1
|
Xiang K, Xiao Z, Jing Z, Li Y, Li M, Su Z, Huang Z, Wu T, He P, Zhang Y, Liu F, Ren M, Yang S. An Iron Balance Dual-Drive Strategy (IBDS) Promotes Bone Regeneration in Smokers by Regulating Mitochondrial Iron Homeostasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501933. [PMID: 40376835 DOI: 10.1002/adma.202501933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/03/2025] [Indexed: 05/18/2025]
Abstract
Cigarette smoke (CS) disrupts mitochondrial iron homeostasis, causing excess free iron to generate reactive oxygen species, leading to oxidative stress and impairing tissue repair. For smokers undergoing bone defect repair, achieving precise control over the balance between mitochondrial free iron and stored iron, while simultaneously enhancing endogenous iron homeostasis, poses a considerable challenge. This study introduces the iron balance dual-drive strategy (IBDS), which efficiently chelates mitochondrial free iron and promotes ferritin synthesis to create a FerritinBank for iron deposition, thus optimizing endogenous iron homeostasis. IBDS is delivered through an injectable, biodegradable iron-capturing hydrogel (SilMA/gelMA/DPT). The released DPT selectively targets and chelates free iron within mitochondria, modulating mitochondrial dynamics to restore their function. This action is complemented by the promotion of ferritin synthesis, which serves to bolster endogenous iron homeostasis and suppress ferroptosis. Transcriptomic sequencing and experimental data suggest that DPT corrects energy metabolism abnormalities and promotes mitochondrial macromolecule synthesis. In vivo studies confirm that the iron-capturing hydrogel significantly improves the healing of smoking-induced calvarial bone defects. This is the first report of nanoparticles promoting ferritin synthesis to build an endogenous iron reservoir, highlighting the potential of the IBDS strategy for bone regeneration in smokers and other iron-overload-related conditions.
Collapse
Affiliation(s)
- Kai Xiang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Zhiying Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| | - Meng Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Zhikang Su
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Ziyu Huang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Ping He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| | - Yining Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Fengyi Liu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, 401147, China
| |
Collapse
|
2
|
Cai C, Wang M, Wang L, Guo J, Wang L, Zhang Y, Wu G, Hua B, Stuart MAC, Guo X, Cao L, Yan Z. Zwitterionic Brush-Grafted Interfacial Bio-Lubricant Evades Complement C3-Mediated Macrophage Phagocytosis for Osteoarthritis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501137. [PMID: 40304130 DOI: 10.1002/adma.202501137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Administering a bio-lubricant is a promising therapeutic approach for the treatment of osteoarthritis (OA), in particular, if it can both manage symptoms and halt disease progression. However, the clearance of these bio-lubricants mediated by synovial macrophages leads to reduced therapeutic efficiency and adverse inflammatory responses. Herein, it is shown that this process is predominantly mediated by the specific binding of complement C3 (on nanoparticle) and CD11b (on macrophage). More importantly, through a systematic evaluation of various interface modifications, a macrophage-evading nanoparticle strategy is proposed, which not only minimizes friction, but also largely suppresses C3 adsorption. It involves employing a zwitterionic poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) brush layer grafted from a crosslinked gelatin core. In vitro studies demonstrate that such a nanoparticle lubricant can evade macrophage phagocytosis and further prevent the pro-inflammatory M1 polarization and subsequent harmful release of cytokines. In vivo studies show that the designed PMPC brush layer effectively mitigates synovial inflammation, alleviates OA-associated pain, and protects cartilage from degeneration, thus preventing OA progression. These findings clarify the pivotal role of complement C3-mediated macrophage recognition in nanoparticles clearance and offer a promising nanoparticle design strategy to restore joint lubrication.
Collapse
Affiliation(s)
- Chuandong Cai
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Mingwei Wang
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, 6525 EX, The Netherlands
| | - Luman Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiangtao Guo
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lipeng Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Yingkai Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Guohao Wu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Bingxuan Hua
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Martien A Cohen Stuart
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Xuhong Guo
- School of Chemical Engineering, State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Lu Cao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopaedic Surgery, Zhongshan Hospital, Institute of Bone and Joint Diseases, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China
| |
Collapse
|
3
|
Zhang S, Liu Y, Li L, Wang B, Zhang Z, Chen S, Zhang G, Huang Q, Chen X, Chen J, Qu C. Microenvironment-regulated dual-hydrophilic coatings for glaucoma valve surface engineering. Acta Biomater 2024; 180:358-371. [PMID: 38604464 DOI: 10.1016/j.actbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Glaucoma valves (GVs) play an essential role in treating glaucoma. However, fibrosis after implantation has limited their long-term success in clinical applications. In this study, we aimed to develop a comprehensive surface-engineering strategy to improve the biocompatibility of GVs by constructing a microenvironment-regulated and dual-hydrophilic antifouling coating on a GV material (silicone rubber, SR). The coating was based on a superhydrophilic polydopamine (SPD) coating with good short-range superhydrophilicity and antifouling abilities. In addition, SPD coatings contain many phenolic hydroxyl groups that can effectively resist oxidative stress and the inflammatory microenvironment. Furthermore, based on its in situ photocatalytic free-radical polymerization properties, the SPD coating polymerized poly 2-methylacryloxyethylphosphocholine, providing an additional long-range hydrophilic and antifouling effect. The in vitro test results showed that the microenvironment-regulated and dual-hydrophilic coatings had anti-protein contamination, anti-oxidation, anti-inflammation, and anti-fiber proliferation capabilities. The in vivo test results indicated that this coating substantially reduced the fiber encapsulation formation of the SR material by inhibiting inflammation and fibrosis. This design strategy for dual hydrophilic coatings with microenvironmental regulation can provide a valuable reference for the surface engineering design of novel medical implantable devices. STATEMENT OF SIGNIFICANCE: Superhydrophilic polydopamine (SPD) coatings were prepared on silicone rubber (SR) by a two-electron oxidation method. Introduction of pMPC to SPD surface using photocatalytic radical polymerization to obtain a dual-hydrophilic coating. The dual-hydrophilic coating effectively modulates the oxidative and inflammatory microenvironment. This coating significantly reduced protein contamination and adhesion of inflammatory cells and fibroblasts in vitro. The coating-modified SR inhibits inflammatory and fibrosis responses in vivo, promising to serve the glaucoma valves.
Collapse
Affiliation(s)
- Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Yejia Liu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linhua Li
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Binjian Wang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zezhen Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyan Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guanghong Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiongjian Huang
- Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Xiao Chen
- Institute of Biomaterials and Surface Engineering, Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| |
Collapse
|
4
|
Yang H, Yan R, Chen Q, Wang Y, Zhong X, Liu S, Xie R, Ren L. Functional nano drug delivery system with dual lubrication and immune escape for treating osteoarthritis. J Colloid Interface Sci 2023; 652:2167-2179. [PMID: 37730470 DOI: 10.1016/j.jcis.2023.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Local drug delivery via inter-articular injection offers a promising scenario to treat the most common joint disease, osteoarthritis (OA), which is closely associated with the increased friction or cartilage degeneration and the inflammatory syndrome of synovium. Therefore, it is quite necessary to improve the retention of drug delivery system within synovial joint, simultaneously restore the lubrication of degraded cartilage and meanwhile alleviate the inflammation. In this study, we propose a hydrophilic coating modified nano-liposome drug carrier (PMPC-Lipo) to achieve these functions. A modified chain transfer agent was utilized to polymerize 2-methacryloyloxyethyl phosphorylcholine (MPC), the obtained polymer, combined with lecithin and cholesterol, formed a liposome (PMPC-Lipo) where poly (MPC) acted as hydrophilic coating. PMPC-Lipo was found to restore the lubrication of mechanically damage cartilage (mimicking OA conditions) to the level like healthy cartilage due to the hydration lubrication. Additionally, due to the presence of poly (MPC), we also found PMPC-Lipo avoid the recognition of macrophage and thus escape from the phagocytosis to prolong its retention in synovial joint. Furthermore, after encapsulating gallic acid (GA) into PMPC-Lipo, the obtained GA-PMPC-Lipo can effectively scavenge reactive oxygen species and restore the imbalance of matrix secretion in inflammatory chondrocytes. Collectively, the proposed GA-PMPC-Lipo may provide a new idea for osteoarthritis treatment by providing both long-term effective drug action and excellent lubrication properties.
Collapse
Affiliation(s)
- Hai Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ruyu Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Qiuyi Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - XiuPeng Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 2023; 558:216106. [PMID: 36841418 DOI: 10.1016/j.canlet.2023.216106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tract malignancy that seriously threatens human life and health. Early HCC may be treated by intervention, surgery, and internal radiotherapy, while the choice for late HCC is primarily chemotherapy to prolong patient survival. Lenvatinib (LT) is a Food and Drug Administration (FDA)-approved frontline drug for the treatment of advanced liver cancer and has achieved excellent clinical efficacy. However, its poor solubility and severe side effects cannot be ignored. In this study, a bionic nanodrug delivery platform was successfully constructed. The platform consists of a core of Lenvatinib wrapped with a pH-sensitive polymer, namely, poly(β-amino ester)-polyethylene glycol-amine (PAE-PEG-NH2), and a shell formed by a cancer cell membrane (CCM). The prepared nanodrugs have high drug loading capacity, long-term stability, good biocompatibility, and a long retention time. In addition, the targeting effect of tumor cell membranes and the pH-responsive characteristics of the polymer materials enable them to precisely target tumor cells and achieve responsive release in the tumor microenvironment, which makes them suitable for effective drug delivery. In vivo experiments revealed that the nanodrug showed superior tumor accumulation and therapeutic effects in subcutaneous tumor mice model and could effectively eliminate tumors within 21 days. As a result, it opens up a new way to reduce side effects and improve the specific therapeutic effect of first-line clinical medications to treat tumors.
Collapse
Affiliation(s)
- Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingjing Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Fan Wang
- Experimental Animal Platform in Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Huang B, Xie H, Li Z. Microfluidic Methods for Generation of Submicron Droplets: A Review. MICROMACHINES 2023; 14:638. [PMID: 36985045 PMCID: PMC10056697 DOI: 10.3390/mi14030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Submicron droplets are ubiquitous in nature and widely applied in fields such as biomedical diagnosis and therapy, oil recovery and energy conversion, among others. The submicron droplets are kinetically stable, their submicron size endows them with good mobility in highly constricted pathways, and the high surface-to-volume ratio allows effective loading of chemical components at the interface and good heat transfer performance. Conventional generation technology of submicron droplets in bulk involves high energy input, or relies on chemical energy released from the system. Microfluidic methods are widely used to generate highly monodispersed micron-sized or bigger droplets, while downsizing to the order of 100 nm was thought to be challenging because of sophisticated nanofabrication. In this review, we summarize the microfluidic methods that are promising for the generation of submicron droplets, with an emphasize on the device fabrication, operational condition, and resultant droplet size. Microfluidics offer a relatively energy-efficient and versatile tool for the generation of highly monodisperse submicron droplets.
Collapse
|
7
|
Woo CW, Tso P, Yiu JHC. Commensal gut microbiota-based strategies for oral delivery of therapeutic proteins. Trends Pharmacol Sci 2022; 43:1004-1013. [PMID: 36057462 PMCID: PMC9669164 DOI: 10.1016/j.tips.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023]
Abstract
Therapeutic proteins are rarely available in oral dosage form because the hostile environment of the human gastrointestinal (GI) tract and their large size make this delivery method difficult. Commensal bacteria in the gut face the same situation; however, they not only survive but low levels of their structural components such as lipopolysaccharide (LPS), peptidoglycan, and flagellin are also consistently detectable in the circulatory systems of healthy individuals. This opinion article discusses how gut bacteria survive in the gut, how their components penetrate the body from the perspective of the bacteria's and the host's proactivity, and how orally administered therapeutic proteins may be developed that exploit similar mechanisms to enter the body.
Collapse
Affiliation(s)
- Connie W Woo
- Department of Pharmacology and Pharmacy, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, OH, USA
| | - Jensen H C Yiu
- Department of Pharmacology and Pharmacy, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Zhao W, Yu Y, Zhang Z, He D, Zhang H. Bioinspired Nanospheres as Anti-inflammation and Antisenescence Interfacial Biolubricant for Treating Temporomandibular Joint Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35409-35422. [PMID: 35894784 DOI: 10.1021/acsami.2c09120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of temporomandibular joint (TMJ) osteoarthritis is highly associated with mechanical overloading, which can result in accelerated cartilage degradation and damage due to increased interfacial friction and the release of inflammatory factors and catabolic enzymes. In the present study, we for the first time developed self-assembled drug-free nanospheres with pharmaceutical-active functions, which could be used as an intra-articularly injected biolubricant for the treatment of TMJ osteoarthritis based on a synergistic therapy of enhanced lubrication, anti-inflammation, and antisenescence. The nanospheres possessed the hydrophobic core of dopamine methacrylamide and the hydrophilic shell of sulfobetaine methacrylate, which formed into spherical aggregates in aqueous solution by specific interactions following reversible addition-fragmentation chain transfer polymerization. The biodegradation test, tribological test, and free radical scavenging test showed that the nanospheres were endowed with physiological stability, lubrication enhancement, and free radical scavenging capability. In addition, the in vitro cell test revealed that the nanospheres alleviated inflammatory and senescent phenotype for inflammation and oxidative stress stimulated chondrocytes. Furthermore, the in vivo animal test indicated that the nanospheres, after intra-articular injection into TMJ with an osteoarthritis environment, effectively protected condylar cartilage and subchondral bone from structural damage and attenuated cartilage matrix degradation and aging. In summary, the self-assembled nanospheres might be used as a promising biolubricant for achieving anti-inflammatory and antisenescent treatment of TMJ osteoarthritis.
Collapse
Affiliation(s)
- Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|