1
|
Yang C, Chen C, Chen R, Yang F, Xiao H, Geng B, Xia Y. Application and optimization of bioengineering strategies in facilitating tendon-bone healing. Biomed Eng Online 2025; 24:46. [PMID: 40269911 PMCID: PMC12016306 DOI: 10.1186/s12938-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Tendon-bone insertion trauma is prevalent in both rotator cuff and anterior cruciate ligament injuries, which are frequently encountered conditions in the field of sports medicine. The main treatment for such injuries is reconstructive surgery. The primary determinant impacting this process is the graft's capacity to integrate with the bone tunnel. In recent years, researchers have attempted to use a variety of methods to facilitate tendon-bone healing after reconstructive surgery. Such as the implantation of biological materials, cytokines and the local application of permanently differentiated cells from various sources. However, there are limitations to the efficacy of one therapy alone in facilitating tendon-bone healing. Therefore, researchers are trying to combine strategies to overcome this conundrum. At present, most studies are based on biomaterial combined with other therapeutic strategies for tissue repair and regeneration. Biomaterials mainly include the application of bioengineering scaffolds, hydrogels and bioabsorbable interference screws. By conducting a thorough review of relevant literature, this study provides a comprehensive overview of the present research progress in enhancing tendon-bone healing using biomaterials. Additionally, it explores the potential benefits of combining biomaterials with other approaches to promote tendon-bone healing. The ultimate goal is to offer insights for future basic research endeavors and establish a solid groundwork for advancing clinical applications in the near future.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Jo S, Hwangbo H, Francis N, Lee J, Pei M, Kim G. Fish-derived biomaterials for tissue engineering: advances in scaffold fabrication and applications in regenerative medicine and cancer therapy. Theranostics 2025; 15:5666-5692. [PMID: 40365274 PMCID: PMC12068294 DOI: 10.7150/thno.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 05/15/2025] Open
Abstract
Fish-derived biomaterials, such as collagen, polyunsaturated fatty acids, and antimicrobial peptides, have emerged as promising candidates for scaffold development in stem cell therapies and tissue engineering due to their excellent biocompatibility and low immunogenicity. Although good bioactivity is a prerequisite for biomedical substitutes, scaffold design is necessary for the successful development of bioconstructs used in tissue regeneration. However, the limited processability of fish biomaterials poses a substantial challenge to the development of diverse scaffold structures. In this review, unlike previous reviews that primarily focused on the bioactivities of fish-derived components, we placed greater emphasis on scaffold fabrication and its applications in tissue regeneration. Specifically, we examined various cross-linking strategies to enhance the structural integrity of fish biomaterials and address challenges, such as poor processability, low mechanical strength, and rapid degradation. Furthermore, we demonstrated the potential of fish scaffolds in stem cell therapies, particularly their capacity to support stem cell growth and modulate the cellular microenvironment. Finally, this review provides future directions for the application of these scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Seoyul Jo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Nacionales Francis
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - JaeYoon Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Mohan Pei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Ding Z, Cai Y, Sun H, Rong X, Ye S, Fan J, Lai Y, Liang Z, Huang C, Li P, Fu X, Wang L, Tang G, Zhou Z, Luo Z. Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface. Nat Commun 2025; 16:2189. [PMID: 40038281 PMCID: PMC11880566 DOI: 10.1038/s41467-025-57499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Regenerating natural gradients of the tendon‒bone interface (TBI) is a major challenge in the reconstruction of rotator cuff tear (RCT). In this study, magnetic Janus hydrogel microrobots to match the TBI orientation during RCT reconstruction surgery are developed via a biofriendly gas-shearing microfluidic platform. Through separate loading of Mg2+ and Zn2+, the microrobots facilitate the immediate restoration and long-term maintenance of the natural mineral gradient in the TBI after implantation and alignment through magnetic manipulation. In vitro studies confirm the spatiotemporal cell phenotype modulation effects of the microrobots. In a rat RCT model, microrobots synchronously promote the bone and tendon regeneration, and the restoration of gradient tendon‒bone transition structures in the TBI. Overall, by rebuilding the Mg2+/Zn2+ mineral gradient, cell phenotype gradient and structural gradient of the TBI, magnetic Janus microrobots loaded with dual bioactive ions represent a promising strategy for promoting TBI healing in RCT reconstruction surgery.
Collapse
Affiliation(s)
- Zichuan Ding
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Yongrui Cai
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Haocheng Sun
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Rong
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Sipei Ye
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Jiaxuan Fan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yahao Lai
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liang
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Chao Huang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Peilin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxue Fu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China.
| | - Zeyu Luo
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ni Y, Tian B, Lv J, Li D, Zhang M, Li Y, Jiang Y, Dong Q, Lin S, Zhao J, Huang X. 3D-Printed PCL Scaffolds Loaded with bFGF and BMSCs Enhance Tendon-Bone Healing in Rat Rotator Cuff Tears by Immunomodulation and Osteogenesis Promotion. ACS Biomater Sci Eng 2025; 11:1123-1139. [PMID: 39851055 DOI: 10.1021/acsbiomaterials.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy. As a promising technology, 3D printing enables the customization of scaffold shapes and properties. Bone marrow mesenchymal stem cells (BMSCs) have multidifferentiation potential and valuable immunomodulatory effects. The basic fibroblast growth factor (bFGF), known for its role in proliferation, has been reported to promote osteogenesis. These properties make them applicable in tissue engineering. In this study, we developed a 3D-printed polycaprolactone (PCL) scaffold loaded with bFGF and BMSCs (PCLMF) to restore the tendon-bone interface and regulate the local inflammatory microenvironment. The PCLMF scaffolds significantly improved the biomechanical strength, histological score, and local bone mineral density at regenerated entheses at 2 weeks postsurgery and achieved optimal performance at 8 weeks. Furthermore, PCLMF scaffolds facilitated BMSC osteogenic differentiation and suppressed adipogenic differentiation both in vivo and in vitro. In addition, RNA-seq showed that PCLMF scaffolds could regulate macrophage polarization and inflammation through the MAPK pathway. The implanted scaffold demonstrated excellent biocompatibility and biosafety. Therefore, this study proposes a promising and practical strategy for enhancing tendon-bone healing in rotator cuff tears.
Collapse
Affiliation(s)
- Yichao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinmin Lv
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Dongxiao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yuting Li
- School of Public Health, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuanbin Jiang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xingrui Huang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China
| |
Collapse
|
5
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
6
|
Huang S, Tam MY, Ho WHC, Wong HK, Zhou M, Zeng C, Xie D, Elmer Ker DF, Ling SK, Tuan RS, Wang DM. Establishing a rabbit model with massive supraspinatus tendon defect for investigating scaffold-assisted tendon repair. Biol Proced Online 2024; 26:31. [PMID: 39367314 PMCID: PMC11453025 DOI: 10.1186/s12575-024-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Shoulder pain and disability from rotator cuff tears remain challenging clinical problem despite advancements in surgical techniques and materials. To advance our understanding of injury progression and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is crucial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproducible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds. RESULTS In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete transection of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaffolds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histological analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed comparatively less organization. CONCLUSIONS This study presents a comprehensive description of the implemented procedures for the development of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This protocol can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach holds significant importance in advancing the development of tissue engineering strategies for effectively repairing extensive tendon defects.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ming Yik Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Hon Caleb Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Ki Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Samuel Kk Ling
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Wang L, Guan C, Zhang T, Zhou Y, Liu Y, Hu J, Xu D, Lu H. Comparative effect of skeletal stem cells versus bone marrow mesenchymal stem cells on rotator cuff tendon-bone healing. J Orthop Translat 2024; 47:87-96. [PMID: 39007033 PMCID: PMC11245954 DOI: 10.1016/j.jot.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have immense potential in applications for the enhancement of tendon-bone (T-B) healing. Recently, it has been well-reported that skeletal stem cells (SSCs) could induce bone and cartilage regeneration. Therefore, SSCs represent a promising choice for cell-based therapies to improve T-B healing. In this study, we aimed to compare the therapeutic potential of SSCs and BMSCs for tendon-bone healing. METHODS SSCs and BMSCs were isolated by flow cytometry, and their proliferation ability was measured by CCK-8 assay. The osteogenic, chondrogenic, and adipogenic gene expression in cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair, and the mice were then randomly allocated to 4 groups: control group (tendon-bone interface without any treatment), hydrogel group (administration of blank hydrogel into the tendon-bone interface), hydrogel + BMSCs group (administration of hydrogel with BMSCs into the tendon-bone interface), and hydrogel + SSCs group (administration of hydrogel with SSCs into the tendon-bone interface). Histological staining, Micro-computed tomography (Micro-CT) scanning, biomechanical testing, and qRT-PCR were performed to assay T-B healing at 4 and 8 weeks after surgery. RESULTS SSCs showed more cell proportion, exhibited stronger multiplication capacity, and expressed higher osteogenic and chondrogenic markers and lower adipogenic markers than BMSCs. In vivo assay, the SSCs group showed a better-maturated interface which was characterized by richer chondrocytes and more proteoglycan deposition, as well as more newly formed bone at the healing site and increased mechanical properties when compared to other there groups. qRT-PCR analysis revealed that the healing interface in the SSCs group expressed more transcription factors essential for osteogenesis and chondrogenesis than the interfaces in the other groups. CONCLUSIONS Overall, the results demonstrated the superior therapeutic potential of SSCs over BMSCs in tendon-bone healing. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This current study provides valuable insights that SSCs may be a more effective cell therapy for enhancing T-B healing compared to BMSCs.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yongchun Zhou
- Department of Spine Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan Province, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
8
|
Wang H, Guo Y, Jiang Y, Ge Y, Wang H, Shi D, Zhang G, Zhao J, Kang Y, Wang L. Exosome-loaded biomaterials for tendon/ligament repair. BIOMATERIALS TRANSLATIONAL 2024; 5:129-143. [PMID: 39351162 PMCID: PMC11438604 DOI: 10.12336/biomatertransl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.
Collapse
Affiliation(s)
- Haohan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonglin Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Jiang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingyu Ge
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyang Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Kang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Tanvir MAH, Khaleque MA, Kim GH, Yoo WY, Kim YY. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics (Basel) 2024; 9:230. [PMID: 38667241 PMCID: PMC11048714 DOI: 10.3390/biomimetics9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a skeletal disorder marked by compromised bone integrity, predisposing individuals, particularly older adults and postmenopausal women, to fractures. The advent of bioceramics for bone regeneration has opened up auspicious pathways for addressing osteoporosis. Research indicates that bioceramics can help bones grow back by activating bone morphogenetic protein (BMP), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/β-catenin pathways in the body when combined with stem cells, drugs, and other supports. Still, bioceramics have some problems, such as not being flexible enough and prone to breaking, as well as difficulties in growing stem cells and discovering suitable supports for different bone types. While there have been improvements in making bioceramics better for healing bones, it is important to keep looking for new ideas from different areas of medicine to make them even better. By conducting a thorough scrutiny of the pivotal role bioceramics play in facilitating bone regeneration, this review aspires to propel forward the rapidly burgeoning domain of scientific exploration. In the end, this appreciation will contribute to the development of novel bioceramics that enhance bone regrowth and offer patients with bone disorders alternative treatments.
Collapse
Affiliation(s)
| | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.); (W.-Y.Y.)
| |
Collapse
|
10
|
Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. SCIENCE ADVANCES 2024; 10:eadk6610. [PMID: 38457502 PMCID: PMC10923514 DOI: 10.1126/sciadv.adk6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/03/2024] [Indexed: 03/10/2024]
Abstract
Limited motor activity due to the loss of natural structure impedes recovery in patients suffering from tendon-to-bone injury. Conventional biomaterials focus on strengthening the regenerative ability of tendons/bones to restore natural structure. However, owing to ignoring the immune environment and lack of multi-tissue regenerative function, satisfactory outcomes remain elusive. Here, combined manganese silicate (MS) nanoparticles with tendon/bone-related cells, the immunomodulatory multicellular scaffolds were fabricated for integrated regeneration of tendon-to-bone. Notably, by integrating biomimetic cellular distribution and MS nanoparticles, the multicellular scaffolds exhibited diverse bioactivities. Moreover, MS nanoparticles enhanced the specific differentiation of multicellular scaffolds via regulating macrophages, which was mainly attributed to the secretion of PGE2 in macrophages induced by Mn ions. Furthermore, three animal results indicated that the scaffolds achieved immunomodulation, integrated regeneration, and function recovery at tendon-to-bone interfaces. Thus, the multicellular scaffolds based on inorganic biomaterials offer an innovative concept for immunomodulation and integrated regeneration of soft/hard tissue interfaces.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yahui Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Tang K, Xue J, Zhu Y, Wu C. Design and synthesis of bioinspired nanomaterials for biomedical application. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1914. [PMID: 37394619 DOI: 10.1002/wnan.1914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Natural materials and bioprocesses provide abundant inspirations for the design and synthesis of high-performance nanomaterials. In the past several decades, bioinspired nanomaterials have shown great potential in the application of biomedical fields, such as tissue engineering, drug delivery, and cancer therapy, and so on. In this review, three types of bioinspired strategies for biomedical nanomaterials, that is, inspired by the natural structures, biomolecules, and bioprocesses, are mainly introduced. We summarize and discuss the design concepts and synthesis approaches of various bioinspired nanomaterials along with their specific roles in biomedical applications. Additionally, we discuss the challenges for the development of bioinspired biomedical nanomaterials, such as mechanical failure in wet environment, limitation in scale-up fabrication, and lack of deep understanding of biological properties. It is expected that the development and clinical translation of bioinspired biomedical nanomaterials will be further promoted under the cooperation of interdisciplinary subjects in future. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Putra NE, Zhou J, Zadpoor AA. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv Healthc Mater 2024; 13:e2301837. [PMID: 37535435 PMCID: PMC11468967 DOI: 10.1002/adhm.202301837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The need for sustainable development has never been more urgent, as the world continues to struggle with environmental challenges, such as climate change, pollution, and dwindling natural resources. The use of renewable and recycled waste materials as a source of raw materials for biomaterials and tissue engineering is a promising avenue for sustainable development. Although tissue engineering has rapidly developed, the challenges associated with fulfilling the increasing demand for bone substitutes and implants remain unresolved, particularly as the global population ages. This review provides an overview of waste materials, such as eggshells, seashells, fish residues, and agricultural biomass, that can be transformed into biomaterials for bone tissue engineering. While the development of recycled metals is in its early stages, the use of probiotics and renewable polymers to improve the biofunctionalities of bone implants is highlighted. Despite the advances of additive manufacturing (AM), studies on AM waste-derived bone-substitutes are limited. It is foreseeable that AM technologies can provide a more sustainable alternative to manufacturing biomaterials and implants. The preliminary results of eggshell and seashell-derived calcium phosphate and rice husk ash-derived silica can likely pave the way for more advanced applications of AM waste-derived biomaterials for sustainably addressing several unmet clinical applications.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Jie Zhou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
13
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Shiroud Heidari B, Lopez EM, Chen P, Ruan R, Vahabli E, Davachi SM, Granero-Moltó F, De-Juan-Pardo EM, Zheng M, Doyle B. Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide- co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responses. Mater Today Bio 2023; 22:100778. [PMID: 37664796 PMCID: PMC10474235 DOI: 10.1016/j.mtbio.2023.100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
The interface tissue between bone and soft tissues, such as tendon and ligament (TL), is highly prone to injury. Although different biomaterials have been developed for TL regeneration, few address the challenges of the TL-bone interface. Here, we aim to develop novel hybrid nanocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL), and hydroxyapatite (HA) nanoparticles suitable for TL-bone interface repair. Nanocomposites, containing 3-10% of both unmodified and chemically modified hydroxyapatite (mHA) with a silane coupling agent. We then explored biocompatibility through in vitro and in vivo studies using a subcutaneous mouse model. Through different characterisation tests, we found that mHA increases tensile properties, creates rougher surfaces, and reduces crystallinity and hydrophilicity. Morphological observations indicate that mHA nanoparticles are attracted by PDO rather than LCL phase, resulting in a higher degradation rate for mHA group. We found that adding the 5% of nanoparticles gives a balance between the properties. In vitro experiments show that osteoblasts' activities are more affected by increasing the nanoparticle content compared with fibroblasts. Animal studies indicate that both HA and mHA nanoparticles (10%) can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. In summary, this work highlights the potential of PDO/LCL/HA nanocomposites as an excellent biomaterial for TL-bone interface tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Emma Muinos Lopez
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Peilin Chen
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- School of Medicine, Monash University, VIC, Melbourne, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Ebrahim Vahabli
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, USA
| | - Froilán Granero-Moltó
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Elena M. De-Juan-Pardo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Barry Doyle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
16
|
Mandalia K, Mousad A, Welborn B, Bono O, Le Breton S, MacAskill M, Forlizzi J, Ives K, Ross G, Shah S. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg 2023; 32:1784-1800. [PMID: 37178960 DOI: 10.1016/j.jse.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite advancements in the surgical techniques of rotator cuff repair (RCR), there remains a high retear rate. Biological augmentation of repairs with overlaying grafts and scaffolds may enhance healing and strengthen the repair construct. This study aimed to investigate the efficacy and safety of scaffold-based (nonstructural) and overlay graft-based (structural) biological augmentation in RCR (excluding superior capsule reconstruction and bridging techniques) in both preclinical and clinical studies. METHODS This systematic review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, as well as guidelines outlined by The Cochrane Collaboration. A search of the PubMed, Embase, and Cochrane Library databases from 2010 until 2022 was conducted to identify studies reporting the clinical, functional, and/or patient-reported outcomes of ≥1 biological augmentation method in either animal models or humans. The methodologic quality of included primary studies was appraised using the Checklist to Evaluate a Report of a Non-pharmacological Trial (CLEAR-NPT) for randomized controlled trials and using the Methodological Index for Non-randomized Studies (MINORS) for nonrandomized studies. RESULTS A total of 62 studies (Level I-IV evidence) were included, comprising 47 studies reporting outcomes in animal models and 15 clinical studies. Of the 47 animal-model studies, 41 (87.2%) demonstrated biomechanical and histologic enhancement with improved RCR load to failure, stiffness, and strength. Of the 15 clinical studies, 10 (66.7%) illustrated improvement in postoperative clinical, functional, and patient-reported outcomes (eg, retear rate, radiographic thickness and footprint, and patient functional scores). No study reported a significant detriment to repair with augmentation, and all studies endorsed low complication rates. A meta-analysis of pooled retear rates demonstrated significantly lower odds of retear after treatment with biological augmentation of RCR compared with treatment with non-augmented RCR (odds ratio, 0.28; P < .00001), with low heterogeneity (I2 = 0.11). CONCLUSIONS Graft and scaffold augmentations have shown favorable results in both preclinical and clinical studies. Of the investigated clinical grafts and scaffolds, acellular human dermal allograft and bovine collagen demonstrate the most promising preliminary evidence in the graft and scaffold categories, respectively. With a low risk of bias, meta-analysis revealed that biological augmentation significantly lowered the odds of retear. Although further investigation is warranted, these findings suggest graft and scaffold biological augmentation of RCR to be safe.
Collapse
Affiliation(s)
- Krishna Mandalia
- Tufts University School of Medicine, Boston, MA, USA; New England Shoulder and Elbow Center, Boston, MA, USA.
| | - Albert Mousad
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Glen Ross
- New England Baptist Hospital, Boston, MA, USA
| | - Sarav Shah
- New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Chiu YC, Lin YH, Chen YW, Kuo TY, Shie MY. Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells. J Mater Chem B 2023; 11:4666-4676. [PMID: 37128755 DOI: 10.1039/d3tb00208j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
3D-printed scaffolds are suitable for patient-specific implant preparation for bone regeneration in large-scale critical bone defects. In addition, these scaffolds should have mechanical and biological properties similar to those of natural bone tissue. In this study, 3D-printed barium-doped calcium silicate (BaCS)/poly-ε-caprolactone (PCL) composite scaffolds were fabricated as an alternative strategy for bone tissue engineering to achieve appropriate physicochemical characteristics and stimulate osteogenesis. Scaffolds containing 10% Ba (Ba10) showed optimal mechanical properties, preventing premature scaffold degradation during immersion while enabling ion release in a sustained manner to achieve the desired therapeutic goals. In addition, Wharton's jelly mesenchymal stem cells (WJMSCs) were used to assess biocompatibility and osteogenic differentiation behaviour. WJMSCs were cultured on the scaffold and permeabilised via ICP to analyse the presence of Si and Ba ions in the medium and cell lysates, suggesting that the ions released by the scaffold could effectively enter the cells. The protein expression of CaSR, PI3K, Akt, and JNK confirmed that CaSR could activate cells cultured in Ba10, thereby affecting the subsequent PI3k/Akt and JNK pathways and further promoting osteogenic differentiation. The in vivo performance of the proposed scaffolds was assessed using micro-CT and histological slices, which revealed that the BaCS scaffolds could further enhance bone regeneration, compared with bare scaffolds. These results suggest the potential use of 3D-printed BaCS/PCL scaffolds as next-generation substitutes for bone regeneration.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan.
| | - Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ting-You Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan.
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
18
|
Du L, Qin C, Zhang H, Han F, Xue J, Wang Y, Wu J, Xiao Y, Huan Z, Wu C. Multicellular Bioprinting of Biomimetic Inks for Tendon-to-Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301309. [PMID: 37119499 PMCID: PMC10375072 DOI: 10.1002/advs.202301309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Tendon-to-bone interface has a hierarchical structure and gradient component that are conducive to distributing the stresses to achieve movement. Conventional biomaterials lack the capacity to induce synchronous repair of multiple tissues, resulting in the failure of the interface repair. Biomimetic strategies have attracted enormous attention in the field of complex structure regeneration because they can meet the different physiological requirements of multiple tissues. Herein, a biomimetic ink mimicking tendon/bone tissues is developed by combining tendon/bone-related cells and Mo-containing silicate (MS) bioceramics. Subsequently, biomimetic multicellular scaffolds are fabricated to achieve the simulation of the hierarchical structure and cellular composition of tendon-to-bone interfaces by the spatial distribution of the biomimetic inks via 3D bioprinting, which is of great significance for inducing the regeneration of complex structures in the interface region. In addition, attributed to the desirable ionic microenvironment created by MS bioceramics, the biomimetic scaffolds possess the dual function of inducing tendon/bone-related cells tenogenic and osteogenic differentiation in vitro, and promote the integrated regeneration of tendon-to-bone interfaces in vivo. The study offers a feasible strategy to construct biomimetic multicellular scaffolds with bifunction for inducing multi-lineage tissue regeneration, especially for regenerating soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yufeng Wang
- Nanjing First Hospital, Nanjing Medical University, 68th Changle Road, Nanjing, Jiangsu, 210006, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Queensland, 4222, Australia
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Tian B, Zhang M, Kang X. Strategies to promote tendon-bone healing after anterior cruciate ligament reconstruction: Present and future. Front Bioeng Biotechnol 2023; 11:1104214. [PMID: 36994361 PMCID: PMC10040767 DOI: 10.3389/fbioe.2023.1104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
At present, anterior cruciate ligament (ACL) reconstruction still has a high failure rate. Tendon graft and bone tunnel surface angiogenesis and bony ingrowth are the main physiological processes of tendon-bone healing, and also the main reasons for the postoperative efficacy of ACL reconstruction. Poor tendon-bone healing has been also identified as one of the main causes of unsatisfactory treatment outcomes. The physiological process of tendon-bone healing is complicated because the tendon-bone junction requires the organic fusion of the tendon graft with the bone tissue. The failure of the operation is often caused by tendon dislocation or scar healing. Therefore, it is important to study the possible risk factors for tendon-bone healing and strategies to promote it. This review comprehensively analyzed the risk factors contributing to tendon-bone healing failure after ACL reconstruction. Additionally, we discuss the current strategies used to promote tendon-bone healing following ACL reconstruction.
Collapse
|
20
|
Yang C, Teng Y, Geng B, Xiao H, Chen C, Chen R, Yang F, Xia Y. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol 2023; 11:1118468. [PMID: 36777256 PMCID: PMC9911882 DOI: 10.3389/fbioe.2023.1118468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Yuanjun Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,*Correspondence: Yayi Xia,
| |
Collapse
|
21
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
22
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|