1
|
Liu X, Hu H, Ma J, Wang B. Mineralized cellulose nanofibers reinforced bioactive hydrogel remodels the osteogenic and angiogenic microenvironment for enhancing bone regeneration. Carbohydr Polym 2025; 357:123480. [PMID: 40159001 DOI: 10.1016/j.carbpol.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Slow osteogenesis and insufficient vascularization remain significant challenges in achieving effective bone repair and functional restoration with tissue-engineered scaffolds. Herein, a novel mineralized nanofibers reinforced bioactive hydrogel was designed to enhance bone regeneration inspired from the structural and functional properties of the bone tissue extracellular matrix (ECM). This bioactive hydrogel integrated enzymatically mineralized TEMPO-oxidized bacterial cellulose (m-TOBC) nanofibers and mesoporous silica nanoparticles (MSNs) loaded with the angiogenic drug dimethyloxalylglycine (DMOG) into gelatin methacryloyl (GelMA). The m-TOBC nanofibers achieved one stone, three birds: improving the printability of GelMA ink, mechanical properties, and osteoconduction of the hydrogel. The incorporation of MSNs loaded with DMOG fostered an angiogenic microenvironment through the release of DMOG. Results indicated that the bioactive hydrogel significantly enhanced in vitro mineralized matrix deposition and osteoblastic alkaline phosphatase expression. Additionally, the bioactive hydrogel had good ability to promote angiogenesis in terms of enhanced endothelial cell migration, tube formation, and upregulated angiogenic genes expression levels. In a critical-sized rat cranial defect model, the bioactive hydrogel significantly enhanced bone regeneration. Overall, this research offered a promising strategy to design nanofibers enhanced hydrogel to remodel osteogenic and angiogenic microenvironment for enhancing bone repair.
Collapse
Affiliation(s)
- Xiaokang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinghong Ma
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
2
|
Yin Y, Long L, Wang N, Wei R, Guo M, Fu D, Zhang F, Ma K, Yang L, Wang Y. Highly transparent and elastic acellular swim bladder with potential application in cornea implantation. J Mater Chem B 2025. [PMID: 40395134 DOI: 10.1039/d5tb00793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Corneal injury is the leading cause of blindness worldwide, and corneal transplantation remains a critical clinical treatment for restoring vision. However, the shortage of corneal donors greatly limits the application of this therapy. Although some biological corneal scaffolds such as collagen hydrogels and decellularized amniotic membranes, have emerged in recent years, their clinical efficacy is unsatisfactory because of poor tissue integration caused by the difficult suturing required and poor biomechanical properties of the scaffolds. To address these shortcomings, a decellularized swim bladder corneal scaffold was developed in this research. Specifically, using a freezing and thawing process, with 0.5% sodium deoxycholate and nuclease, the natural elastin fibers were preserved during the decellularization process, which enhanced the elastic properties of the scaffold. Dehydration and cross-linking increased the light transmittance of the decellularized swim bladder to 93.1 ± 0.8%, which was slightly higher than that of human corneas. Furthermore, cross-linking further improved the mechanical properties of the scaffolds (circumferential fracture tensile stress, elastic modulus and suture strength were 25.66 ± 4.42 MPa, 184.43 ± 23.27 MPa and 123.5 ± 2.69 gf, respectively), which were far superior to most previously reported biocorneal scaffolds reported so far. In addition, decellularized swim bladder collagen matrix scaffolds (SBCMs) supported the proliferation and adhesion of rabbit corneal epithelial cells (RCECs) and rabbit corneal stromal cells (RCSCs). Subcutaneous implantation experiments revealed that the scaffolds had a lower acute inflammatory response and better anti-degradation ability than human amniotic membranes used clinically. In summary, SBCMs have good biocompatibility, high light transmittance and excellent biomechanical properties, and can be used in the future to develop a novel generation of artificial corneas.
Collapse
Affiliation(s)
- Yue Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ningxin Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ran Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mengna Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Fanju Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
3
|
Zhang R, Ma Q, Zheng N, Wang R, Visentin S, He L, Liu S. Plant Polyphenol-Based Injectable Hydrogels: Advances and Biomedical Applications. Adv Healthc Mater 2025; 14:e2500445. [PMID: 40150799 DOI: 10.1002/adhm.202500445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Plant polyphenol-based hydrogels, known for their biocompatibility and adhesive properties, have emerged as promising materials in biomedical applications. These hydrogels leverage the catechol group's ability to form stable bonds in moist environments, similar to mussel adhesive proteins. This review provides a comprehensive overview of their synthesis, adhesion mechanisms, and applications, particularly in wound healing, tissue regeneration, and drug delivery. However, challenges related to in vivo stability and long-term biocompatibility remain critical barriers to clinical translation. Future research should focus on enhancing the bioactivity, biocompatibility, and scalability of these hydrogels, while addressing concerns related to toxicity, immune responses, and large-scale manufacturing. Advances in artificial intelligence-assisted screening and 3D/4D bioprinting are expected to accelerate their development and clinical translation. Furthermore, the integration of biomimetic designs and responsive functionalities, such as pH or temperature sensitivity, holds promise for further improving their therapeutic efficacy. In conclusion, the development of multifunctional plant polyphenol-based hydrogels represents a promising frontier in advancing personalized medicine and minimally invasive treatments.
Collapse
Affiliation(s)
- Renkai Zhang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150001, China
| | - Qiuyue Ma
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Nannan Zheng
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Ruiwen Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150001, China
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Piazza Nizza 44, Torino, 10126, Italy
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Shaoqin Liu
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Cheng K, Chen X, Yi Y, Wang Y, Tian M, Yu J, Xia Y, Li J, Zhang M, Ding C. Novel Biomimetic Collagen-Based Corneal Repair Material Achieved via a "Killing Two Birds with One Stone" Strategy Using Carboxymethyl-β-Cyclodextrin. ACS Biomater Sci Eng 2025; 11:2263-2273. [PMID: 40029252 DOI: 10.1021/acsbiomaterials.4c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Collagen, as the principal structural component of the cornea, has emerged as a promising biomaterial for artificial corneal owing to its excellent biocompatibility and degradability. However, the mechanical properties of current collagen membrane cannot match the requirements of artificial corneal materials. Inspired by the hierarchical lamellar organization of native corneal stromal collagen, a biomimetic collagen-based corneal repair material was designed via a "killing two birds with one stone" strategy. In this strategy, carboxymethyl-β-cyclodextrin (CM-β-CD) was incorporated into the collagen, serving dual functions: regulating the in vitro self-assembly process of collagen molecules and establishing multiple covalent cross-linking sites within the network. Concurrently, controlled external shear forces were applied to induce anisotropic alignment of collagen fibers, effectively replicating the highly organized structural hierarchy characteristic of native corneal stromal tissue. The resulting membrane exhibited a 67% enhancement in tensile strength (0.52 MPa) compared to pure collagen membranes. Notably, in vivo lamellar keratoplasty evaluations revealed accelerated tissue regeneration, achieving complete re-epithelialization within 14 days versus 28 days for controls. These findings establish the material's potential as an advanced artificial corneal for tissue engineering applications.
Collapse
Affiliation(s)
- Kuan Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Xiaohong Chen
- Department of Ophthalmology, 900th Hospital of Joint Logistic Support Force of PLA (Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, PR China
| | - Yifan Yi
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yue Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Mengdie Tian
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yuxin Xia
- Department of Ophthalmology, 900th Hospital of Joint Logistic Support Force of PLA (Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, PR China
| | - Jingyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, PR China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| |
Collapse
|
5
|
Zhao L, Shi Z, Wang J, Dou S, Sun X, Yang S, Wang H, Zhou Q, Wang T, Shi W. Natural Extracellular Matrix Scaffold-Based Hydrogel Corneal Patch with Temperature and Light-Responsiveness for Penetrating Keratoplasty and Sutureless Stromal Defect Repair. Adv Healthc Mater 2025; 14:e2402567. [PMID: 39558795 DOI: 10.1002/adhm.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Corneal transplantation remains the gold standard for treating corneal blindness; however, it is hampered globally by donor shortages and the complexity of suture-dependent procedures. Tissue-engineered corneas have demonstrated potential as corneal equivalents. Nevertheless, the development of adhesive corneal patches and full-thickness corneal substitutes remains challenging. In this study, a multifunctional hydrogel corneal patch (MHCP) is constructed by integrating a dual-crosslinked hybrid hydrogel with temperature and light responsiveness with a natural extracellular matrix scaffold. When applied to the ocular surface, MHCP spontaneously releases adhesives at body temperature and forms a stable adhesion with the recipient cornea through photocuring. In addition to its inherent mechanical, optical, and ultrastructural characteristics, which are similar to those of the natural stroma, MHCP demonstrates excellent suture resistance, anti-swelling, and anti-degradation properties after curing. MHCP promotes the proliferation and migration of corneal epithelial cells in vitro and maintains the phenotype of corneal stromal cells. In vivo, MHCP maintains graft hydration and restores corneal structural integrity and transparency during penetrating keratoplasty of various sizes and sutureless lamellar keratoplasty. Collectively, given the advantages of native stroma-like characteristics, operation-facilitating multiple functions, and convenient preparation, MHCP is a promising corneal substitute for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zhen Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jingting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiuli Sun
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shang Yang
- Binzhou Medical University, Binzhou, 264003, China
| | - Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
6
|
Qu S, Zheng S, Muhammad S, Huang L, Guo B. An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis. J Nanobiotechnology 2025; 23:184. [PMID: 40050881 PMCID: PMC11887204 DOI: 10.1186/s12951-025-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Microbial keratitis, a sight-threatening corneal infection, remains a significant global health concern. Conventional therapies using antimicrobial agents often suffers from limitations such as poor drug penetration, side effects, and occurrence of drug resistance, with poor prognosis. Novel treatment techniques, with their unique properties and targeted delivery capabilities, offers a promising solution to overcome these challenges. This review delves into timely update of the state-of-the-art advance therapeutics for keratitis treatment. The diverse microbial origins of keratitis, including viral, bacterial, and fungal infections, exploring their complex pathogenic mechanisms, followed by the drug resistance mechanisms in keratitis pathogens are reviewed briefly. Importantly, the emerging therapeutic techniques for keratitis treatment including piezodynamic therapy, photothermal therapy, photodynamic therapy, nanoenzyme therapy, and metal ion therapy are summarized in this review showcasing their potential to overcome the limitations of traditional treatments. The challenges and future directions for advance therapies and nanotechnology-based approaches are discussed, focusing on safety, targeting strategies, drug resistance, and combination therapies. This review aims to inspire researchers to revolutionize and accelerate the development of functional materials using different therapies for keratitis treatment.
Collapse
Affiliation(s)
- Siying Qu
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Shuihua Zheng
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Sibtain Muhammad
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Liang Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
He CF, Qiao TH, Ren XC, Xie M, Gao Q, Xie CQ, Wang P, Sun Y, Yang H, He Y. Printability in Multi-material Projection-Based 3-Dimensional Bioprinting. RESEARCH (WASHINGTON, D.C.) 2025; 8:0613. [PMID: 40041038 PMCID: PMC11876545 DOI: 10.34133/research.0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Accurately reconstructing the intricate structure of natural organisms is the long-standing goal of 3-dimensional (3D) bioprinting. Projection-based 3D printing boasts the highest resolution-to-manufacturing time ratio among all 3D-printing technologies, rendering it a highly promising technique in this field. However, achieving standardized, high-fidelity, and high-resolution printing of composite structures using bioinks with diverse mechanical properties remains a marked challenge. The root of this challenge lies in the long-standing neglect of multi-material printability research. Multi-material printing is far from a simple physical assembly of different materials; rather, effective control of material interfaces is a crucial factor that governs print quality. The current research gap in this area substantively hinders the widespread application and rapid development of multi-material projection-based 3D bioprinting. To bridge this critical gap, we developed a multi-material projection-based 3D bioprinter capable of simultaneous printing with 6 materials. Building upon this, we established a fundamental framework for multi-material printability research, encompassing its core logic and essential process specifications. Furthermore, we clarified several critical issues, including the cross-linking behavior of multicomponent bioinks, mechanical mismatch and interface strength in soft-hard composite structures, the penetration behavior of viscous bioinks within hydrogel polymer networks, liquid entrapment and adsorption phenomena in porous heterogeneous structures, and error source analysis along with resolution evaluation in multi-material printing. This study offers a solid theoretical foundation and guidance for the quantitative assessment of multi-material projection-based 3D bioprinting, holding promise to advance the field toward higher precision and the reconstruction of more intricate biological structures.
Collapse
Affiliation(s)
- Chao-fan He
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Tian-hong Qiao
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Xu-chao Ren
- School of Computer Science,
Xi’an Shiyou University, Xi’an 710065, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Chao-qi Xie
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Peng Wang
- EFL-Tech,
Suzhou Yongqinquan Intelligent Equipment Co., Ltd, Suzhou 215101, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu Laboratory, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China
- The Second Affiliated Hospital of Zhejiang University,
Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Chand R, Janarthanan G, Elkhoury K, Vijayavenkataraman S. Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel. Biofabrication 2025; 17:025011. [PMID: 39819884 DOI: 10.1088/1758-5090/adab27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties. Using digital light processing (DLP) bioprinting, with tartrazine as a photoabsorber, we successfully biofabricated three-dimensional constructs with improved shape fidelity, high resolution, and excellent reproducibility. The bioprinted constructs mimic the native corneal stroma's curvature, with central and peripheral thicknesses of 478.9 ± 56.5µm and 864.0 ± 79.3µm, respectively. The dual crosslinking strategy, which combines Schiff base reaction and photocrosslinking, showed an improved compressive modulus (106.3 ± 7.7 kPa) that closely matched that of native tissues (115.3 ± 13.6 kPa), without relying on synthetic polymers, toxic crosslinkers, or nanoparticles. Importantly, the optical transparency of tartrazine-containing corneal constructs was comparable to the native cornea following phosphate-buffered saline washing. Morphological analyses using scanning electron microscopy confirmed the improved porosity, interconnected network, and structural integrity of the GelMA-OxiCMC hydrogel, facilitating better nutrient diffusion and cell viability.In vitrobiological assays demonstrated high cell viability (>93%) and desirable proliferation of human corneal keratocytes within the biofabricated constructs. Our findings indicate that the GelMA-OxiCMC hydrogel system for DLP bioprinting presents a promising alternative for corneal tissue engineering, offering a potential solution to the donor cornea shortage and advancing regenerative medicine for corneal repair.
Collapse
Affiliation(s)
- Rashik Chand
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| |
Collapse
|
9
|
Huang J, Jiang T, Qie J, Cheng X, Wang Y, Ye Y, Yang Z, Yan H, Yao K, Han H. Biologically inspired bioactive hydrogels for scarless corneal repair. SCIENCE ADVANCES 2024; 10:eadt1643. [PMID: 39693435 DOI: 10.1126/sciadv.adt1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Corneal injury-induced fibrosis occurs because of corneal epithelial basement membrane (EBM) injury and defective regeneration. Corneal fibrosis inhibition and transparency restoration depend on reestablished EBM, where the collagen network provides structural stability and heparan sulfate binds corneal epithelium-derived cytokines to regulate homeostasis. Inspired by this, bioactive hydrogels (Hep@Gel) composed of collagen-derived gelatins and highly anionic heparin were constructed for scarless corneal repair. Hep@Gel resembled the barrier function of the EBM regarding surface-confined binding, long-time sequestration, and progressive degradation of IL-1, TGF-β, and PDGF-BB, which robustly inhibited the apoptosis and myofibroblast transition of keratocytes. Animal models of rabbits and nonhuman primates confirmed that Hep@Gel effectively limited the influx of inflammatory and fibrotic cytokines from the epithelium into the stroma to down-regulate the wound healing cascade, contributing to better vision quality with 73% reduced fibrosis. Hep@Gel offers a solution for preventing corneal injury-induced scarring and substituting for lamellar keratoplasty to remove scarring.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis and Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yang Ye
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Zhuoheng Yang
- MOE Laboratory of Biosystems Homeostasis and Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hongji Yan
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65, Solna, Sweden
- Department of Medical Cell Biology, Uppsala University, 752 36 Uppsala, Sweden; and AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
- State Key Laboratory of Trauma Burn and Combined Injury, Third Military Medical University, Chongqing 400038, P. R. China
| |
Collapse
|
10
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
12
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
13
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
14
|
Qi Y, Xu C, Zhang Z, Zhang Q, Xu Z, Zhao X, Zhao Y, Cui C, Liu W. Wet environment-induced adhesion and softening of coenzyme-based polymer elastic patch for treating periodontitis. Bioact Mater 2024; 35:259-273. [PMID: 38356924 PMCID: PMC10864166 DOI: 10.1016/j.bioactmat.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Periodontitis, a common chronic inflammatory disease caused by pathogenic bacteria, can be treated with diverse biomaterials by loading drugs, cytokines or proteins. However, these biomaterials often show unsatisfactory therapeutic efficiency due to their poor adhesion, short residence time in the wet and dynamic oral cavity and emerging drug resistance. Here we report a wet-responsive methacrylated gelatin (GelMA)-stabilized co-enzyme polymer poly(α-lipoic acid) (PolyLA)-based elastic patch with water-induced adhesion and softening features. In PolyLA-GelMA, the multiple covalent and hydrogen-bonding crosslinking between PolyLA and GelMA prevent PolyLA depolymerization and slow down the dissociation of PolyLA in water, allowing durable adhesion to oral periodontal tissue and continuous release of LA-based bioactive small molecule in periodontitis wound without resorting external drugs. Compared with the undifferentiated adhesion behavior of traditional adhesives, this wet-responsive patch demonstrates a favorable periodontal pocket insertion ability due to its non-adhesion and rigidity in dry environment. In vitro studies reveal that PolyLA-GelMA patch exhibits satisfactory wet tissue adhesion, antibacterial, blood compatibility and ROS scavenging abilities. In the model of rat periodontitis, the PolyLA-GelMA patch inhibits alveolar bone resorption and accelerates the periodontitis healing by regulating the inflammatory microenvironment. This biomacromolecule-stabilized coenzyme polymer patch provides a new option to promote periodontitis treatment.
Collapse
Affiliation(s)
- Ying Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chenyu Xu
- School and Hospital of Stomatology, Department of Orthodontics, Tianjin Medical University, Tianjin, 300070, China
| | - Zhuodan Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xinrui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yanhong Zhao
- School and Hospital of Stomatology, Department of Orthodontics, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
15
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hemoadhican-Based Bioabsorbable Hydrogel for Preventing Postoperative Adhesions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17267-17284. [PMID: 38556996 DOI: 10.1021/acsami.4c01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Postoperative peritoneal adhesions are a prevalent clinical issue following abdominal and pelvic surgery, frequently resulting in heightened personal and societal health burdens. Traditional biomedical barriers offer limited benefits because of practical challenges for doctors and their incompatibility with laparoscopic surgery. Hydrogel materials, represented by hyaluronic acid gels, are receiving increasing attention. However, existing antiadhesive gels still have limited effectiveness or carry the risk of complications in clinical applications. Herein, we developed a novel hydrogel using polysaccharide hemoadhican (HD) as the base material and polyethylene glycol diglycidyl ether (PEGDE) as the cross-linking agent. The HD hydrogels exhibit appropriate mechanical properties, injectability, and excellent cytocompatibility. We demonstrate resistance to protein adsorption and L929 fibroblast cell adhesion to the HD hydrogel. The biodegradability and efficacy against peritoneal adhesion are further evaluated in C57BL/6 mice. Our results suggest a potential strategy for anti-postoperative tissue adhesion barrier biomaterials.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
16
|
Bhutani U, Dey N, Chowdhury SK, Waghmare N, Mahapatra RD, Selvakumar K, Chandru A, Bhowmick T, Agrawal P. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant. Biomed Mater 2024; 19:035017. [PMID: 38471165 DOI: 10.1088/1748-605x/ad3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Digital light processing (DLP) technology has gained significant attention for its ability to construct intricate structures for various applications in tissue modeling and regeneration. In this study, we aimed to design corneal lenticules using DLP bioprinting technology, utilizing dual network bioinks to mimic the characteristics of the human cornea. The bioink was prepared using methacrylated hyaluronic acid and methacrylated gelatin, where ruthenium salt and sodium persulfate were included for mediating photo-crosslinking while tartrazine was used as a photoabsorber. The bioprinted lenticules were optically transparent (85.45% ± 0.14%), exhibited adhesive strength (58.67 ± 17.5 kPa), and compressive modulus (535.42 ± 29.05 kPa) sufficient for supporting corneal tissue integration and regeneration. Puncture resistance tests and drag force analysis further confirmed the excellent mechanical performance of the lenticules enabling their application as potential corneal implants. Additionally, the lenticules demonstrated outstanding support for re-epithelialization and stromal regeneration when assessed with human corneal stromal cells. We generated implant ready corneal lenticules while optimizing bioink and bioprinting parameters, providing valuable solution for individuals suffering from various corneal defects and waiting for corneal transplants.
Collapse
Affiliation(s)
- Utkarsh Bhutani
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Namit Dey
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Suvro Kanti Chowdhury
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Neha Waghmare
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Rita Das Mahapatra
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Arun Chandru
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
- Pandorum International Inc., San Francisco, CA, United States of America
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City, Phase 1, Bengaluru 560100, India
| |
Collapse
|
17
|
Shi W, Jang S, Kuss MA, Alimi OA, Liu B, Palik J, Tan L, Krishnan MA, Jin Y, Yu C, Duan B. Digital Light Processing 4D Printing of Poloxamer Micelles for Facile Fabrication of Multifunctional Biocompatible Hydrogels as Tailored Wearable Sensors. ACS NANO 2024; 18:7580-7595. [PMID: 38422400 DOI: 10.1021/acsnano.3c12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Olawale A Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jayden Palik
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Li Tan
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
18
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
19
|
Al-Atawi S. Three-dimensional bioprinting in ophthalmic care. Int J Ophthalmol 2023; 16:1702-1711. [PMID: 37854366 PMCID: PMC10559024 DOI: 10.18240/ijo.2023.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 10/20/2023] Open
Abstract
Three-dimensional (3D) bioprinting is widely used in ophthalmic clinic, including in diagnosis, surgery, prosthetics, medications, drug development and delivery, and medical education. Articles published in 2011-2022 into bioinks, printing technologies, and bioprinting applications in ophthalmology were reviewed and the strengths and limitations of bioprinting in ophthalmology highlighted. The review highlighted the trade-offs of printing technologies and bioinks in respect to, among others, material type cost, throughput, gelation technique, cell density, cell viability, resolution, and printing speed. There is already widespread ophthalmological application of bioprinting outside clinical settings, including in educational modelling, retinal imaging/visualization techniques and drug design/testing. In clinical settings, bioprinting has already found application in pre-operatory planning. Even so, the findings showed that even with its immense promise, actual translation to clinical applications remains distant, but relatively closer for the corneal (except stromal) tissues, epithelium, endothelium, and conjunctiva, than it was for the retina. This review similarly reflected on the critical on the technical, practical, ethical, and cost barrier to rapid progress of bioprinting in ophthalmology, including accessibility to the most sophisticated bioprinting technologies, choice, and suitability of bioinks, tissue viability and storage conditions. The extant research is encouraging, but more work is clearly required for the push towards clinical translation of research.
Collapse
Affiliation(s)
- Saleha Al-Atawi
- Al-baha University, Applied Medical Science, Al-Aqiaq, AlBaha 4781, Saudi Arabia
| |
Collapse
|
20
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
21
|
Yang X, Li X, Wu Z, Cao L. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review. Int J Biol Macromol 2023; 246:125570. [PMID: 37369259 DOI: 10.1016/j.ijbiomac.2023.125570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
A hydrogel is a three-dimensional (3D) network structure formed through polymer crosslinking, and these have emerged as a popular research topic in recent years. Hydrogel crosslinking can be classified as physical, chemical, or enzymatic, and photocrosslinking is a branch of chemical crosslinking. Compared with other methods, photocrosslinking can control the hydrogel crosslinking initiation, crosslinking time, and crosslinking strength using light. Owing to these properties, photocrosslinked hydrogels have important research prospects in tissue engineering, in situ gel formation, 3D bioprinting, and drug delivery. Methacrylic anhydride modification is a common method for imparting photocrosslinking properties to polymers, and graft-substituted polymers can be photocrosslinked under UV irradiation. In this review, we first introduce the characteristics of common natural polysaccharide- and protein-based hydrogels and the processes used for methacrylate group modification. Next, we discuss the applications of methacrylated natural hydrogels in tissue engineering. Finally, we summarize and discuss existing methacrylated natural hydrogels in terms of limitations and future developments. We expect that this review will help researchers in this field to better understand the synthesis of methacrylate-modified natural hydrogels and their applications in tissue engineering.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Xiaojing Li
- Department of Histology and Embryology, Fuzhou Medical College of Nanchang University, Fuzhou 344000, PR China
| | - Zhaoping Wu
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, PR China.
| |
Collapse
|
22
|
Zhang M, Yang F, Han D, Zhang SY, Dong Y, Li X, Ling L, Deng Z, Cao X, Tian J, Ye Q, Wang Y. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint 2023; 9:774. [PMID: 37555081 PMCID: PMC10406171 DOI: 10.18063/ijb.774] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 08/10/2023] Open
Abstract
Millions of individuals across the world suffer from corneal stromal diseases that impair vision. Fortunately, three-dimensional (3D) bioprinting technology which has revolutionized the field of regenerative tissue engineering makes it feasible to create personalized corneas. In this study, an artificial cornea with a high degree of precision, smoothness, and programmable curvature was prepared by using digital light processing (DLP) 3D bioprinting in one piece with no support structure, and the construct was then confirmed by optical coherence tomography (OCT). On the basis of this approach, we developed a novel corneal decellularized extracellular matrix/gelatin methacryloyl (CECM-GelMA) bioink that can produce complex microenvironments with highly tunable mechanical properties while retaining high optical transmittance. Furthermore, the composite hydrogel was loaded with human corneal fibroblasts (hCFs), and in vitro experiments showed that the hydrogel maintained high cell viability and expressed core proteins. In vivo tests revealed that the hydrogel might promote epithelial regeneration, keep the matrix aligned, and restore clarity. This demonstrates how crucial a role CECM plays in establishing a favorable environment that encourages the transformation of cell function. Therefore, artificial corneas that can be rapidly customized have a huge potential in the development of in vitro corneal matrix analogs.
Collapse
Affiliation(s)
- Mingshan Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Institute of Modern Optics, Eye Institute, Nankai
University, Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Fang Yang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Department of Ophthalmology, Renmin Hospital, Hubei
University of Medicine, Shiyan, China
| | - Daobo Han
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Shi-yao Zhang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Yipeng Dong
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xinyu Li
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Liyun Ling
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Zhichao Deng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xuewei Cao
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Tianjin Eye Hospital and Nankai University Eye Institute,
Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai
University Affiliated Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
24
|
Cheng J, Xue J, Yang Y, Yu D, Liu Z, Li Z. Hierarchical hydrogel scaffolds with a clustered and oriented structure. J Mater Chem B 2023; 11:4703-4714. [PMID: 37170855 DOI: 10.1039/d3tb00497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hydrogel scaffolds play a critical role in tissue engineering due to their hydrophilic network structure and good biocompatibility. Constructing anisotropic scaffolds geometrically similar to injured tissues is conducive to promoting the generation of tissue and organ equivalents, or to guiding and enhancing the regeneration of injured tissues. In this study, we developed polyvinyl alcohol (PVA)/alginate hierarchical hydrogel scaffolds with a clustered and oriented structure using a method that combines directional freezing and drying under stretching. Our hydrogel scaffolds with an adjustable modulus (50 kPa-20 MPa) can match different types of injured tissues. The clustered and oriented structure successfully guided the alignment and orientation of fibroblasts and chondrocytes. This work provides a new idea for constructing hydrogels with hierarchical and anisotropic microstructures, which have promising applications in tissue regeneration.
Collapse
Affiliation(s)
- Jian Cheng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Dengjie Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
25
|
Wu Y, Su H, Li M, Xing H. Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives. J Biomed Mater Res A 2023; 111:527-542. [PMID: 36436142 DOI: 10.1002/jbm.a.37473] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
In the past decade, three-dimensional (3D) printing technology based on digital light processing (DLP) has developed rapidly and shown application prospects in several fields such as pneumatic robotics, flexible electronics, and tissue engineering. In particular, DLP-based multi-material printing has been capable of constructing heterogeneous 3D structures with characteristic gradients. DLP 3D printing technology has a wide range of applications in the field of bioprinting due to its high precision and mild printing conditions, including functionalized artificial tissues, medical models, and bioreactors. This paper focuses on the development of DLP-based multi-material 3D printing technology and its applications in the field of bioprinting, followed by giving an outlook on future efforts on overcoming the challenges and obstacles of this promising technique.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China.,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Hao Su
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Ming Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Huayang Xing
- Hangzhou AimingMed Technologies, Hangzhou, China
| |
Collapse
|
26
|
Xu Y, Liu J, Song W, Wang Q, Sun X, Zhao Q, Huang Y, Li H, Peng Y, Yuan J, Ji B, Ren L. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205878. [PMID: 36775872 PMCID: PMC10104657 DOI: 10.1002/advs.202205878] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.
Collapse
Affiliation(s)
- Yingni Xu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jia Liu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wenjing Song
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qianchun Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Xiaomin Sun
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qi Zhao
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yongrui Huang
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haochen Li
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Guangzhou Proud Seeing Biotechnology Co., LtdGuangzhou510320P. R. China
| | - Jin Yuan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510623P. R. China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering MechanicsZhejiang UniversityHangzhou310027P. R. China
| | - Li Ren
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510005P. R. China
| |
Collapse
|
27
|
Englezos K, Wang L, Tan ECK, Kang L. 3D printing for personalised medicines: implications for policy and practice. Int J Pharm 2023; 635:122785. [PMID: 36849040 DOI: 10.1016/j.ijpharm.2023.122785] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
The current healthcare dynamic has shifted from one-size-fits-all to patient-centred care, with our increased understanding of pharmacokinetics and pharmacogenomics demanding a switch to more individualised therapies. As the pharmaceutical industry remains yet to succumb to the push of a technological paradigm shift, pharmacists lack the means to provide completely personalised medicine (PM) to their patients in a safe, affordable, and widely accessible manner. As additive manufacturing technology has already established its strength in producing pharmaceutical formulations, it is necessary to next consider methods by which this technology can create PM accessible from pharmacies. In this article, we reviewed the limitations of current pharmaceutical manufacturing methods for PMs, three-dimensional (3D) printing techniques that are most beneficial for PMs, implications of bringing this technology into pharmacy practice, and implications for policy surrounding 3D printing techniques in the manufacturing of PMs.
Collapse
Affiliation(s)
- Klaudia Englezos
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lingxin Wang
- Pharmacy Department, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Edwin C K Tan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Ye J, Liu N, Li Z, Liu L, Zheng M, Wen X, Wang N, Xu Y, Sun B, Zhou Q. Injectable, Hierarchically Degraded Bioactive Scaffold for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11458-11473. [PMID: 36827205 DOI: 10.1021/acsami.2c18824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioactive materials play vital roles in the repair of critical bone defects. However, bone tissue engineering and regenerative medicine are still challenged by the need to repair bone defects evenly and completely. In this study, we functionally simulated the natural creeping substitution process of autologous bone repair by constructing an injectable, hierarchically degradable bioactive scaffold with a composite hydrogel, decalcified bone matrix (DBM) particles, and bone morphogenetic protein 2. This composite scaffold exhibited superior mechanical properties. The scaffold promoted cell proliferation and osteogenic differentiation through multiple signaling pathways. The hierarchical degradation rates of the crosslinked hydrogel and DBM particles accelerated tissue ingrowth and bone formation with a naturally woven bone-like structure in vivo. In the rat calvarial critical defect repair model, the composite scaffold provided even and complete repair of the entire defect area while also integrating the new and host bone effectively. Our results indicate that this injectable, hierarchically degradable bioactive scaffold promotes bone regeneration and provides a promising strategy for evenly and completely repairing the bone defects.
Collapse
Affiliation(s)
- Jixing Ye
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ningyuan Liu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zongxin Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Liehua Liu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ming Zheng
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xueping Wen
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Nan Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yanqin Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Biemin Sun
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Tissue Repair and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
29
|
Masri S, Maarof M, Aziz IA, Idrus R, Fauzi MB. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: An in vitro evaluation using human dermal fibroblasts. Int J Bioprint 2023; 9:677. [PMID: 37274005 PMCID: PMC10236347 DOI: 10.18063/ijb.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 02/19/2023] Open
Abstract
3D bioprinting technology is a well-established and promising advanced fabrication technique that utilizes potential biomaterials as bioinks to replace lost skin and promote new tissue regeneration. Cutaneous regenerative biomaterials are highly commended since they benefit patients with larger wound sizes and irregular wound shapes compared to the painstaking split-skin graft. This study aimed to fabricate biocompatible, biodegradable, and printable bioinks as a cutaneous substitute that leads to newly formed tissue post-transplantation. Briefly, gelatin (GE) and polyvinyl alcohol (PVA) bioinks were prepared in various concentrations (w/v); GE (6% GE: 0% PVA), GPVA3 (6% GE: 3% PVA), and GPVA5 (6% GE: 5% PVA), followed by 0.1% (w/v) genipin (GNP) crosslinking to achieve optimum printability. According to the results, GPVA5_GNP significantly presented at least 590.93 ± 164.7% of swelling ratio capacity and optimal water vapor transmission rate (WVTR), which is <1500 g/m2/h to maintain the moisture of the wound microenvironment. Besides, GPVA5_GNP is also more durable than other hydrogels with the slowest biodegradation rate of 0.018 ± 0.08 mg/h. The increasing amount of PVA improved the rheological properties of the hydrogels, leading the GPVA5_GNP to have the highest viscosity, around 3.0 ± 0.06 Pa.s. It allows a better performance of bioinks printability via extrusion technique. Moreover, the cross-section of the microstructure hydrogels showed the average pore sizes >100 μm with excellent interconnected porosity. X-ray diffraction (XRD) analysis showed that the hydrogels maintain their amorphous properties and were well-distributed through energy dispersive X-ray after crosslinking. Furthermore, there had no substantial functional group changes, as observed by Fourier transform infrared spectroscopy, after the addition of crosslinker. In addition, GPVA hydrogels were biocompatible to the cells, effectively demonstrating >90% of cell viability. In conclusion, GPVA hydrogels crosslinked with GNP, as prospective bioinks, exhibited the superior properties necessary for wound healing treatment.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izhar Abd Aziz
- 3D Gens Sdn Bhd, 18, Jalan Kerawang U8/108, Bukit Jelutong, Shah Alam 40150, Malaysia
| | - Ruszymah Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Jia S, Bu Y, Lau DSA, Lin Z, Sun T, Lu WW, Lu S, Ruan C, Chan CHJ. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Front Bioeng Biotechnol 2023; 10:1065460. [PMID: 36686254 PMCID: PMC9852906 DOI: 10.3389/fbioe.2022.1065460] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Corneal transplantation constitutes one of the major treatments in severe cases of corneal diseases. The lack of cornea donors as well as other limitations of corneal transplantation necessitate the development of artificial corneal substitutes. Biosynthetic cornea model using 3D printing technique is promising to generate artificial corneal structure that can resemble the structure of the native human cornea and is applicable for regenerative medicine. Research on bioprinting artificial cornea has raised interest into the wide range of materials and cells that can be utilized as bioinks for optimal clarity, biocompatibility, and tectonic strength. With continued advances in biomaterials science and printing technology, it is believed that bioprinted cornea will eventually achieve a level of clinical functionality and practicality as to replace donated corneal tissues, with their associated limitations such as limited or unsteady supply, and possible infectious disease transmission. Here, we review the literature on bioprinting strategies, 3D corneal modelling, material options, and cellularization strategies in relation to keratoprosthesis design. The progress, limitations and expectations of recent cases of 3D bioprinting of artifial cornea are discussed. An outlook on the rise of 3D bioprinting in corneal reconstruction and regeneration is provided.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yashan Bu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dzi-Shing Aaron Lau
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhizhen Lin
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tianhao Sun
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Gangqing Biomedical Technology Co. Ltd, Shenzhen, China
| | - Weijia William Lu
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Lu
- Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheuk-Hung Jonathan Chan
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Balters L, Reichl S. 3D bioprinting of corneal models: A review of the current state and future outlook. J Tissue Eng 2023; 14:20417314231197793. [PMID: 37719307 PMCID: PMC10504850 DOI: 10.1177/20417314231197793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
The cornea is the outermost layer of the eye and serves to protect the eye and enable vision by refracting light. The need for cornea organ donors remains high, and the demand for an artificial alternative continues to grow. 3D bioprinting is a promising new method to create artificial organs and tissues. 3D bioprinting offers the precise spatial arrangement of biomaterials and cells to create 3D constructs. As the cornea is an avascular tissue which makes it more attractive for 3D bioprinting, it could be one of the first tissues to be made fully functional via 3D bioprinting. This review discusses the most common 3D bioprinting technologies and biomaterials used for 3D bioprinting corneal models. Additionally, the current state of 3D bioprinted corneal models, especially specific characteristics such as light transmission, biomechanics, and marker expression, and in vivo studies are discussed. Finally, the current challenges and future prospects are presented.
Collapse
Affiliation(s)
- Leon Balters
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
32
|
Zhang Q, Wang X, Kuang G, Zhao Y. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact Mater 2022; 24:185-196. [PMID: 36606251 PMCID: PMC9804016 DOI: 10.1016/j.bioactmat.2022.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multimodal treatment modalities hold great potential for cancer therapy, thus current efforts are focusing on the development of more effective and practical synergistic therapeutic platforms. Herein, we present a novel trans, trans,trans-[Pt(N3)2(OH)2(py)2] (Pt(IV)) prodrug-initiated hydrogel microparticles (MICG-Pt) with indocyanine green (ICG) encapsulation by microfluidics for efficiently synergistic chemo-, photothermal (PTT) and photodynamic therapy (PDT). The employed Pt(IV) could not only serves as an initiator to generate azidyl radical (N3 •) for photo-polymerization of methacrylate gelatin (GelMA) matrix, but also be reduced to high cytotoxic platinum(II) (Pt(II)) species for tumor chemotherapy. The laden ICG with highly photothermal heating ability and intrinsic reactive oxygen species (ROS) productivity endows the MICG-Pt with effective PTT/PDT performances upon near-infrared (NIR) light irradiation. In addition, benefiting from the production of oxygen during the photo-activation process of Pt(IV), the PDT efficacy of ICG-laden MICG-Pt could be further enhanced. Based on these advantages, we have demonstrated that the MICG-Pt could significantly eliminate cancer cells in vitro, and remarkably suppressed the tumor growth in vivo via synergistic chemotherapy, PTT, and PDT. These results indicate that such Pt(IV)-initiated hydrogel microparticles are ideal candidates of multimodal treatment platforms, holding great prospects for cancer therapy.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiaocheng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China,Corresponding author. Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
33
|
Wei X, Zhuang P, Liu K, Hou W, Zhao Y, Wei W, Tu R, Li H, Dai H. Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair. J Mater Chem B 2022; 10:10139-10149. [PMID: 36472313 DOI: 10.1039/d2tb01777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building an angiogenesis microenvironment and inhibiting wound infection are of great significance for chronic wound repair. In this paper, polydopamine-encapsulated mesoporous bioglass (MBG@PDA) capsules were constructed to realize the integration of angiogenesis and infection inhibition through the formation of a composite hydrogel with modified hyaluronic acid (HAMA) to promote wound healing. The experiments showed that the composite hydrogel had good adhesion and toughness and promoted the migration of fibroblasts to accelerate the epithelialization process. In addition, in the composite hydrogel, MBG@PDA could release Mg2+ to promote the proliferation and migration of vascular endothelial cells for angiogenesis. At the same time, MBG@PDA in the composite hydrogel could facilitate the long-term release of drugs to inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for reducing the possibility of wound infection. Finally, the results of in vivo experiments showed that a multifunctional dressing could repair wounds more quickly by promoting angiogenesis and reducing the pathological areas. In summary, the construction of these composite hydrogels can provide a repair method in the wound-repair field.
Collapse
Affiliation(s)
- Xuejie Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Pengzhen Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Haiwen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
34
|
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061177. [PMID: 35745750 PMCID: PMC9229474 DOI: 10.3390/pharmaceutics14061177] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
| | - Jon Zarate
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Martin Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Universidad de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|