1
|
Zhang X, Ma L, Liu X, Zhou X, Wang A, Lai Y, Zhang J, Li Y, Chen S. Sustained release of miR-21 carried by mesenchymal stem cell-derived exosomes from GelMA microspheres inhibits ovarian granulosa cell apoptosis in premature ovarian insufficiency. Mater Today Bio 2025; 31:101469. [PMID: 39906205 PMCID: PMC11790500 DOI: 10.1016/j.mtbio.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Background Premature ovarian insufficiency (POI) refers to the severe decline or failure of ovarian function in women younger than 40 years of age. It is a serious hazard to women's physical and mental health, but current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exo) exhibit promising potential as a therapeutic approach for POI. However, their clinical application is hindered by their instability and low long-term retention rate in vivo. Methods and results In this study, miR-21 was identified as the predominant miRNA with low-expression in follicular fluid exosomes of POI patients and was shown to possess antiapoptotic activity. Next, we loaded miR-21 agomir to MSC-Exo to form Agomir21-Exo, which significantly reversed the apoptosis of granulosa cells in vitro. Moreover, we successfully developed GelMA hydrogel microspheres for encapsulating Agomir21-Exo through microfluidic technology, named GelMA-Ag21Exo, which had good injectability and significantly enhanced the stability and long-term retention of Agomir21-Exo in mice through sustained release. The release of Agomir21-Exo from GelMA-Ag21Exo notably alleviated the apoptosis of ovarian granulosa cells and improved the ovarian reserve and fertility in POI mice. Conclusion Our findings illustrate that activating miR-21 through Agomir21-Exo could improve the function of ovarian granulosa cells. The GelMA-Ag21Exo enhanced the exosome-based therapeutic efficacy of the Agomir21-Exo in vivo. These findings provide a novel and promising treatment strategy for POI patients.
Collapse
Affiliation(s)
| | | | | | - Xingyu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Zhao X, Yu Z, Wang X, Li X, Liu Y, Wang L. The administration of human amniotic epithelial cells in premature ovarian insufficiency: From preclinical to clinical. Gynecol Endocrinol 2024; 40:2382818. [PMID: 39039858 DOI: 10.1080/09513590.2024.2382818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongna Yu
- Department of Gynecology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Singh AV, Chandrasekar V, Prabhu VM, Bhadra J, Laux P, Bhardwaj P, Al-Ansari AA, Aboumarzouk OM, Luch A, Dakua SP. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. Biomed Mater 2024; 19:060501. [PMID: 39389102 DOI: 10.1088/1748-605x/ad85bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Varsha M Prabhu
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Jolly Bhadra
- Qatar University Young Research centre (QUYRC) Qatar University 2053, Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Omar M Aboumarzouk
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| |
Collapse
|
5
|
Chavoshinezhad N, Niknafs B. Innovations in 3D ovarian and follicle engineering for fertility preservation and restoration. Mol Biol Rep 2024; 51:1004. [PMID: 39305382 DOI: 10.1007/s11033-024-09783-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/05/2024] [Indexed: 02/06/2025]
Abstract
In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.
Collapse
Affiliation(s)
- Negin Chavoshinezhad
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
He J, Ao C, Li M, Deng T, Zheng S, Zhang K, Tu C, Ouyang Y, Lang R, Jiang Y, Yang Y, Li C, Wu D. Clusterin-carrying extracellular vesicles derived from human umbilical cord mesenchymal stem cells restore the ovarian function of premature ovarian failure mice through activating the PI3K/AKT pathway. Stem Cell Res Ther 2024; 15:300. [PMID: 39272156 PMCID: PMC11401318 DOI: 10.1186/s13287-024-03926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Emerging evidence has highlighted the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) in chemotherapy-induced premature ovarian failure (POF). This study was designed to investigate the appropriate timing and molecular mechanism of UC-MSCs treatment for chemotherapy-induced POF. METHODS Ovarian structure and function of mice were assessed every 3 days after injections with cyclophosphamide (CTX) and busulfan (BUS). UC-MSCs and UC-MSCs-derived extracellular vesicles (EVs) were infused into mice via the tail vein, respectively. Ovarian function was analyzed by follicle counts, the serum levels of hormones and ovarian morphology. The apoptosis and proliferation of ovarian granulosa cells were analyzed in vitro and in vivo. Label-free quantitative proteomics was used to detect the differentially expressed proteins in UC-MSC-derived EVs. RESULTS After CTX/BUS injection, we observed that the ovarian function of POF mice was significantly deteriorated on day 9 after CTX/BUS infusion. TUNEL assay indicated that the number of apoptotic cells in the ovaries of POF mice was significantly higher than that in normal mice on day 3 after CTX/BUS injection. Transplantation of UC-MSCs on day 6 after CTX/BUS injection significantly improved ovarian function, enhanced proliferation and inhibited apoptosis of ovarian granulosa cells, whereas the therapeutic effect of UC-MSCs transplantation decreased on day 9, or day 12 after CTX/BUS injection. Moreover, EVs derived from UC-MSCs exerted similar therapeutic effects on POF. UC-MSCs-derived EVs could activate the PI3K/AKT signaling pathway and reduce ovarian granulosa cell apoptosis. Quantitative proteomics analysis revealed that clusterin (CLU) was highly expressed in the EVs of UC-MSCs. The supplementation of CLU proteins prevented ovarian granulosa cells from chemotherapy-induced apoptosis. Further mechanistic analysis showed that CLU-knockdown blocked the PI3K/AKT signaling and reversed the protective effects of UC-MSCs-derived EVs. CONCLUSIONS Administration of UC-MSCs and UC-MSCs-derived EVs on day 6 of CTX/BUS injection could effectively improve the ovarian function of POF mice. UC-MSCs-derived EVs carrying CLU promoted proliferation and inhibited apoptosis of ovarian granulosa cells through activating the PI3K/AKT pathway. This study identifies a previously unrecognized molecular mechanism of UC-MSCs-mediated protective effects on POF, which pave the way for the use of cell-free therapeutic approach for POF.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mao Li
- College of Life Sciences, Hubei University, Wuhan, China
| | - Taoran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
7
|
Ye X, Lin Y, Ying Y, Shen X, Ni F, Wang F, Chen J, Zhao W, Yu X, Zhang D, Liu Y. Human Amniotic Epithelial Stem Cells Alleviate Autoimmune Premature Ovarian Insufficiency in Mice by Targeting Granulosa Cells via AKT/ERK Pathways. Stem Cell Rev Rep 2024; 20:1618-1635. [PMID: 38831179 PMCID: PMC11319531 DOI: 10.1007/s12015-024-10745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Autoimmune factors play an important role in premature ovarian insufficiency (POI). Human amniotic epithelial stem cells (hAESCs) have recently shown promising treatment effects on chemotherapy-induced POI. However, the therapeutic efficacy and underlying mechanisms of hAESCs in autoimmune POI remain to be investigated. In this study, we showed for the first time that intravenous transplantation of hAESCs could reside in the ovary of zona pellucida 3 peptide (pZP3) induced autoimmune POI mice model for at least 4 weeks. hAESCs could improve ovarian function and fertility, alleviate inflammation and reduce apoptosis of granulosa cells (GCs) in autoimmune POI mice. The transcriptome analysis of mice ovaries and in vitro co-cultivation experiments suggest that activation of the AKT and ERK pathways may be the key mechanism in the therapeutic effect of hAESCs. Our work provides the theoretical and experimental foundation for optimizing the administration of hAESCs, as well as the clinical application of hAESCs in autoimmune POI patients.
Collapse
Affiliation(s)
- Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Lin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuezhi Shen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Wei Zhao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Tang W, Yan H, Chen X, Pu Y, Qi X, Dong L, Su C. hUCMSC-derived extracellular vesicles relieve cisplatin-induced granulosa cell apoptosis in mice by transferring anti-apoptotic miRNAs. J Biomed Res 2024; 39:36-49. [PMID: 38808551 PMCID: PMC11873591 DOI: 10.7555/jbr.37.20230310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Premature ovarian insufficiency (POI) caused by chemotherapy is a common complication in female cancer survivors of childbearing age. Traditional methods, including mesenchymal stem cell (MSC) transplant and hormone replacement therapy, have limited clinical application because of their drawbacks, and more methods need to be developed. In the current study, the potential effects and underlying mechanisms of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) were investigated in a cisplatin (CDDP)-induced POI mouse model and a human granulosa cell (GC) line. The results showed that hUCMSC-EVs significantly attenuated body weight loss, ovarian weight loss, ovary atrophy, and follicle loss in moderate-dose (1.5 mg/kg) CDDP-induced POI mice, similar to the effects observed with hUCMSCs. We further found that the hUCMSC-EVs inhibited CDDP-induced ovarian GC apoptosis by upregulating anti-apoptotic miRNA levels in GCs, thereby downregulating the mRNA levels of multiple pro-apoptotic genes. In general, our findings indicate that the moderate-dose chemotherapy may be a better choice for clinical oncotherapy, considering effective rescue of the oncotherapy-induced ovarian damage with hUCMSC-EVs. Additionally, multiple miRNAs in hUCMSC-EVs may potentially be used to inhibit the chemotherapy-induced ovarian GC apoptosis, thereby restoring ovarian function and improving the life quality of female cancer patients.
Collapse
Affiliation(s)
- Wenjing Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Yan
- Department of Pathogen Biology & Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yanan Pu
- Department of Pathogen Biology & Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Qi
- Department of Pathogen Biology & Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liyang Dong
- Department of Nuclear Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Pathogen Biology & Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Hu HQ, Xin XY, Zhu YT, Fan RW, Zhang HL, Ye Y, Li D. Application of mesenchymal stem cell therapy for premature ovarian insufficiency: Recent advances from mechanisms to therapeutics. World J Stem Cells 2024; 16:1-6. [PMID: 38292439 PMCID: PMC10824040 DOI: 10.4252/wjsc.v16.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
The incidence of premature ovarian insufficiency (POI) is increasing worldwide, particularly among younger women, posing a significant challenge to fertility. In addition to menopausal symptoms, POI leads to several complications that profoundly affect female reproductive function and overall health. Unfortunately, current clinical treatment strategies for this condition are limited and often yield unsatisfactory outcomes. These approaches typically involve hormone replacement therapy combined with psychological support. Recently, mesenchymal stem cell (MSC) therapies for POI have garnered considerable attention in global research. MSCs can restore ovarian reproductive and endocrine functions through diverse mechanisms, including controlling differentiation, promoting angiogenesis, regulating ovarian fibrosis, inhibiting apoptosis, enhancing autocrine and paracrine effects, suppressing inflammation, modulating the immune system, and genetic regulation. This editorial offers a succinct summary of the application of MSC therapy in the context of POI, providing evidence for groundbreaking medical approaches that have potential to enhance reproductive health and overall well-being for women.
Collapse
Affiliation(s)
- Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
11
|
Zhang Y, Zhao J, Han L, Zhang Z, Wang C, Long W, Meng K, Wang X. Research progress of extracellular vesicles in the treatment of ovarian diseases (Review). Exp Ther Med 2024; 27:15. [PMID: 38125352 PMCID: PMC10728905 DOI: 10.3892/etm.2023.12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
The ovary is an essential reproductive organ in the female organism and its development seriously affects the physical and mental health of female patients. Ovarian diseases include ovarian cancer, premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS). Women should pay attention to the most effective treatments for this condition because it is one of the most prevalent gynecological illnesses at present. Extracellular vesicles (EVs), which are smaller vesicles that mediate the exchange of cellular information, include the three categories of exosomes, microvesicles and apoptotic bodies. They are able to transport proteins, RNA and other substances to adjacent or distal cells, thus allowing cellular and tissue homeostasis to be maintained. Numerous previous studies have revealed that EVs are crucial for the treatment of ovarian diseases. They are known to transport its contents to ovarian cancer cells as well as other ovarian cells such as granulosa cells, affecting the development of ovarian disease processes. Therefore, this extracellular vesicle may be involved as a target in the therapeutic process of ovarian disease and may have great potential in the treatment of ovarian disease. In the present review, the role of EVs in the development of three ovarian diseases, including ovarian cancer, POI and PCOS, was mainly summarizes. It is expected that this will provide some theoretical support for the treatment of ovarian disease.
Collapse
Affiliation(s)
- Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Linqi Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wei Long
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, P.R. China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
12
|
Peng Y, Sun L, Guo W, Liu Z, Wang T, Zou T, Zhou J, Yang X, Fan X. Berberine protects cyclophosphamide and busulfan-induced premature ovarian insufficiency in mouse model. J Pharmacol Sci 2023; 153:46-54. [PMID: 37524454 DOI: 10.1016/j.jphs.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lu Sun
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wentong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhigang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jie Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaodong Fan
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.
| |
Collapse
|
13
|
Nie X, Dong X, Hu Y, Xu F, Hu C, Shu C. Coenzyme Q10 Stimulate Reproductive Vatality. Drug Des Devel Ther 2023; 17:2623-2637. [PMID: 37667786 PMCID: PMC10475284 DOI: 10.2147/dddt.s386974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Female infertility and pregnancy maintenance are associate with various factors, including quantity and quality of oocytes, genital inflammation, endometriosis, and other diseases. Women are even diagnosed as unexplained infertility or unexplained recurrent spontaneous abortion when failed to achieve pregnancy with current treatment, which are urgent clinical issues need to be addressed. Coenzyme Q10 (CoQ10) is a lipid-soluble electron carrier in the mitochondrial electron transport chain. It is not only essential for the mitochondria to produce energy, but also function as an antioxidant to maintain redox homeostasis in the body. Recently, the capacity of CoQ10 to reduce oxidative stress (OS), enhance mitochondrial activity, regulate gene expression and inhibit inflammatory responses, has been discovered as a novel adjuvant in male reproductive performance enhancing in both animal and human studies. Furthermore, CoQ10 is also proved to regulate immune balance, antioxidant, promote glucose and lipid metabolism. These properties will bring highlight for ovarian dysfunction reversing, ovulation ameliorating, oocyte maturation/fertilization promoting, and embryonic development optimizing. In this review, we systematically discuss the pleiotropic effects of CoQ10 in female reproductive disorders to investigate the mechanism and therapeutic potential to provide a reference in subsequent studies.
Collapse
Affiliation(s)
- Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xinru Dong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yuge Hu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Fangjun Xu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chang Shu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
14
|
Park HS, Chugh RM, Seok J, Cetin E, Mohammed H, Siblini H, Liakath Ali F, Ghasroldasht MM, Alkelani H, Elsharoud A, Ulin M, Esfandyari S, Al-Hendy A. Comparison of the therapeutic effects between stem cells and exosomes in primary ovarian insufficiency: as promising as cells but different persistency and dosage. Stem Cell Res Ther 2023; 14:165. [PMID: 37340468 DOI: 10.1186/s13287-023-03397-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) refers to the loss of ovarian function under the age of 40 and results in amenorrhea and infertility. Our previous studies have shown that transplantation of mesenchymal stem cells (MSCs) and MSC-derived exosomes in chemotherapy-induced POI mouse ovaries can reverse the POI and eventually achieve pregnancy. Based on our recent studies, MSC-derived exosomes have almost equal therapeutic potentials as transplanted MSCs. However, it is still unclear whether exosomes can completely replace MSCs in POI treatment. For the reliable application of cell-free treatment for POI patients using exosomes, there is a need to understand whether there is any outcome and effectiveness difference between MSC and MSC-derived exosome treatment. METHODS Comparing the therapeutic effect of intravenous injection using MSCs and equal amounts of exosomes in a POI mouse model will reveal the difference between the two therapeutic resources. In this study, we induced POI in C57/BL6 mice by chemotherapy (CXT) using a standard protocol. We then injected four different doses of MSCs or equal amounts of commercialized MSC-derived exosomes by retro-orbital injection post-CXT. RESULT After MSC/exosome treatment, tissue and serum samples were harvested to analyze molecular changes after treatment, while other mice in parallel experiments underwent breeding experiments to compare the restoration of fertility. Both the MSC- and exosome-treated groups had a restored estrous cycle and serum hormone levels compared to untreated POI mice. The pregnancy rate in the MSC-treated group was 60-100% after treatment, while the pregnancy rate in the exosome-treated group was 30-50% after treatment. Interestingly, in terms of long-term effects, MSC-treated mice still showed a 60-80% pregnancy rate in the second round of breeding, while the exosome-treated group became infertile again in the second round of breeding. CONCLUSIONS Although there were some differences in the efficacy between MSC treatment and exosome treatment, both treatments were able to achieve pregnancy in the POI mouse model. In conclusion, we report that MSC-derived exosomes are a promising therapeutic option to restore ovarian function in POI conditions similar to treatment with MSCs.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Hanaa Mohammed
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | | | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Amro Elsharoud
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Zhu D, Liu S, Huang K, Li J, Mei X, Li Z, Cheng K. Intrapericardial long non-coding RNA-Tcf21 antisense RNA inducing demethylation administration promotes cardiac repair. Eur Heart J 2023; 44:1748-1760. [PMID: 36916305 PMCID: PMC10411945 DOI: 10.1093/eurheartj/ehad114] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
AIMS Epicardium and epicardium-derived cells are critical players in myocardial fibrosis. Mesenchymal stem cell-derived extracellular vesicles (EVs) have been studied for cardiac repair to improve cardiac remodelling, but the actual mechanisms remain elusive. The aim of this study is to investigate the mechanisms of EV therapy for improving cardiac remodelling and develop a promising treatment addressing myocardial fibrosis. METHODS AND RESULTS Extracellular vesicles were intrapericardially injected for mice myocardial infarction treatment. RNA-seq, in vitro gain- and loss-of-function experiments, and in vivo studies were performed to identify targets that can be used for myocardial fibrosis treatment. Afterward, a lipid nanoparticle-based long non-coding RNA (lncRNA) therapy was prepared for mouse and porcine models of myocardial infarction treatment. Intrapericardial injection of EVs improved adverse myocardial remodelling in mouse models of myocardial infarction. Mechanistically, Tcf21 was identified as a potential target to improve cardiac remodelling. Loss of Tcf21 function in epicardium-derived cells caused increased myofibroblast differentiation, whereas forced Tcf21 overexpression suppressed transforming growth factor-β signalling and myofibroblast differentiation. LncRNA-Tcf21 antisense RNA inducing demethylation (TARID) that enriched in EVs was identified to up-regulate Tcf21 expression. Formulated lncRNA-TARID-laden lipid nanoparticles up-regulated Tcf21 expression in epicardium-derived cells and improved cardiac function and histology in mouse and porcine models of myocardial infarction. CONCLUSION This study identified Tcf21 as a critical target for improving cardiac fibrosis. Up-regulating Tcf21 by using lncRNA-TARID-laden lipid nanoparticles could be a promising way to treat myocardial fibrosis. This study established novel mechanisms underlying EV therapy for improving adverse remodelling and proposed a lncRNA therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Dashuai Zhu
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Shuo Liu
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Ke Huang
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Xuan Mei
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 1001 William Moore Drive, Raleigh, NC 27607, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, 1001 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
16
|
Umer A, Khan N, Greene DL, Habiba UE, Shamim S, Khayam AU. The Therapeutic Potential of Human Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Premature Ovarian Failure. Stem Cell Rev Rep 2023; 19:651-666. [PMID: 36520408 PMCID: PMC10070285 DOI: 10.1007/s12015-022-10493-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Premature ovarian failure (POF) affects 1% of women under 40, leading to infertility. The clinical symptoms of the POF include hypoestrogenism, lack of mature follicles, hypergonadotropinism, and amenorrhea. POF can be caused due to genetic defects, autoimmune illnesses, and environmental factors. The conventional treatment of POF remains a limited success rate. Therefore, an innovative treatment strategy like the regeneration of premature ovaries by using human umbilical cord mesenchymal stem cells (hUC-MSCs) can be a choice. To summarize all the theoretical frameworks for additional research and clinical trials, this review article highlights all the results, pros, and cons of the hUC-MSCs used to treat POF. So far, the data shows promising results regarding the treatment of POF using hUC-MSCs. Several properties like relatively low immunogenicity, multipotency, multiple origins, affordability, convenience in production, high efficacy, and donor/recipient friendliness make hUC-MSCs a good choice for treating basic POF. It has been reported that hUC-MSCs impact and enhance all stages of injured tissue regeneration by concurrently stimulating numerous pathways in a paracrine manner, which are involved in the control of ovarian fibrosis, angiogenesis, immune system modulation, and apoptosis. Furthermore, some studies demonstrated that stem cell treatment could lead to hormone-level restoration, follicular activation, and functional restoration of the ovaries. Therefore, all the results in hand regarding the use of hUC-MSCs for the treatment of POF encourage researchers for further clinical trials, which will overcome the ongoing challenges and make this treatment strategy applicable to the clinic in the near future.
Collapse
Affiliation(s)
- Amna Umer
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Nasar Khan
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
| | - David Lawrence Greene
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| | - Umm E Habiba
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Sabiha Shamim
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Asma Umer Khayam
- Department of Biochemistry, Quaid e Azam University, Islamabad, 44000, Pakistan
| |
Collapse
|
17
|
Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology 2023; 31:145-169. [PMID: 36609717 PMCID: PMC9823267 DOI: 10.1007/s10787-022-01115-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Cell-derived exosomes have opened new horizons in modern therapy for advanced drug delivery and therapeutic applications, due to their key features such as low immunogenicity, high physicochemical stability, capacity to penetrate into tissues, and the innate capacity to communicate with other cells over long distances. Exosome-based liquid biopsy has been potentially used for the diagnosis and prognosis of a range of disorders. Exosomes deliver therapeutic agents, including immunological modulators, therapeutic drugs, and antisense oligonucleotides to certain targets, and can be used as vaccines, though their clinical application is still far from reality. Producing exosomes on a large-scale is restricted to their low circulation lifetime, weak targeting capacity, and inappropriate controls, which need to be refined before being implemented in practice. Several bioengineering methods have been used for refining therapeutic applications of exosomes and promoting their effectiveness, on the one hand, and addressing the existing challenges, on the other. In the short run, new diagnostic platforms and emerging therapeutic strategies will further develop exosome engineering and therapeutic potential. This requires a thorough analysis of exosome engineering approaches along with their merits and drawbacks, as outlined in this paper. The present study is a comprehensive review of novel techniques for exosome development in terms of circulation time in the body, targeting capacity, and higher drug loading/delivery efficacies.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shafiee
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and tissue engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Khunmanee S, Park H. Three-Dimensional Culture for In Vitro Folliculogenesis in the Aspect of Methods and Materials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1242-1257. [PMID: 35822548 DOI: 10.1089/ten.teb.2021.0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro ovarian follicle culture is a reproduction technique used to obtain fertilizable oocytes, for overcoming fertility issues due to premature ovarian failure. This requires the establishment of an in vitro culture model that is capable of better simulating the in vivo ovarian growth environment. Two-dimensional (2D) culture systems have been successfully set up in rodent models. However, they are not suitable for larger animal models as the follicles of larger animals cultured in 2D culture systems often lose their shape due to dysfunction in the gap junctions. Three-dimensional (3D) culture systems are more suitable for maintaining follicle architecture, and therefore are proposed for the successful in vitro culturing of follicles in various animal models. The role of different methods, scaffolds, and suspension cultures in supporting follicle development has been studied to provide direction for improving in vitro follicle culture technologies. The three major strategies for in vitro 3D follicle cultures are discussed in this article. First, the in vitro culture systems, such as microfluidics, hanging drop, hydrogels, and 3D-printing, are reviewed. We have focused on the 3D hydrogel system as it uses different materials for supporting follicular growth and oocyte maturation in several animal models and in humans. We have also discussed the criteria used for biomaterial evaluations such as solid concentration, elasticity, and rigidity. In addition, future research directions for advancing in vitro 3D follicle culture system are discussed. Impact statement A new frontier in assisted reproductive technology is in vitro tissue or follicle culture, particularly for fertility preservation. The in vitro three-dimensional (3D) culture technique enhances follicular development and provides mature oocytes, overcoming the limitations of traditional in vitro two-dimensional cultures. Polymer biomaterials have good compatibility and retain the physiological structure of follicles in the 3D culture system. Utilizing hybrid in vitro culture materials by merging matrix, hydrogel, and unique patterned materials may facilitate follicular growth in the future.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
20
|
Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, Ye X, Shen X, Ying Y, Chen J, Chen R, Zhang Y, Sun X, Wang S, Xu X, Chen C, Guo J, Zhang D. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nat Commun 2022; 13:5871. [PMID: 36198708 PMCID: PMC9534854 DOI: 10.1038/s41467-022-33323-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by premature exhaustion of primordial follicles. POI causes infertility, severe daily life disturbances and long-term health risks. However, the underlying mechanism remains largely unknown. We previously identified a Basonuclin 1 (BNC1) mutation from a large Chinese POI pedigree and found that mice with targeted Bnc1 mutation exhibit symptoms of POI. In this study, we found that BNC1 plays key roles in ovarian reserve and maintaining lipid metabolism and redox homeostasis in oocytes during follicle development. Deficiency of BNC1 results in premature follicular activation and excessive follicular atresia. Mechanistically, BNC1 deficiency triggers oocyte ferroptosis via the NF2-YAP pathway. We demonstrated that pharmacologic inhibition of YAP signaling or ferroptosis significantly rescues Bnc1 mutation-induced POI. These findings uncover a pathologic mechanism of POI based on BNC1 deficiency and suggest YAP and ferroptosis inhibitors as potential therapeutic targets for POI. Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction that results in infertility. Here they show that BCN1 mutation results in premature ovarian follicle activation and atresia through dysregulation of ferroptosis.
Collapse
Affiliation(s)
- Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xilin Shen
- College of Computer Science and Technology, Zhejiang University, Zhejiang, 310027, PR China
| | - Yue Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, People's Republic of China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Xiao Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China. .,Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
21
|
Tong Y, Cheng N, Jiang X, Wang K, Wang F, Lin X, Wang F. The Trends and Hotspots in Premature Ovarian Insufficiency Therapy from 2000 to 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811728. [PMID: 36142002 PMCID: PMC9517308 DOI: 10.3390/ijerph191811728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 05/08/2023]
Abstract
This study aims to map the knowledge structure and themes trends of primary ovarian insufficiency (POI) therapy to help researchers rapidly master the hotspots and prospects of POI therapy from the increasing number of publications. The literature search and bibliometric analyses were performed by using Web of Science Core Collection and VOSviewer. Annual publications from 2000 to 2022 continued to increase with some fluctuations. The most productive country, organization, and journal were the USA, Shanghai Jiao Tong University, and Human Reproduction, respectively. Harvard University was the organization with the highest citation. Fertility and Sterility and Nelson, L.M. were the most influential journal and author, respectively. Seven clusters separated by keywords association showed the extensive scope of POI therapy. The hotspots of POI therapy were hormone replacement therapy and fertility preservation, and the innovative treatment strategies including in vitro activation and mesenchymal stem cells had development potential. In addition, our result showed that the high-cited articles were published in journals with high impact factors. The paper provides a comprehensive overview of the development and hotspots of POI therapy, allowing researchers to recognize the current status and future directions of POI therapy.
Collapse
Affiliation(s)
- Yan Tong
- Department of Literature and Information of Library, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kai Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinxin Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence:
| |
Collapse
|
22
|
Human Umbilical Cord Mesenchymal Stem Cell-Derived Conditioned Medium Promotes Human Endometrial Cell Proliferation through Wnt/β-Catenin Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8796093. [PMID: 36082157 PMCID: PMC9448603 DOI: 10.1155/2022/8796093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Purpose Mesenchymal stem cells (MSCs) and their derivant are among the promising treatments for intrauterine adhesion (IUA); they have been reported to repair the endometrial injury by proliferating endometrial cells. However, the signal pathways involved are not clear. This study investigated the role of human umbilical cord mesenchymal stem cell-derived conditioned medium (hUCMSC-CM) in relieving IUA to find out whether Wnt/β-catenin signaling was involved, and if so, to determine the possible ligands. Methods After endometrial epithelial cells (EECs) were treated with hUCMSC-CM, their proliferation and migration were measured by the CCK8 assay and the scratch assay. The activation of Wnt/β-catenin signaling was measured by Western blots, fluorescent staining, and T-cell factor/lymphoid enhancer factor (TCF/LEF) luciferase. A Wnt inhibitor (XAV393) was used to inhibit the proliferation effect of hUCMSC-CM in EECs. Wnt5a expression in hUCMSC was measured by Western blots and fluorescent staining, and Wnt5a in hUCMSC-CM was detected by enzyme-linked immunosorbent assay (ELISA), to further clarify the mechanism. Results As shown by the CCK8 assay, hUCMSC-CM promoted proliferation and migration of EECs. The expression of β-catenin, c-myc, and cyclin D1 increased in EECs after being treated with hUCMSC-CM. Moreover, hUCMSC-CM was found to promote β-catenin delivery into nuclei by Western blot and fluorescent staining; meanwhile, the inhibitor (XAV393) could restrain this process and inhibit the effect of hUCMSC-CM on EEC proliferation. Wnt5a was detected in hUCMSCs and hUCMSC-CM, which might be a potential therapeutic target. Conclusion This study demonstrated that hUCMSC-CM promoted human endometrial cell proliferation through Wnt/β-catenin signaling, and Wnt5a might be a potential activator. This would be one of the activating signal pathways in the MSC-related treatment of IUA.
Collapse
|
23
|
Shi L, Zhang Z, Deng M, Zheng F, Liu W, Ye S. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure. Medicine (Baltimore) 2022; 101:e30013. [PMID: 35960112 PMCID: PMC9371578 DOI: 10.1097/md.0000000000030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Premature ovarian failure (POF), also known as primary ovarian insufficiency (POI), refers to the loss of ovarian function in women after puberty and before the age of 40 characterized by high serum gonadotropins and low estrogen, irregular menstruation, amenorrhea, and decreased fertility. However, the specific pathogenesis of POF is unexplained, and there is no effective therapy for its damaged ovarian tissue structure and reduced reserve function. Mesenchymal stem cells (MSCs), with multidirectional differentiation potential and self-renewal ability, as well as the cytokines and exosomes they secrete, have been studied and tested to play an active therapeutic role in a variety of degenerative pathologies, and MSCs are the most widely used stem cells in regenerative medicine. MSCs can reverse POI and enhance ovarian reserve function through differentiation into granulosa cells (GCs), immune regulation, secretion of cytokines and other nutritional factors, reduction of GCs apoptosis, and promotion of GCs regeneration. Many studies have proved that MSCs may have a restorative effect on the structure and fertility of injured ovarian tissues and turn to be a useful clinical approach to the treatment of patients with POF in recent years. We intend to use MSCs-based therapy to completely reverse POI in the future.
Collapse
Affiliation(s)
- Lan Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Miao Deng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fangyuan Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenhua Liu
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Shujin Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
24
|
Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022; 12:4879-4903. [PMID: 35836815 PMCID: PMC9274746 DOI: 10.7150/thno.72812] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/05/2022] [Indexed: 01/12/2023] Open
Abstract
In recent decades, extracellular vesicles (EVs), as bioactive cell-secreted nanoparticles which are involved in various physiological and pathological processes including cell proliferation, immune regulation, angiogenesis and tissue repair, have emerged as one of the most attractive nanotherapeutics for regenerative medicine. Herein we provide a systematic review of the latest progress of EVs for regenerative applications. Firstly, we will briefly introduce the biogenesis, function and isolation technology of EVs. Then, the underlying therapeutic mechanisms of the native unmodified EVs and engineering strategies of the modified EVs as regenerative entities will be discussed. Subsequently, the main focus will be placed on the tissue repair and regeneration applications of EVs on various organs including brain, heart, bone and cartilage, liver and kidney, as well as skin. More importantly, current clinical trials of EVs for regenerative medicine will also be briefly highlighted. Finally, the future challenges and insightful perspectives of the currently developed EV-based nanotherapeutics in biomedicine will be discussed. In short, the bioactive EV-based nanotherapeutics have opened new horizons for biologists, chemists, nanoscientists, pharmacists, as well as clinicians, making possible powerful tools and therapies for regenerative medicine.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, 510630, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
25
|
Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy. Reprod Toxicol 2022; 110:39-48. [PMID: 35346788 DOI: 10.1016/j.reprotox.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Although the cancer incidence showed a yearly increasing trend, the long-term survival rate of cancer patients significantly increased with the continuous improvements in cancer diagnosis and treatment. Therefore, recent strategies for cancer treatment not only focus on improving the survival rate of patients but also simultaneously consider the life quality of cancer patients, especially for those with fertility requirements. Stem cell-based therapies have exhibited promising improvement in various disease treatments, and provide hope for diseases without effective treatment. Menstrual blood-derived endometrial stem cells (MenSCs) can be noninvasively and periodically obtained from discarded menstrual blood samples and exhibit high proliferative capacity, low immunogenicity and autologous transplantation. As expected, MenSCs treatment effectively improved the viability of cisplatin-injured ovarian granulosa cells (GCs) and significantly upregulated their antiapoptotic capacity. Further results demonstrated that MenSCs treatment significantly upregulated autophagy activity in cisplatin-injured ovarian GCs, and the degree of autophagy activation was positively correlated with the viability improvement of ovarian GCs, while autophagy inhibitors significantly impaired MenSC-promoted viability improvement of cisplatin-injured ovarian GCs. Additionally, MenSCs treatment can also significantly promote the proliferation of normal GCs by activating the PI3K/Akt signaling pathway. Conclusively, MenSCs treatment not only enhanced the antiapoptotic capacity and survival of cisplatin-injured ovarian GCs by upregulating autophagy activity but also improved the viability of normal ovarian GCs by activating the PI3K/Akt signal pathway. These results provide a theoretical and experimental foundation for the clinical application of MenSCs in improving chemotherapy-induced ovarian injury and delaying ovarian senescence.
Collapse
|
26
|
Jiao W, Mi X, Yang Y, Liu R, Liu Q, Yan T, Chen ZJ, Qin Y, Zhao S. Mesenchymal stem cells combined with autocrosslinked hyaluronic acid improve mouse ovarian function by activating the PI3K-AKT pathway in a paracrine manner. Stem Cell Res Ther 2022; 13:49. [PMID: 35109928 PMCID: PMC8812195 DOI: 10.1186/s13287-022-02724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Declining ovarian function in advance-aged women and in premature ovarian insufficiency (POI) patients seriously affects quality of life, and there is currently no effective treatment to rescue ovarian function in clinic. Stem cell transplantation is a promising therapeutic strategy for ovarian aging, but its clinical application is limited due to the low efficiency and unclear mechanism. Here, a novel combination of umbilical cord-mesenchymal stem cells (UC-MSCs) and autocrosslinked hyaluronic acid (HA) gel is explored to rescue ovarian reserve and fecundity in POI and naturally aging mice. Methods To investigate HA prolonged the survival after UC-MSCs transplantation, PCR and immunofluorescence were performed to track the cells on day 1, 3, 7 and 14 after transplantation. The effects of HA on UC-MSCs were analyzed by CCK8 assay, RNA-sequencing and 440 cytokine array. In vivo experiments were conducted to evaluate the therapeutic effects of UC-MSCs combined with HA transplantation in 4-vinylcyclohexene diepoxide (VCD)-induced POI mice and naturally aging mice model. Ovarian function was analyzed by ovarian morphology, follicle counts, estrous cycle, hormone levels and fertility ability. To investigate the mechanisms of stem cell therapy, conditioned medium was collected from UC-MSCs and fibroblast. Both in vitro ovarian culture model and 440 cytokine array were applied to assess the paracrine effect and determine the underlying mechanism. Hepatocyte growth factor (HGF) was identified as an effective factor and verified by HGF cytokine/neutralization antibody supplementation into ovarian culture system. Results HA not only prolongs the retention of UC-MSCs in the ovary, but also boosts their secretory function, and UC-MSCs promote follicular survival by activating the PI3K-AKT pathway through a paracrine mechanism both in vitro and in vivo. More importantly, HGF is identified as the key functional cytokine secreted by MSCs. Conclusions The results show that HA is an excellent cell scaffold to improve the treatment efficiency of UC-MSCs for ovarian aging under both physiological and pathological conditions, and the therapeutic mechanism is through activation of the PI3K-AKT pathway via HGF. These findings will facilitate the clinical application of MSCs transplantation for ovarian disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02724-3.
Collapse
Affiliation(s)
- Wenlin Jiao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Mi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yajuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Qiang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.,Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 200135, Shanghai, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
27
|
Yang L, Wang H, Song S, Xu H, Chen Y, Tian S, Zhang Y, Zhang Q. Systematic Understanding of Anti-Aging Effect of Coenzyme Q10 on Oocyte Through a Network Pharmacology Approach. Front Endocrinol (Lausanne) 2022; 13:813772. [PMID: 35222272 PMCID: PMC8874996 DOI: 10.3389/fendo.2022.813772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Maternal oocyte aging is strongly contributing to age-related decline in female fertility. Coenzyme Q10 (CoQ10) exerts positive effects in improving aging-related deterioration of oocyte quality, but the exact mechanism is unclear. OBJECTIVE To reveal the system-level mechanism of CoQ10's anti-aging effect on oocytes based on network pharmacology. METHODS This study adopted a systems network pharmacology approach, including target identification, data integration, network and module construction, bioinformatics analysis, molecular docking, and molecular dynamics simulation. RESULT A total of 27 potential therapeutic targets were screened out. Seven hub targets (PPARA, CAT, MAPK14, SQSTM1, HMOX1, GRB2, and GSR) were identified. Functional and pathway enrichment analysis indicated that these 27 putative targets exerted therapeutic effects on oocyte aging by regulating signaling pathways (e.g., PPAR, TNF, apoptosis, necroptosisn, prolactin, and MAPK signaling pathway), and are involved oxidation-reduction process, mitochondrion, enzyme binding, reactive oxygen species metabolic process, ATP binding, among others. In addition, five densely linked functional modules revealed the potential mechanisms of CoQ10 in improving aging-related deterioration of oocyte quality are closely related to antioxidant, mitochondrial function enhancement, autophagy, anti-apoptosis, and immune and endocrine system regulation. The molecular docking study reveals that seven hub targets have a good binding affinity towards CoQ10, and molecular dynamics simulation confirms the stability of the interaction between the hub targets and the CoQ10 ligand. CONCLUSION This network pharmacology study revealed the multiple mechanisms involved in the anti-aging effect of CoQ10 on oocytes. The molecular docking and molecular dynamics simulation provide evidence that CoQ10 may act on these hub targets to fight against oocytes aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - SuJie Song
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Xu
- Second Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Saisai Tian
- Department of Phytochemistry, School of Pharmacy, The Second Military Medical University, Shanghai, China
| | - Yiqun Zhang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Zhang, ; Yiqun Zhang,
| | - Qin Zhang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Zhang, ; Yiqun Zhang,
| |
Collapse
|
28
|
Chen J, Caserto JS, Ang I, Shariati K, Webb J, Wang B, Wang X, Bouklas N, Ma M. An adhesive and resilient hydrogel for the sealing and treatment of gastric perforation. Bioact Mater 2021; 14:52-60. [PMID: 35310345 PMCID: PMC8892218 DOI: 10.1016/j.bioactmat.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023] Open
|
29
|
Yu J, Zhang W, Huang J, Gou Y, Sun C, Zhang Y, Mao Y, Wu B, Li C, Liu N, Wang T, Huang J, Wang J. Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through Notch signalling. J Cell Mol Med 2021; 25:11002-11015. [PMID: 34724320 PMCID: PMC8642679 DOI: 10.1111/jcmm.17023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA treatment with hAMSC transplantation. Forty-five Sprague-Dawley female rats were randomly divided into the sham operation, IUA, IUA + E2, IUA + hAMSCs and IUA + hAMSCs + E2 groups. After IUA induction in the rats, hAMSCs promoted endometrial regeneration and repair via differentiation into endometrial epithelial cells. In all groups, the expression of key proteins in Notch signalling was detected in the uterus by immunohistochemistry. The results indicated Notch signalling activation in the hAMSCs and hAMSCs + E2 groups. We could also induce hAMSC differentiation to generate endometrial epithelial cells in vitro. Furthermore, the inhibition of Notch signalling using the AdR-dnNotch1 vector suppressed hAMSC differentiation (assessed by epithelial and mesenchymal marker levels), whereas its activation using the AdR-Jagged1 vector increased differentiation. The above findings indicate Notch signalling mediates the differentiation of hAMSCs into endometrial epithelial cells, thus promoting endometrial regeneration and repair; Notch signalling could have an important function in IUA treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Gou
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Nizhou Liu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiren Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Lv X, Guan C, Li Y, Su X, Zhang L, Wang X, Xia HF, Ma X. Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice. J Ovarian Res 2021; 14:119. [PMID: 34526090 PMCID: PMC8442267 DOI: 10.1186/s13048-021-00871-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, there is no effective treatment for premature ovarian failure (POF), and stem cell therapy is considered the most promising treatment. Human umbilical cord blood mesenchymal stem cells (hUC-MSCs) have shown good regenerative ability in various diseases, including POF; however, their underlying mechanism and dosage for POF treatment remain unclear. This study aimed to compare the effect of single and multiple injections of hUC-MSCs on ovarian function repair in chemotherapy-induced POF. METHODS Female mice were intraperitoneally injected with 30 mg/kg busulfan and 120 mg/kg cyclophosphamide (CTX) to induce POF. In the single hUC-MSC injection group, hUC-MSCs were transplanted into mice D7 after CTX and busulfan administration, while in the multiple injection group, hUC-MSCs were transplanted on D7, D14, and D21 after CTX and busulfan administration. We evaluated the ovarian morphology, fertility, follicle-stimulating hormone and estradiol concentrations, follicle count, POF model, and cell transplantation results. In addition, real-time polymerase chain reaction, immunohistochemistry, and miRNA and mRNA chips were used to evaluate the effect of the cell therapy. RESULTS Ovary size, number of follicle at all developmental stages, and fertility were significantly reduced in the POF group compared with the control. Under hUC-MSC treatment, the ovarian morphology and follicle count were significantly restored, and fertility was significantly increased. By comparing the single and multiple hUC-MSC injection groups, we found that the anti-Müllerian hormone and Ki-67 levels were significantly increased in the multiple hUC-MSC group on D60 after chemotherapy. The expression of stimulating hormone receptors, inhibin α, and inhibin β was significantly restored, and the therapeutic effect was superior to that of the single hUC-MSC injection group. CONCLUSION These results indicate that hUC-MSCs can restore the structure of injured ovarian tissue and its function in chemotherapy-induced POF mice and ameliorate fertility. Multiple hUC-MSC transplantations have a better effect on the recovery of ovarian function than single hUC-MSC transplantation in POF.
Collapse
Affiliation(s)
- Xiaodan Lv
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Ying Li
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xing Su
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Lu Zhang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xueqin Wang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| | - Xu Ma
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
31
|
Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, Xie M, Mei X, Li J, Neal-Perry G, Wang S, Cheng K. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics 2021; 11:8894-8908. [PMID: 34522217 PMCID: PMC8419036 DOI: 10.7150/thno.61690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Primary ovarian insufficiency (POI) normally occurs before age 40 and is associated with infertility. Hormone replacement therapy is often prescribed to treat vasomotor symptom, but it cannot restore ovarian function or fertility. Stem cell therapy has been studied for the treatment of POI. However, the application of live stem cells has suffered from drawbacks, such as low cell retention/engraftment rate, risks for tumorigenicity and immunogenicity, and lack of off-the-shelf feasibility. Methods: We developed a therapeutic ovarian regenerative patch (ORP) that composed of clinically relevant hydrolysable scaffolds and synthetic mesenchymal stem cells (synMSCs), which are microparticles encapsulating the secretome from MSCs. The therapeutic potency of ORP was tested in rats with cisplatin induced POI injury. Results:In vitro studies revealed that ORP stimulated proliferation of ovarian somatic cells (OSCs) and inhibited apoptosis under injury stress. In a rat model of POI, implantation of ORP rescued fertility by restoring sexual hormone secretion, estrus cycle duration, and follicle development. Conclusion: ORP represents a cell-free, off-the-shelf, and clinically feasible treatment for POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Dashuai Zhu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shiqi Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Halle Lutz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Xuan Mei
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Genevieve Neal-Perry
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|