1
|
Pohl N, Priebe D, AlBaraghtheh T, Schimek S, Wieland DF, Krüger D, Trostorff S, Willumeit-Römer R, Köhl R, Zeller-Plumhoff B. Computational modelling of bone growth and mineralization surrounding biodegradable Mg-based and permanent Ti implants. Comput Struct Biotechnol J 2025; 27:1394-1406. [PMID: 40242290 PMCID: PMC12002937 DOI: 10.1016/j.csbj.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
In silico testing of implant materials is a research area of high interest, as cost- and labour-intensive experiments may be omitted. However, assessing the tissue-material interaction mathematically and computationally can be very complex, in particular when functional, such as biodegradable, implant materials are investigated. In this work, we expand and refine suitable existing mathematical models of bone growth and magnesium-based implant degradation based on ordinary differential equations. We show that we can simulate the implant degradation, as well as the osseointegration in terms of relative bone volume fraction and changes in bone ultrastructure when applying the model to experimental data from titanium and magnesium-gadolinium implants for healing times up to 32 weeks. An additional sensitivity analysis highlights important parameters and their interactions. Moreover, we show that the model is predictive in terms of relative bone volume fraction with mean absolute errors below 6%.
Collapse
Affiliation(s)
- Nik Pohl
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
| | - Domenik Priebe
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
| | - Tamadur AlBaraghtheh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Germany
| | - Sven Schimek
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
| | | | - Diana Krüger
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
| | - Sascha Trostorff
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Kiel University, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
- Kiel, Nano, Surface, and Interface Science - KiNSIS, Kiel University, Germany
| | - Ralf Köhl
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Kiel University, Germany
- Kiel, Nano, Surface, and Interface Science - KiNSIS, Kiel University, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Germany
- Kiel, Nano, Surface, and Interface Science - KiNSIS, Kiel University, Germany
- Data-driven Analysis and Design of Materials, Faculty of Mechanical Engineering and Marine Technologies, University of Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Germany
| |
Collapse
|
2
|
Iskhakova K, Cwieka H, Meers S, Helmholz H, Davydok A, Storm M, Baltruschat IM, Galli S, Pröfrock D, Will O, Gerle M, Damm T, Sefa S, He W, MacRenaris K, Soujon M, Beckmann F, Moosmann J, O'Hallaran T, Guillory RJ, Wieland DF, Zeller-Plumhoff B, Willumeit-Römer R. Multi-modal investigation of the bone micro- and ultrastructure, and elemental distribution in the presence of Mg-xGd screws at mid-term healing stages. Bioact Mater 2024; 41:657-671. [PMID: 39296873 PMCID: PMC11408010 DOI: 10.1016/j.bioactmat.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
Magnesium (Mg) - based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Svenja Meers
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Anton Davydok
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Malte Storm
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Mirko Gerle
- The Department of Oral and Maxillofacial Surgery Campus Kiel, UKSH, Kiel, Germany
| | - Timo Damm
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith MacRenaris
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Malte Soujon
- Institute of Materials Mechanics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Thomas O'Hallaran
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Roger J. Guillory
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, USA
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
3
|
Riyaz S, Sun Y, Helmholz H, Medina TP, Medina OP, Wiese B, Will O, Albaraghtheh T, Mohamad FH, Hövener JB, Glüer CC, Römer RW. Inflammatory response toward a Mg-based metallic biomaterial implanted in a rat femur fracture model. Acta Biomater 2024; 185:41-54. [PMID: 38969080 DOI: 10.1016/j.actbio.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The immune system plays an important role in fracture healing, by modulating the pro-inflammatory and anti-inflammatory responses occurring instantly upon injury. An imbalance in these responses can lead to adverse outcomes, such as non-union of fractures. Implants are used to support and stabilize complex fractures. Biodegradable metallic implants offer the potential to avoid a second surgery for implant removal, unlike non-degradable implants. However, considering our dynamic immune system it is important to conduct in-depth studies on the immune response to these implants in living systems. In this study, we investigated the immune response to Mg and Mg-10Gd in vivo in a rat femur fracture model with external fixation. In vivo imaging using liposomal formulations was used to monitor the fluorescence-related inflammation over time. We combine ex vivo methods with our in vivo study to evaluate and understand the systemic and local effects of the implants on the immune response. We observed no significant local or systemic effects in the Mg-10Gd implanted group compared to the SHAM and Mg implanted groups over time. Our findings suggest that Mg-10Gd is a more compatible implant material than Mg, with no adverse effects observed in the early phase of fracture healing during our 4-week study. STATEMENT OF SIGNIFICANCE: Degradable metallic implants in form of Mg and Mg-10Gd intramedullary pins were assessed in a rat femur fracture model, alongside a non-implanted SHAM group with special respect to the potential to induce an inflammatory response. This pre-clinical study combines innovative non-invasive in vivo imaging techniques associated with multimodal, ex vivo cellular and molecular analytics. The study contributes to the development and evaluation of degradable biometals and their clinical application potential. The study results indicate that Mg-10Gd did not exhibit any significant harmful effects compared to the SHAM and Mg groups.
Collapse
Affiliation(s)
- Sana Riyaz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Yu Sun
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Tuula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - Oula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Björn Wiese
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tamadur Albaraghtheh
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany; Helmholtz-Zentrum hereon GmbH, Institute of Surface Science, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Farhad Haj Mohamad
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Claus Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Regine Willumeit Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| |
Collapse
|
4
|
He X, Li Y, Zou D, Zu H, Li W, Zheng Y. An overview of magnesium-based implants in orthopaedics and a prospect of its application in spine fusion. Bioact Mater 2024; 39:456-478. [PMID: 38873086 PMCID: PMC11170442 DOI: 10.1016/j.bioactmat.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Due to matching biomechanical properties and significant biological activity, Mg-based implants present great potential in orthopedic applications. In recent years, the biocompatibility and therapeutic effect of magnesium-based implants have been widely investigated in trauma repair. In contrast, the R&D work of Mg-based implants in spinal fusion is still limited. This review firstly introduced the general background for Mg-based implants. Secondly, the mechanical properties and degradation behaviors of Mg and its traditional and novel alloys were reviewed. Then, different surface modification techniques of Mg-based implants were described. Thirdly, this review comprehensively summarized the biological pathways of Mg degradation to promote bone formation in neuro-musculoskeletal circuit, angiogenesis with H-type vessel formation, osteogenesis with osteoblasts activation and chondrocyte ossification as an integrated system. Fourthly, this review followed the translation process of Mg-based implants via updating the preclinical studies in fracture fixation, sports trauma repair and reconstruction, and bone distraction for large bone defect. Furthermore, the pilot clinical studies were involved to demonstrate the reliable clinical safety and satisfactory bioactive effects of Mg-based implants in bone formation. Finally, this review introduced the background of spine fusion surgeryand the challenges of biological matching cage development. At last, this review prospected the translation potential of a hybrid Mg-PEEK spine fusion cage design.
Collapse
Affiliation(s)
- Xuan He
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Ye Li
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Da Zou
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Haiyue Zu
- Department of Orthopaedics, The First Affiliated Hospital of Suchow University, PR China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Comprehensive Scientific Research Building, Beijing, PR China
| |
Collapse
|
5
|
Sefa S, Espiritu J, Ćwieka H, Greving I, Flenner S, Will O, Beuer S, Wieland DF, Willumeit-Römer R, Zeller-Plumhoff B. Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants. Bioact Mater 2023; 30:154-168. [PMID: 37575877 PMCID: PMC10412723 DOI: 10.1016/j.bioactmat.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.
Collapse
Affiliation(s)
- Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Susanne Beuer
- Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen, Germany
| | - D.C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
6
|
Bruns S, Krüger D, Galli S, Wieland DF, Hammel JU, Beckmann F, Wennerberg A, Willumeit-Römer R, Zeller-Plumhoff B, Moosmann J. On the material dependency of peri-implant morphology and stability in healing bone. Bioact Mater 2023; 28:155-166. [PMID: 37250865 PMCID: PMC10212791 DOI: 10.1016/j.bioactmat.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability. We present a study in which screw implants made from titanium, polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four, eight and twelve weeks after implantation. Screws were 4 mm in length and with an M2 thread. The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5 μm resolution. Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences. Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization. Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized. Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer. Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized. This leaves the choice of biomaterial as situational depending on local tissue properties.
Collapse
Affiliation(s)
- Stefan Bruns
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Diana Krüger
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Silvia Galli
- University of Malmö, Faculty of Odontology, Department of Prosthodontics, Carl Gustafs Väg 34, Klerken, 20506, Malmö, Sweden
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Ann Wennerberg
- University of Gothenburg, Institute of Odontology, Department of Prosthodontics, Medicinaregatan 12 f, 41390, Göteborg, Sweden
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| |
Collapse
|
7
|
Detailing the influence of PEO-coated biodegradable Mg-based implants on the lacuno-canalicular network in sheep bone: A pilot study. Bioact Mater 2023; 26:14-23. [PMID: 36875051 PMCID: PMC9975618 DOI: 10.1016/j.bioactmat.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market. A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone. Osteocytes, which are housed and communicate through the lacuno-canalicular network (LCN), are integral to bone health and remodelling processes. Therefore, it is essential to examine the framework of the LCN in response to implant materials or surface treatments. Biodegradable materials offer an alternative solution to permanent implants, which may require revision or removal surgeries. Magnesium alloys have resurfaced as promising materials due to their bone-like properties and safe degradation in vivo. To further tailor their degradation capabilities, surface treatments such as plasma electrolytic oxidation (PEO) have demonstrated to slow degradation. For the first time, the influence of a biodegradable material on the LCN is investigated by means of non-destructive 3D imaging. In this pilot study, we hypothesize noticeable variations in the LCN caused by altered chemical stimuli introduced by the PEO-coating. Utilising synchrotron-based transmission X-ray microscopy, we have characterised morphological LCN differences around uncoated and PEO-coated WE43 screws implanted into sheep bone. Bone specimens were explanted after 4, 8, and 12 weeks and regions near the implant surface were prepared for imaging. Findings from this investigation indicate that the slower degradation of PEO-coated WE43 induces healthier lacunar shapes within the LCN. However, the stimuli perceived by the uncoated material with higher degradation rates induces a greater connected LCN better prepared for bone disturbance.
Collapse
|
8
|
Steglich D, Besson J, Reinke I, Helmholz H, Luczak M, Garamus VM, Wiese B, Höche D, Cyron CJ, Willumeit-Römer R. Strength and ductility loss of Magnesium-Gadolinium due to corrosion in physiological environment: Experiments and modeling. J Mech Behav Biomed Mater 2023; 144:105939. [PMID: 37348169 DOI: 10.1016/j.jmbbm.2023.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
We propose a computational framework to study the effect of corrosion on the mechanical strength of magnesium (Mg) samples. Our work is motivated by the need to predict the residual strength of biomedical Mg implants after a given period of degradation in a physiological environment. To model corrosion, a mass-diffusion type model is used that accounts for localised corrosion using Weibull statistics. The overall mass loss is prescribed (e.g., based on experimental data). The mechanical behaviour of the Mg samples is modeled by a state-of-the-art Cazacu-Plunkett-Barlat plasticity model with a coupled damage model. This allowed us to study how Mg degradation in immersed samples reduces the mechanical strength over time. We performed a large number of in vitro corrosion experiments and mechanical tests to validate our computational framework. Our framework could predict both the experimentally observed loss of mechanical strength and the ductility due to corrosion for both tension and compression tests.
Collapse
Affiliation(s)
- Dirk Steglich
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Jacques Besson
- Centre des Matériaux, PSL Research University, Mines ParisTech, UMR CNRS 7633, BP 87, 91003 Evry Cedex, France
| | - Inken Reinke
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Monika Luczak
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Vasil M Garamus
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Björn Wiese
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Daniel Höche
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Christian J Cyron
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eissendorfer Str. 42, 21073 Hamburg, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
9
|
Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact Mater 2023; 26:128-141. [PMID: 36891259 PMCID: PMC9986500 DOI: 10.1016/j.bioactmat.2023.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Current materials comprising suture anchors used to reconstruct ligament-bone junctions still have limitation in biocompatibility, degradability or mechanical properties. Magnesium alloys are potential bone implant materials, and Mg2+ has been shown to promote ligament-bone healing. Here, we used Mg-2 wt.% Zn-0.5 wt.% Y-1 wt.% Nd-0.5 wt.% Zr (ZE21C) alloy and Ti6Al4V (TC4) alloy to prepare suture anchors to reconstruct the patellar ligament-tibia in SD rats. We studied the degradation behavior of the ZE21C suture anchor via in vitro and in vivo experiments and assessed its reparative effect on the ligament-bone junction. In vitro, the ZE21C suture anchor degraded gradually, and calcium and phosphorus products accumulated on its surface during degradation. In vivo, the ZE21C suture anchor could maintain its mechanical integrity within 12 weeks of implantation in rats. The tail of the ZE21C suture anchor in high stress concentration degraded rapidly during the early implantation stage (0-4weeks), while bone healing accelerated the degradation of the anchor head in the late implantation stage (4-12weeks). Radiological, histological, and biomechanical assays indicated that the ZE21C suture anchor promoted bone healing above the suture anchor and fibrocartilaginous interface regeneration in the ligament-bone junction, leading to better biomechanical strength than the TC4 group. Hence, this study provides a basis for further research on the clinical application of degradable magnesium alloy suture anchors.
Collapse
|
10
|
Zhang Y, Liu Y, Zheng R, Zheng Y, Chen L. Research progress on corrosion behaviors and biocompatibility of rare-earth magnesium alloys in vivo and in vitro. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Marek R, Ćwieka H, Donohue N, Holweg P, Moosmann J, Beckmann F, Brcic I, Schwarze UY, Iskhakova K, Chaabane M, Sefa S, Zeller-Plumhoff B, Weinberg AM, Willumeit-Römer R, Sommer NG. Degradation behavior and osseointegration of Mg-Zn-Ca screws in different bone regions of growing sheep: a pilot study. Regen Biomater 2022; 10:rbac077. [PMID: 36683753 PMCID: PMC9845522 DOI: 10.1093/rb/rbac077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.5 Ca, in wt%) and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae. The implant degradation and osseointegration were assessed in vivo and ex vivo after 4, 6 and 12 weeks, using a combination of clinical computed tomography, medium-resolution micro computed tomography (µCT) and high-resolution synchrotron radiation µCT (SRµCT). Implant volume loss, gas formation and bone growth were evaluated for both implantation sites and each bone region independently. Additionally, histological analysis of bone growth was performed on embedded hard-tissue samples. We demonstrate that in all cases, the degradation rate of ZX00-implants ranges between 0.23 and 0.75 mm/year. The highest degradation rates were found in the epiphysis. Bone-to-implant contact varied between the time points and bone types for both materials. Mostly, bone-volume-to-total-volume was higher around Ti-implants. However, we found an increased cortical thickness around the ZX00-screws when compared with the Ti-screws. Our results showed the suitability of ZX00-screws for implantation into the distal meta- and epiphysis.
Collapse
Affiliation(s)
- Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Nicholas Donohue
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin 4, Ireland
| | - Patrick Holweg
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Iva Brcic
- D&R Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Uwe Yacine Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
- Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Marwa Chaabane
- SCANCO Medical AG, 8306 Wangen-Brüttisellen, Switzerland
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | | | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502 Geesthacht, Germany
| | - Nicole Gabriele Sommer
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
Electrochemical Short-Time Testing Method for Simulating the Degradation Behavior of Magnesium-Based Biomaterials. METALS 2022. [DOI: 10.3390/met12040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In regenerative medicine, degradable, magnesium-based biomaterials represent a promising material class. The low corrosion resistance typical for magnesium is advantageous for this application since the entire implant degrades in the presence of the aqueous body fluids after fulfilling the intended function, making a second operation for implant removal obsolete. To ensure sufficient stability within the functional phase, the degradation behavior must be known for months. In order to reduce time and costs for these long-time investigations, an electrochemical short-time testing method is developed and validated, accelerating the dissolution process of a magnesium alloy with and without surface modification based on galvanostatic anodic polarization, enabling a simulation of longer immersion times. During anodic polarization, the hydrogen gas formed by the corrosion process increases linearly. Moreover, the gas volume shows a linear relationship to the dissolving mass, enabling a defined dissolution of magnesium. As a starting point, corrosion rates of both variants from three-week immersion tests are used. A simplified relationship between the current density and the dissolution rate, determined experimentally, is used to design the experiments. Ex situ µ-computed tomography scans are performed to compare the degradation morphologies of both test strategies. The results demonstrate that a simulation of the degradation rates and, hence, considerable time saving based on galvanostatic anodic polarization is possible. Since the method is accompanied by a changed degradation morphology, it is suitable for a worst-case estimation allowing the exclusion of new, unsuitable magnesium systems before subsequent preclinical studies.
Collapse
|