatin may, to some extent, decrease the rate and magnitude of relapse status. Recent evidence demonstrated that exosome-based drug delivery has a broad prospect of clinical application. Hence, this study investigates whether simvastatin encapsulated in exosomes can inhibit relapse after orthodontic tooth movement (OTM). METHODS Periodontal ligament stem cells (PDLSCs) and their exosomes (PDLSCs-Exo) were isolated and identified. Exosomal simvastatin was obtained by co-incubation of simvastatin and PDLSCs-Exo. An OTM rat model was established. During the relapse period, rats' local alveolar bone was injected with simvastatin, PDLSCs-Exo, and exosomal simvastatin to examine the effect on relapse. Finally, we analyzed the influence of exosomal simvastatin on osteogenesis at the molecular and histologic levels. RESULTS PDLSCs and PDLSCs-Exo were successfully extracted and characterized by multiple means. Simvastatin encapsulated in exosomes can increase the solubility of the drug. Exosomal simvastatin can enhance its inhibition of relapse after OTM in the rat model. The expression level of osteogenic-related genes and proteins in the exosomal simvastatin group is higher than in other groups. Histologic analysis showed a reduction of bone-resorptive lacunae in the exosomal simvastatin group. CONCLUSIONS Encapsulating simvastatin into the exosomes derived from PDLSCs can improve simvastatin solubility and enhance the inhibition effect of relapse in the rat model of OTM. Notably, local injection of PDLSCs-Exo alone can also block the relapse after OTM.
Collapse
|
16
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
17
|
Deng Y, Shi J, Chan YK, Bai D, Shu R, Shi X, Li Y, Li L, Yang X, Yang W. Heterostructured Metal-Organic Frameworks/Polydopamine Coating Endows Polyetheretherketone Implants with Multimodal Osteogenicity and Photoswitchable Disinfection. Adv Healthc Mater 2022; 11:e2200641. [PMID: 35521819 DOI: 10.1002/adhm.202200641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Clinically, bacteria-induced contagion and insufficient osseointegrative property inevitably elicit the failure of orthopedic implants. Herein, a heterostructured coating consisting of simvastatin (SIM)-laden metal-organic frameworks and polydopamine nanolayers is created on a porous bioinert polyetheretherketone implant. The heterostructured coating significantly promotes cytocompatibility and osteogenic differentiation through multimodal osteogenicity mechanisms of zinc ion (Zn2+ ) therapy, SIM drug therapy, and surface micro-/nano-topological stimulation. Under the illumination of near-infrared (NIR) light, singlet oxygen (1 O2 ) and local hyperthermia are produced; besides, NIR light dramatically accelerates the release of Zn2+ ions from heterostructured coatings. Gram-positive and -negative bacteria are effectively eradicated by the synergy of photothermal/photodynamic effects and photo-induced accelerated delivery of Zn2+ ions. The superior osteogenicity and osseointegration, as well as photoswitchable disinfection controlled by NIR light are corroborated via in vivo results. This work highlights the great potential of photoresponsive heterostructured orthopedic implants in treatment of the noninvasive bone reconstruction of bacteria-associated infectious tissues through multimodal phototherapy and photoswitchable ion-therapy.
Collapse
Affiliation(s)
- Yi Deng
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Mechanical Engineering The University of Hong Kong Hong Kong 999077 China
| | - Jiacheng Shi
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yau Kei Chan
- Department of Ophthalmology The University of Hong Kong Hong Kong 999077 China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Disease Department of Orthodontics and Pediatrics West China Hospital of Stomatology Sichuan University Chengdu 610064 China
| | - Rui Shu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Disease Department of Orthodontics and Pediatrics West China Hospital of Stomatology Sichuan University Chengdu 610064 China
| | - Xiuyuan Shi
- Department of Materials Imperial College London London SW7 2AZ UK
| | - Yunfei Li
- Department of Biomedical Engineering The City College of City University of New York New York NY 10031 USA
| | - Limei Li
- Science and Technology Achievement Incubation Center Kunming Medical University Kunming 650500 China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu 610064 China
| | - Weizhong Yang
- College of Biomedical Engineering School of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
18
|
Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The Mechanism of Bone Remodeling After Bone Aging. Clin Interv Aging 2022; 17:405-415. [PMID: 35411139 PMCID: PMC8994557 DOI: 10.2147/cia.s349604] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Senescence mainly manifests as a series of degenerative changes in the morphological structure and function of the body. Osteoporosis is a systemic bone metabolic disease characterized by destruction of bone microstructure, low bone mineral content, decreased bone strength, and increased brittleness and fracture susceptibility. Osteoblasts, osteoclasts and osteocytes are the main cellular components of bones. However, in the process of aging, due to various self or environmental factors, the body’s function and metabolism are disordered, and osteoporosis will appear in the bones. Here, we summarize the mechanism of aging, and focus on the impact of aging on bone remodeling homeostasis, including the mechanism of ion channels on bone remodeling. Finally, we summarized the current clinical medications, targets and defects for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Huankun Fang
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Medical College, Shantou University, Shantou, Guangdong, 515041, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
19
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
20
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
21
|
Miao Q, Jiang N, Yang Q, Hussein IM, Luo Z, Wang L, Yang S. Multi-stage controllable degradation of strontium-doped calcium sulfate hemihydrate-tricalcium phosphate microsphere composite as a substitute for osteoporotic bone defect repairing: degradation behavior and bone response. Biomed Mater 2021; 17. [PMID: 34905745 DOI: 10.1088/1748-605x/ac4323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate (TCP) and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine TCP and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate (Sr-TCP) microspheres scaffolds were prepared, and their osteogenic activity,in vivodegradation and bone regeneration ability in tibia of osteoporotic rats were evaluated.In vitrostudies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity.In vivodegradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as bone mineral density, bone volume/total volume ratio, trabecular thickness, angiogenesis marker platelet endothelial cell adhesion molecule-1 and new bone formation marker osteocalcin expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.
Collapse
Affiliation(s)
- Qiuju Miao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qinmeng Yang
- Department of Foot and Ankle Surgery, Guangzhou Orthopaedic Hospital, Guangzhou, People's Republic of China
| | - Ismail Mohamed Hussein
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Luo
- Pingshan District people's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 510632, People's Republic of China
| |
Collapse
|
22
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
23
|
Chiang CW, Chen CH, Manga YB, Huang SC, Chao KM, Jheng PR, Wong PC, Nyambat B, Satapathy MK, Chuang EY. Facilitated and Controlled Strontium Ranelate Delivery Using GCS-HA Nanocarriers Embedded into PEGDA Coupled with Decortication Driven Spinal Regeneration. Int J Nanomedicine 2021; 16:4209-4224. [PMID: 34188470 PMCID: PMC8235953 DOI: 10.2147/ijn.s274461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Strontium ranelate (SrR) is an oral pharmaceutical agent for osteoporosis. In recent years, numerous unwanted side effects of oral SrR have been revealed. Therefore, its clinical administration and applications are limited. Hereby, this study aims to develop, formulate, and characterize an effective SrR carrier system for spinal bone regeneration. METHODS Herein, glycol chitosan with hyaluronic acid (HA)-based nanoformulation was used to encapsulate SrR nanoparticles (SrRNPs) through electrostatic interaction. Afterward, the poly(ethylene glycol) diacrylate (PEGDA)-based hydrogels were used to encapsulate pre-synthesized SrRNPs (SrRNPs-H). The scanning electron microscope (SEM), TEM, rheometer, Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) were used to characterize prepared formulations. The rabbit osteoblast and a rat spinal decortication models were used to evaluate and assess the developed formulation biocompatibility and therapeutic efficacy. RESULTS In vitro and in vivo studies for cytotoxicity and bone regeneration were conducted. The cell viability test showed that SrRNPs exerted no cytotoxic effects in osteoblast in vitro. Furthermore, in vivo analysis for new bone regeneration mechanism was carried out on rat decortication models. Radiographical and histological analysis suggested a higher level of bone regeneration in the SrRNPs-H-implanted groups than in the other experimental groups. CONCLUSION Local administration of the newly developed formulated SrR could be a promising alternative therapy to enhance bone regeneration in bone-defect sites in future clinical applications.
Collapse
Affiliation(s)
- Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yankuba B Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shao-Chan Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kun-Mao Chao
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, Taipei, 116, Taiwan
| |
Collapse
|
24
|
Ray SS, Katata-Seru L, Mufamadi S, Mufhandu H. Osteoporosis and Its Nanotechnology-Based Advanced Treatment-An Overview. J Biomed Nanotechnol 2021; 17:809-821. [PMID: 34082868 DOI: 10.1166/jbn.2021.3092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a global pandemic that has contributed to the burden of disease, and the synergistic interaction between Herpes Simplex Virus (HSV) and HIV has assisted further in the spread of the HIV disease. Moreover, several chemotherapeutic treatment options from antiviral monotherapy to highly active antiretroviral therapy (HAART) have been adopted to manage the infection; however, HIV has developed new mechanisms against these active pharmaceutical agents (APAs), limiting the effect of the drugs. In this article, we reviewed different nanoparticles and their antiviral potency against HSV and HIV infection as well as the effect of drug encapsulated nanoparticles using different drug delivery systems as they palliate to some flaws or deficiencies that the stand-alone drugs present. Drug encapsulated nanoparticles show better treatment outcomes of HSV and HIV infection. The nanoparticles can transverse the anatomic privilege sites to exert their therapeutic effect, and a prolonged and higher dose of the encapsulated therapeutic agent can ease the dosage frequency, thus palliating low drug compliance which the stand-alone drugs fail to perform. Therefore, it is clear that nanoparticles prevent antiviral drug resistance by maintaining sustained drug release over an extended period, improving the therapeutic effect of the entrapped drug.
Collapse
Affiliation(s)
| | | | | | - Hazel Mufhandu
- Department of Microbiology, North-West University, Mafikeng, 2735, South Africa
| |
Collapse
|
25
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
冯 茂, 杨 双, 罗 道, 彭 双, 娄 方, 肖 金. [Osteogenic Capacity and Mettl14 and Notch1 Expression of Adipose-Derived Stem Cells from Osteoporotic Rats]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:423-429. [PMID: 34018360 PMCID: PMC10409211 DOI: 10.12182/20210560502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the differences in the osteogenic capacity of osteoporotic adipose-derived stem cells (OP-ASCs) and normal control adipose-derived stem cells (Ctrl-ASCs), and to examine the expression levels of RNA methyltransferase like 14 (Mettl14) and the Notch signaling molecule 1 (Notch1). METHODS The osteoporosis (OP) model of SD rats was established with ovariectomy (OVX). Micro-CT, HE staining and Masson staining were performed to identify the successful establishment of the OP model, OP-ASCs and Ctrl-ASCs were isolated and cultured adherently. Then, the three-way differentiation capacity of the adipose-derived stem cells (ASCs) was determined through alizarin red staining, alcian blue staining and oil red O staining and flow cytometry was conducted to examine the surface antigens CD29, CD44, CD90, CD31, CD34, and CD45. Alizarin red staining and comparison of the mRNA and protein expression of Run-related transcription factor 2 (Runx2) were done to explore the differences in osteogenic potential of OP-ASCs and Ctrl-ASCs. Real-time PCR and Western blot were performed to explore the expression differences of Mettl14 and Notch1 at mRNA and protein levels between OP-ASCs and Ctrl-ASCs. RESULTS Micro-CT, HE and Masson staining results showed that the number of trabecular bone decreased and the spacing increased in the tibias of the osteoporosis group (OP group) compared with those of the control group (Ctrl group), indicating that the OP model was established successfully. Three-way differentiation and flow cytometry results confirmed the successful isolation and culture of ASCs. After osteogenic induction, alizarin red staining showed that OP-ASCs had fewer number and more scattered distribution of mineralized nodules than Ctrl-ASCs did. The expression of Runx2 in OP-ASCs was lower than that in Ctrl-ASCs ( P<0.05). Mettl14 as well as Notch1 showed lower expression in OP-ASCs than they did in Ctrl-ASCs ( P<0.05). CONCLUSION The osteogenic capacity of OP-ASCs was lower compared with that of Ctrl-ASCs, Mettl14 expression of OP-ASCs was decreased compared with that of Ctrl-ASCs, and the Notch signaling pathway was inhibited in OP-ASCs. The study helps build the foundation for further investigation in the specific mechanisms of Mettl14 and Notch1 during osteogenic differentiation of OP-ASCs.
Collapse
Affiliation(s)
- 茂耕 冯
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - 双林 杨
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - 道文 罗
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - 双麟 彭
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - 方芝 娄
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - 金刚 肖
- 西南医科大学附属口腔医院 口腔颌面外科 (泸州 646000)Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学附属口腔医院 口颌面修复重建和再生实验室 (泸州 646000)Orofacial Reconstruction and Regeneration Laboratory, the Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
27
|
Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, Wang X, Jing Y, Chen X, Su J. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater 2021; 6:2905-2913. [PMID: 33718671 PMCID: PMC7917458 DOI: 10.1016/j.bioactmat.2021.02.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
The differentiation shift from osteogenesis to adipogenesis of bone marrow mesenchymal stem cells (BMSCs) characterizes many pathological bone loss conditions. Stromal cell-derived factor-1 (SDF1) is highly enriched in the bone marrow for C-X-C motif chemokine receptor 4 (CXCR4)-positive hematopoietic stem cell (HSC) homing and tumor bone metastasis. In this study, we displayed CXCR4 on the surface of exosomes derived from genetically engineered NIH-3T3 cells. CXCR4+ exosomes selectively accumulated in the bone marrow. Then, we fused CXCR4+ exosomes with liposomes carrying antagomir-188 to produce hybrid nanoparticles (NPs). The hybrid NPs specifically gathered in the bone marrow and released antagomir-188, which promoted osteogenesis and inhibited adipogenesis of BMSCs and thereby reversed age-related trabecular bone loss and decreased cortical bone porosity in mice. Taken together, this study presents a novel way to obtain bone-targeted exosomes via surface display of CXCR4 and a promising anabolic therapeutic approach for age-related bone loss. Surface display of CXCR4 grants exosomes bone targeting properties. Exosome-liposome hybrid nanoparticles carrying nucleic acid target bone. Antagomir-188 loaded hybrid nanoparticles regulate MSC differentiation in aged mice.
Collapse
Affiliation(s)
- Yan Hu
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Ying Luo
- Centre Laboratory, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiawei Guo
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jiacan Su
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
28
|
Salamanna F, Gambardella A, Contartese D, Visani A, Fini M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. NANOMATERIALS 2021; 11:nano11020530. [PMID: 33669621 PMCID: PMC7922277 DOI: 10.3390/nano11020530] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Osteoporosis (OP) is one of the most significant causes of morbidity, particularly in post-menopausal women and older men. Despite its remarkable occurrence, the search for an effective treatment is still an open challenge. Here, we systematically reviewed the preclinical and clinical progress in the development of nano-based materials as drug delivery systems against OP, considering the effects on bone healing and regeneration, the more promising composition and manufacturing methods, and the more hopeful drugs and delivery methods. The results showed that almost all the innovative nano-based delivery systems developed in the last ten years have been assessed by preclinical investigations and are still in the preliminary/early research stages. Our search strategy retrieved only one non-randomized controlled trial (RCT) on oligosaccharide nanomedicine of alginate sodium used for degenerative lumbar diseases in OP patients. Further investigations are mandatory for assessing the clinical translation and commercial purposes of these materials. To date, the main limits for the clinical translation of nano-based materials as drug delivery systems against OP are probably due to the low reproducibility of the manufacturing processes, whose specificity and complexity relies on an adequate chemical, structural, and biomechanical characterization, as the necessary prerequisite before assessing the efficacy of a given treatment or process. Finally, an unsatisfactory drug-loading capacity, an uncontrollable release kinetic, and a low delivery efficiency also limit the clinical application.
Collapse
|
29
|
Li N, Cui W, Cong P, Tang J, Guan Y, Huang C, Liu Y, Yu C, Yang R, Zhang X. Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioact Mater 2021; 6:2303-2314. [PMID: 33553817 PMCID: PMC7841502 DOI: 10.1016/j.bioactmat.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Amorphous calcium phosphate (ACP) has been widely found during bone and tooth biomineralization, but the meta-stability and labile nature limit further biomedical applications. The present study found that the chelation of polyacrylic acid (PAA) molecules with Ca2+ ions in Mg-ACP clusters (~2.1 ± 0.5 nm) using a biomineralization strategy produced inorganic-organic Mg-ACP/PAA hybrid nanoparticles with better thermal stability. Mg-ACP/PAA hybrid nanoparticles (~24.0 ± 4.8 nm) were pH-responsive and could be efficiently digested under weak acidic conditions (pH 5.0–5.5). The internalization of assembled Mg-ACP/PAA nanoparticles by MC3T3-E1 cells occurred through endocytosis, indicated by laser scanning confocal microscopy and cryo-soft X-ray tomography. Our results showed that cellular lipid membranes remained intact without pore formation after Mg-ACP/PAA particle penetration. The assembled Mg-ACP/PAA particles could be digested in cell lysosomes within 24 h under weak acidic conditions, thereby indicating the potential to efficiently deliver encapsulated functional molecules. Both the in vitro and in vivo results preliminarily demonstrated good biosafety of the inorganic-organic Mg-ACP/PAA hybrid nanoparticles, which may have potential for biomedical applications. Mg-ACP/PAA hybrid nanoparticles have been synthesized following a biomineralization strategy. The chelation of PAA molecules in synergy with Mg2+ substitution improves thermal stability of Mg-ACP/PAA nanoparticles. The Mg-ACP/PAA nanoparticles are pH sensitive and can be digested in cell lysosomes within 24 h.
Collapse
Affiliation(s)
- Na Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cui
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peifang Cong
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
30
|
Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg 2021; 32:267-273. [PMID: 33463450 PMCID: PMC8073448 DOI: 10.5606/ehc.2021.80360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanotechnology has led to significant scientific and technological advances in diverse fields, specifically within the field of medicine. Owing to the revolutionary implications in drug delivery, nanotechnology-based drug delivery systems have gained an increasing research interest in the current medical field. A variety of nanomaterials with unique physical, chemical and biological properties have been engineered to develop new drug delivery systems for the local, sustained and targeted delivery of drugs with improved therapeutic efficiency and less or no toxicity, representing a very promising approach for the effective management of diseases. The utility of nanotechnology, particularly in the field of orthopedics, is a topic of extensive research. Nanotechnology has a great potential to revolutionize treatment, diagnostics, and research in the field of orthopedics. Nanophase drug delivery has shown great promise in their ability to deliver drugs at nanoscale for a variety of orthopedic applications. In this review, we discuss recent advances in the field of nanostructured drug delivery systems for orthopedic applications.
Collapse
|
31
|
Zeng Y, Zhou M, Chen L, Fang H, Liu S, Zhou C, Sun J, Wang Z. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact Mater 2020; 5:859-870. [PMID: 32637749 PMCID: PMC7327758 DOI: 10.1016/j.bioactmat.2020.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
Graphene Oxide (GO)-related hydrogels have been extensively studied in hard tissue repair, because GO can not only enhance the mechanical properties of polymers but also promote osteogenic differentiation of mesenchymal stem cells. However, simple GO-related hydrogels are not ideal for the repair of osteoporotic bone defects as the overactive osteoclasts in osteoporosis. Alendronate (Aln) is known to inhibit osteoclasts and may bind to GO through covalent connection. Therefore, delivering Aln in GO-related hydrogels may be effective to repair osteoporotic bone defects. Here, we developed a control-released system which is constructed by collagen (Col)-GO sponges loaded with Aln (Col-GO-Aln) for osteoporotic bone defect repair. In vitro, Col-GO-Aln sponges prolonged the release period of Aln, and the sponge containing 0.05% (w/v) GO released Aln faster than sponge with 0.2% GO. Furthermore, tartrate-resistant acid phosphatase (TRAP) and F-actin staining demonstrated that Col-GO-Aln sponges effectively inhibited osteoclastogenesis of monocyte-macrophages. In vivo, micro-CT scan showed that the volume of newborn bone in defect site by 0.05% GO sponge was nearly three times larger than that of other groups. Moreover, the CT and histological examinations of rat femur proved that Col-GO-Aln sponges decreased the number of osteoclasts and suppressed the systemic bone loss in osteoporotic rats. These findings reveal that the application of GO as carriers of anti-osteoporosis drugs is a viable treatment for osteoporosis. The results also underscore the potential of GO-related hydrogels with Aln-releasing capacity for bone regeneration in osteoporosis. Alendronate-loading graphene oxide modified collagen sponge (Col-GO-Aln) exhibit a sustained drug delivery. Col-GO-Aln sponge showed active anti-osteoclastogenesis and osteogenesis ability in vitro and in situ repair. Col-GO-Aln sponge achieved a potential systemic resistance to bone loss in osteoporotic rats.
Collapse
Affiliation(s)
- Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| |
Collapse
|