1
|
Ling Y, Liang X, Yan K, Zeng G, Zhu X, Jiang J, Lu S, Wang X, Zhou Y, Li Z, Mai W, Wang D, Chen J. Bimetallic Ca/Zn Nanoagonist Remould the Immunosuppressive Hepatocellular Carcinoma Microenvironment Following Incomplete Microwave Ablation via Pyroptosis and the STING Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500670. [PMID: 40305756 DOI: 10.1002/advs.202500670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/18/2025] [Indexed: 05/02/2025]
Abstract
During the treatment of solid tumors, local therapeutic approaches carry the risk of incomplete radical cure, which may lead to rapid tumor growth. Incomplete microwave ablation (iMWA) can induce tumors to exhibit highly invasive and uncontrollable growth, which is related to the immunosuppressive microenvironment. A multifunctional bimetallic Ca/Zn nanoagonist (PZH/Zn@CaNA) with a biomimetic liposome-modified surface to tumor tissues after iMWA is developed. In response to the acidic tumor microenvironment, the released traditional Chinese medicine preparation Pien Tze Huang (PZH) reduced protein expressions of the JAK2-STAT3 signaling pathway, thereby slowing down the proliferation and growth of hepatocellular carcinoma (HCC). Furthermore, the bimetallic ions Ca2⁺ and Zn2⁺ can cascade to enhance the killing effect of oxidative stress, generating substantial amounts of reactive oxygen species. This process induces pyroptosis and releases significant quantities of damage associated molecular patterns, thereby triggering immune activation mechanisms related to the STING pathway that reshape the immunosuppressive HCC microenvironment resulting from iMWA. This strategy markedly differs from previous chemoimmunotherapies, which not only effectively addressed the problem of conventional drugs showing heterogeneous distribution in tumor regions, but also verified the critical role played by PZH/Zn@CaNA in inhibiting iMWA-induced rapid tumor growth, regulating oxidative stress and remodeling the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yuan Ling
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiayi Liang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Kangning Yan
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Guichun Zeng
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiaoqi Zhu
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Jinghang Jiang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Shaolong Lu
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Yuying Zhou
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Zhaoshen Li
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Wei Mai
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Department of Medical Ultrasound, Department of Traditional Chinese Medicine, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
2
|
Khan M, Ullah R, Shah SM, Farooq U, Li J. Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2025. [PMID: 40293195 DOI: 10.1021/acsabm.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Breast cancer (BC) is one of the most common cancers among women and is associated with high mortality. Traditional modalities, including surgery, radiotherapy, and chemotherapy, have achieved certain advancements but continue to combat challenges including harm to healthy tissues, resistance to treatment, and adverse drug reactions. The rapid advancements in nanotechnology recently facilitated the exploration of innovative strategies for breast cancer therapy. Manganese-based nanotherapeutics have attracted great attention because of their unique characteristics such as tunable structures/morphologies, versatility, magnetic/optical properties, strong catalytic activities, excellent biodegradability, and biocompatibility. In this review, we highlighted different types of Mn-based nanotherapeutics to modulate TME, including metal-immunotherapy, alleviating tumor hypoxia, and increasing reactive oxygen species production, and we emphasized its role in magnetic resonance imaging (MRI)-guided therapy, photoacoustic imaging, and theranostic-based therapy along with a therapeutic carrier, all of which were discussed in the context of breast cancer. Hopefully, the present review will provide insights into the current landscape and future directions of multifunctional applications of Mn-based nanotherapeutics in the field of breast cancer treatment.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Syed Mubassir Shah
- Department of Biotechnology, Abdul Wali Khan University, KPK, Mardan 23200, Pakistan
| | - Umar Farooq
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| |
Collapse
|
3
|
Wang Z, Feng C, Lu S, Wang Y, Suo R, Jia K, Sun T, Mei J, Huang T, Bai X, Chen Q, Yao X, Wu B, Guo J, Lu J. Nanoscale CaO 2-Loaded Surface-Engineered Iodine-125 Seed with Sustained Self-Oxygenation for Sensitized Tumor Brachytherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411193. [PMID: 40026030 DOI: 10.1002/smll.202411193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Iodine-125 (125I) brachytherapy (BT) is renowned for its precision and effectiveness in delivering localized radiation doses to solid tumors. However, the therapeutic efficacy of traditional125I seed is often limited due to the inherent and acquired radioresistance. Based on the importance of tumor hypoxia in radioresistance, a novel "in situ oxygen-supplement" surface-modified radioactive 125I seed (125I@TNT-CaO2) is designed and constructed to overcome hypoxia-induced radioresistance in tumor BT. Titanium dioxide nanotubes (TNTs) are modified on the titanium shell of traditional 125I seed and loaded with nanoscale calcium peroxide (CaO2), further leading to a sustained release of O2. This in situ oxygen delivery system sensitizes hypoxic tumor regions to 125I BT, significantly improving therapeutic efficacy by inducing more ROS generation and DNA damage. Both in vitro and in vivo experiments demonstrate enhanced tumor suppression and apoptosis, with elevated O2 levels further inhibiting hypoxia-inducible factor 1-alpha (HIF-1α) and its associated signaling pathways. This innovative 125I@TNT-CaO2 seed presents a promising paradigm to enhance the effectiveness of BT by reversing hypoxia-mediated resistance.
Collapse
Affiliation(s)
- Zhongkai Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Cheng Feng
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Shuting Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210009, P. R. China
| | - Yong Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Ruiyang Suo
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Kaizhi Jia
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Tong Sun
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Junhao Mei
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Tian Huang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Xiaxing Bai
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Qi Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210009, P. R. China
| | - Xijuan Yao
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Jinhe Guo
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Jian Lu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
4
|
Liu S, Yan W, Zhang W, Zhang J, Li Z, Guo Y, Chen H, Xu J. Nanoenhanced-Cuproptosis Results From the Synergy of Calcium Overload and GSH Depletion with the Increasing of Intracellular Ca/Mn/Cu Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412067. [PMID: 39928524 PMCID: PMC11967785 DOI: 10.1002/advs.202412067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Indexed: 02/12/2025]
Abstract
Cuproptosis is a newly discovered copper-dependent form of cell death. Intracellular glutathione (GSH) acts as a copper chelator to inhibit cuproptosis, so the reduction of GSH concentration is conducive to enhancing the cuproptosis of cells. In order to reduce GSH content and interfere with mitochondrial metabolism, a strategy based on calcium overload and GSH depletion to enhance cuproptosis is proposed in this study. Containing manganese (Mn) and copper (Cu) elements, CaCO3 nanoparticles (NPs) are modified with MCF-7 cell aptamer (CaCO3/Mn/Cu@lip-Apt). When entering the cell, CaCO3/Mn/Cu@lip-Apt decomposed and released Mn* (Mn2+/Mn3+/Mn4+), Cu2+ and Ca2+. The high valence Mn ion in Mn* can effectively consume GSH to produce Mn2+ which catalyzed H2O2 to produce reactive oxygen species (ROS), while reducing the GSH concentration. The production of ROS promoted the influx of exogenous Ca2+. The large accumulation of Ca2+ led to intracellular calcium overload, resulting in mitochondrial dysfunction and metabolism disorders. The depletion of GSH promoted the accumulation of Cu2+, which in turn triggered cuproptosis. This strategy showed excellent antitumor effects and provided a new way to study disease treatment.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wennan Yan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Wenyue Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ji Zhang
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Ziyi Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Yingshu Guo
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry andChemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
5
|
Ma X, He C, Wang Y, Cao X, Jin Z, Ge Y, Cao Z, An M, Hao L. Mechanisms and Applications of Manganese-Based Nanomaterials in Tumor Diagnosis and Therapy. Biomater Res 2025; 29:0158. [PMID: 40026879 PMCID: PMC11868662 DOI: 10.34133/bmr.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
Tumors are the second most common cause of mortality globally, ranking just below heart disease. With continuous advances in diagnostic technology and treatment approaches, the survival rates of some cancers have increased. Nevertheless, due to the complexity of the mechanisms underlying tumors, cancer remains a serious public health issue that threatens the health of the population globally. Manganese (Mn) is an essential trace element for the human body. Its regulatory role in tumor biology has received much attention in recent years. Developments in nanotechnology have led to the emergence of Mn-based nanoparticles that have great potential for use in the diagnosis and treatment of cancers. Mn-based nanomaterials can be integrated with conventional techniques, including chemotherapy, radiation therapy, and gene therapy, to augment their therapeutic effectiveness. Further, Mn-based nanomaterials can play a synergistic role in emerging treatment strategies for tumors, such as immunotherapy, photothermal and photodynamic therapy, electromagnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and intervention therapy. Moreover, Mn-based nanomaterials can enhance both the precision of tumor diagnostics and the capability for combined diagnosis and treatment. This article examines the roles and associated mechanisms of Mn in the field of physiology and tumor biology, with a focus on the application prospects of Mn-based nanomaterials in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Chemistry, School of Forensic Medicine,
China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang 110122, China
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
- First Department of Clinical Medicine,
China Medical University, Shenyang 110122, China
| | - Chuan He
- Department of Laboratory Medicine,
the First Hospital of China Medical University, Shenyang 110001, China
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine,
China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang 110122, China
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
| | - Xingrui Cao
- Department of Chemistry, School of Forensic Medicine,
China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang 110122, China
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
| | - Zikai Jin
- First Department of Clinical Medicine,
China Medical University, Shenyang 110122, China
| | - Yi Ge
- School of Pharmacy,
Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine,
China Medical University, Shenyang 110122, China
| | - Mingxin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education,
China Medical University, Shenyang 110122, China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine,
China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang 110122, China
- China Medical University Center of Forensic Investigation, Shenyang 110122, China
| |
Collapse
|
6
|
Xu Y, Reheman A, Feng W. Recent research progress on metal ions and metal-based nanomaterials in tumor therapy. Front Bioeng Biotechnol 2025; 13:1550089. [PMID: 39991139 PMCID: PMC11842396 DOI: 10.3389/fbioe.2025.1550089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Tumors, as a disease that seriously threatens human health, have always been a major challenge in the field of medicine. Currently, the main methods of tumor treatment include surgery, radiotherapy, chemotherapy, etc., but these traditional treatment methods often have certain limitations. In addition, tumor recurrence and metastasis are also difficult problems faced in clinical treatment. In this context, the importance of metal-based nanomaterials in tumor therapy is increasingly highlighted. Metal-based nanomaterials possess unique physical, chemical, and biological properties, providing new ideas and methods for tumor treatment. Metal-based nanomaterials can achieve targeted therapy for tumors through various mechanisms, reducing damage to normal tissues; they can also serve as drug carriers, improving the stability and bioavailability of drugs; at the same time, some metal-based nanomaterials also have photothermal, photodynamic, and other characteristics, which can be used for phototherapy of tumors. This review examines the latest advances in the application of metal-based nanomaterials in tumor therapy within past 5 years, and presents prospective insights into the future applications.
Collapse
Affiliation(s)
- Yongcheng Xu
- The Second School of Clinical Medicine, Shenyang Medical College, Shenyang, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Wenhua Feng
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang, China
- Shenyang Key Laboratory for Phenomics, Shenyang Medical College, Shenyang, China
| |
Collapse
|
7
|
Zhao L, Gui Y, Cai J, Deng X. Biometallic ions and derivatives: a new direction for cancer immunotherapy. Mol Cancer 2025; 24:17. [PMID: 39815289 PMCID: PMC11734411 DOI: 10.1186/s12943-025-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape. Biometallic ions (e.g. zinc, copper, magnesium, manganese, etc.) can assist in enhancing the efficacy of immunotherapy through the activation of immune cells, enhancement of tumor antigen presentation, and improvement of the tumor microenvironment. In addition, biometallic ions and derivatives can directly inhibit tumor cell progression and offer the possibility of effectively overcoming the limitations of current cancer immunotherapy by promoting immune responses and reducing immunosuppressive signals. This review explores the role and potential application prospects of biometallic ions in cancer immunotherapy, providing new ideas for future clinical application of metal ions as part of cancer immunotherapy and helping to guide the development of more effective and safe therapeutic regimens.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Jing Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China.
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Hu Z, Tan H, Ye Y, Xu W, Gao J, Liu L, Zhang L, Jiang J, Tian H, Peng F, Tu Y. NIR-Actuated Ferroptosis Nanomotor for Enhanced Tumor Penetration and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412227. [PMID: 39370589 DOI: 10.1002/adma.202412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Ferroptosis nano-inducers have drawn considerable attention in the treatment of malignant tumors. However, low intratumoral hydrogen peroxide level and complex biological barriers hinder the ability of nanomedicines to generate sufficient reactive oxygen species (ROS) and achieve tumor penetration. Here a near-infrared (NIR)-driven ROS self-supplying nanomotor is successfully designed for synergistic tumor chemodynamic therapy (CDT) and photothermal therapy (PTT). Janus nanomotor is created by the asymmetrical modification of polydopamine (PDA) with zinc peroxide (ZnO2) and subsequent ferrous ion (Fe2+) chelation via the polyphenol groups from the PDA, here refer as ZnO2@PDA-Fe (Z@P-F). ZnO2 is capable of slowly releasing hydrogen peroxide (H2O2) into an acidic tumor microenvironment (TME) providing sufficient ingredients for the Fenton reaction necessary for ferroptosis. Upon NIR laser irradiation, the loaded Fe2+ is released and a thermal gradient is simultaneously formed owing to the asymmetric PDA coating, thus endowing the nanomotor with self-thermophoresis based enhanced diffusion for subsequent lysosomal escape and tumor penetration. Therefore, the release of ferrous ions (Fe2+), self-supplied H2O2, and self-thermophoresis of nanomotors with NIR actuation further improve the synergistic CDT/PTT efficacy, showing great potential for active tumor therapy.
Collapse
Affiliation(s)
- Ziwei Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
9
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
10
|
Ming Q, Liu J, Lv Z, Wang T, Fan R, Zhang Y, Chen M, Sun Y, Han W, Mei Q. Manganese boosts natural killer cell function via cGAS-STING mediated UTX expression. MedComm (Beijing) 2024; 5:e683. [PMID: 39206412 PMCID: PMC11351689 DOI: 10.1002/mco2.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in both innate immunity and the activation of adaptive immunity. The activating effect of Mn2+ on cyclic GMP-AMP(cGAS)-stimulator of interferon genes (STING signaling has been well known, but its effect on NK cells remains elusive. In this study, we identified the vital role of manganese (Mn2+) in NK cell activation. Mn2+ directly boosts cytotoxicity of NK cells and promotes the cytokine secretion by NK cells, thereby activating CD8+ T cells and enhancing their antitumor activity. Furthermore, Mn2+ can simultaneously activate NK-cell intrinsic cGAS and STING and consequently augment the expression of ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX to promote the responsiveness of NK cells. Our results contribute to a broader comprehension of how cGAS-STING regulates NK cells. As a potent agonist of cGAS-STING, Mn2+ provides a promising option for NK cell-based immunotherapy of cancers.
Collapse
Affiliation(s)
- Qianyi Ming
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Jiejie Liu
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Zijian Lv
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Tiance Wang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Runjia Fan
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yan Zhang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Meixia Chen
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yingli Sun
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| | - Qian Mei
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
11
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Deng Y, Li J, Tao R, Zhang K, Yang R, Qu Z, Zhang Y, Huang J. Molecular Engineering of Electrosprayed Hydrogel Microspheres to Achieve Synergistic Anti-Tumor Chemo-Immunotherapy with ACEA Cargo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308051. [PMID: 38350727 PMCID: PMC11077688 DOI: 10.1002/advs.202308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Indexed: 02/15/2024]
Abstract
Molecular engineering of drug delivering platforms to provide collaborative biological effects with loaded drugs is of great medical significance. Herein, cannabinoid receptor 1 (CB1)- and reactive oxygen species (ROS)-targeting electrosprayed microspheres (MSs) are fabricated by loading with the CB1 agonist arachidonoyl 2'-chloroethylamide (ACEA) and producing ROS in a photoresponsive manner. The synergistic anti-tumor effects of ACEA and ROS released from the MSs are assessed. ACEA inhibits epidermal growth factor receptor signaling and altered tumor microenvironment (TME) by activating CB1 to induce tumor cell death. The MSs are composed of glycidyl methacrylate-conjugated xanthan gum (XGMA) and Fe3+, which form dual molecular networks based on a Fe3+-(COO-)3 network and a C═C addition reaction network. Interestingly, the Fe3+-(COO-)3 network can be disassembled instantly under the conditions of lactate sodium and ultraviolet exposure, and the disassembly is accompanied by massive ROS production, which directly injures tumor cells. Meanwhile, the transition of dual networks to a single network boosts the ACEA release. Together, the activities of the ACEA and MSs promote immunogenic tumor cell death and create a tumor-suppressive TME by increasing M1-like tumor-associated macrophages and CD8+ T cells. In summation, this study demonstrates strong prospects of improving anti-tumor effects of drug delivering platforms through molecular design.
Collapse
Affiliation(s)
- Youming Deng
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jiayang Li
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| | - Ran Tao
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Ke Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Rong Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Zhan Qu
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jinjian Huang
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| |
Collapse
|
13
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Mei Y, Qin X, Yang Z, Song S, Liu X, Wu C, Qian J, Huang X, Zhang Y, He W. Engineered a dual-targeting HA-TPP/A nanoparticle for combination therapy against KRAS-TP53 co-mutation in gastrointestinal cancers. Bioact Mater 2024; 32:277-291. [PMID: 37876556 PMCID: PMC10590736 DOI: 10.1016/j.bioactmat.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
KRAS-TP53 co-mutation is strongly associated with poor prognosis and high malignancy in gastrointestinal cancers. Therefore, a novel approach to oncotherapy may lie in combination therapy targeting both KRAS and TP53. Herein, we present a novel self-assembled nanoparticle (HA-TPP/A) that are functionalized nano-carrier hyaluronic acid (HA)-TPP conjugate (HA-TPP) to degrade mutant p53 proteins (mutp53) and co-deliver AMG510 for treating KRAS-TP53 co-alteration of gastrointestinal cancers by inhibiting the mutant KRAS and mutp53 signaling pathways. The HA-TPP/A nanoparticles led to ubiquitination-dependent proteasomal degradation of mutp53 by targeting damage to mitochondria. Furthermore, these nanoparticles abrogated the gain-of-function (GOF) phenotypes of mutp53 and increased sensitivity to AMG510-induced cell killing, thereby reducing cell proliferation and migration in gastrointestinal cancer with KRAS-TP53 co-mutation. The co-loaded HA-TPP/A nanoparticles demonstrated remarkable therapeutic efficacy in a tumor-bearing mouse model, particularly in KRAS-TP53 double mutant expressing cancer cells, compared with single drug and combined free drug groups. Notably, HA-TPP/A is the first reported nanoparticle with an ability to co-target KRAS-TP53, providing a promising approach for therapy in highly malignant gastrointestinal tumors and potentially expanding clinical indications for AMG510 targeted therapies in gastrointestinal tumors.
Collapse
Affiliation(s)
- Yong Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaohua Qin
- School of Biomedical Science and Engineering, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhenyu Yang
- School of Biomedical Science and Engineering, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Shiyao Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoting Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Chong Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jieying Qian
- School of Biomedical Science and Engineering, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowan Huang
- School of Biomedical Science and Engineering, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yunjiao Zhang
- School of Biomedical Science and Engineering, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
15
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
16
|
Luo G, Li X, Lin J, Ge G, Fang J, Song W, Xiao GG, Zhang B, Peng X, Duo Y, Tang BZ. Multifunctional Calcium-Manganese Nanomodulator Provides Antitumor Treatment and Improved Immunotherapy via Reprogramming of the Tumor Microenvironment. ACS NANO 2023; 17:15449-15465. [PMID: 37530575 PMCID: PMC10448754 DOI: 10.1021/acsnano.3c01215] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Ions play a vital role in regulating various biological processes, including metabolic and immune homeostasis, which involves tumorigenesis and therapy. Thus, the perturbation of ion homeostasis can induce tumor cell death and evoke immune responses, providing specific antitumor effects. However, antitumor strategies that exploit the effects of multiion perturbation are rare. We herein prepared a pH-responsive nanomodulator by coloading curcumin (CU, a Ca2+ enhancer) with CaCO3 and MnO2 into nanoparticles coated with a cancer cell membrane. This nanoplatform was aimed at reprogramming the tumor microenvironment (TME) and providing an antitumor treatment through ion fluctuation. The obtained nanoplatform, called CM NPs, could neutralize protons by decomposing CaCO3 and attenuating cellular acidity, they could generate Ca2+ and release CU, elevating Ca2+ levels and promoting ROS generation in the mitochondria and endoplasmic reticulum, thus, inducing immunogenic cell death. Mn2+ could decompose the endogenous H2O2 into O2 to relieve hypoxia and enhance the sensitivity of cGAS, activating the cGAS-STING signaling pathway. In addition, this strategy allowed the reprogramming of the immune TME, inducing macrophage polarization and dendritic cell maturation via antigen cross-presentation, thereby increasing the immune system's ability to combat the tumor effectively. Moreover, the as-prepared nanoparticles enhanced the antitumor responses of the αPD1 treatment. This study proposes an effective strategy to combat tumors via the reprogramming of the tumor TME and the alteration of essential ions concentrations. Thus, it shows great potential for future clinical applications as a complementary approach along with other multimodal treatment strategies.
Collapse
Affiliation(s)
- Guanghong Luo
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department
of Radiation Oncology, Shenzhen People’s
Hospital (The Second Clinical Medical College, Jinan University; The
First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong China
| | - Xing Li
- School
of
Medicine, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Jihui Lin
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- School
of
Nursing, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gao Ge
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, 410013, China
| | - Jiangli Fang
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Wangze Song
- State Key
Laboratory of Fine Chemicals, Department of Pharmacology, School of
Chemical Engineering, Dalian University
of Technology, Dalian, 116024, China
| | - Gary Guishan Xiao
- Research
Center for Cancer Metabolism, College of Pharmacology, Shenzhen University of Technology, Chinese Academy
of Sciences, Shenzhen, 518118, China
- State Key
Laboratory of Fine Chemicals, Department of Pharmacology, School of
Chemical Engineering, Dalian University
of Technology, Dalian, 116024, China
| | - Bo Zhang
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department
of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
| | - Xiaojun Peng
- State
Key
Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s
Hospital (The Second Clinical Medical College, Jinan University; The
First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong China
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, 171 77, Sweden
- Key Lab for
New Drug Research of TCM, Research Institute
of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong China
| | - Ben Zhong Tang
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen. Shenzhen 518172, Guangdong China
| |
Collapse
|
17
|
Wang J, Liu W, Zhang L, Zhang J. Targeting mutant p53 stabilization for cancer therapy. Front Pharmacol 2023; 14:1215995. [PMID: 37502209 PMCID: PMC10369794 DOI: 10.3389/fphar.2023.1215995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-function and dominant-negative effects (DNE), but also results in the abnormal stability by the regulation of the ubiquitin-proteasome system and molecular chaperones that promote tumorigenesis through gain-of-function effects. The accumulation of mutant p53 is mainly regulated by molecular chaperones, including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21, BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or complexes with other protein molecules and result in the accumulation of mutant p53 in tumor cells. Depleting mutant p53 has become one of the strategies to target mutant p53. This review will focus on the mechanism of mutant p53 stabilization and discuss how the strategies to manipulate these interconnected processes for cancer therapy.
Collapse
Affiliation(s)
- Jiajian Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenjun Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanqing Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
| |
Collapse
|
18
|
Yang Y, Chen S, Wang Q, Niu MM, Qu Y, Zhou Y. Identification of novel and potent dual-targeting HDAC1/SPOP inhibitors using structure-based virtual screening, molecular dynamics simulation and evaluation of in vitro and in vivo antitumor activity. Front Pharmacol 2023; 14:1208740. [PMID: 37492092 PMCID: PMC10363607 DOI: 10.3389/fphar.2023.1208740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Yingxue Yang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
19
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Wang H, Guan Y, Li C, Chen J, Yue S, Qian J, Dai B, Jiang C, Wen C, Wen L, Liang C, Zhang Y, Zhang L. PEGylated Manganese-Zinc Ferrite Nanocrystals Combined with Intratumoral Implantation of Micromagnets Enabled Synergetic Prostate Cancer Therapy via Ferroptotic and Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207077. [PMID: 36861297 DOI: 10.1002/smll.202207077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Therapeutic efficacy for prostate cancer is highly restricted by insufficient drug accumulation and the resistance to apoptosis and immunogenic cell death (ICD). Although enhanced permeability and retention (EPR) effect of magnetic nanomaterials could benefit from external magnetic field, it falls off rapidly with increased distance from magnet surface. Considering the deep location of prostate in pelvis, the improvement of EPR effect by external magnetic field is limited. In addition, apoptosis resistance and cGAS-STING pathway inhibition-related immunotherapy resistance are major obstacles to conventional therapy. Herein, the magnetic PEGylated manganese-zinc ferrite nanocrystals (PMZFNs) are designed. Instead of providing external magnet, micromagnets into tumor tissues are intratumorally implanted to actively attract and retain intravenously-injected PMZFNs. As a result, PMZFNs accumulate in prostate cancer with high efficacy, depending on the established internal magnetic field, which subsequently elicit potent ferroptosis and the activation of cGAS-STING pathway. Ferroptosis not only directly suppresses prostate cancer but also triggers burst release of cancer-associated antigens and consequently initiates ICD against prostate cancer, where activated cGAS-STING pathway further amplifies the efficacy of ICD by generating interferon-β. Collectively, the intratumorally implanted micromagnets confer a durable EPR effect of PMZFNs, which eventually achieve the synergetic tumoricidal efficacy with negligible systemic toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chun Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Shaoyu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Jieying Qian
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Bangshun Dai
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Changqin Jiang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chenghao Wen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Longping Wen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, P. R. China
| |
Collapse
|
21
|
Wang M, Li H, Sun X, Qiu J, Jing C, Jia H, Guo Y, Guo H. J Subgroup Avian Leukosis Virus Strain Promotes Cell Proliferation by Negatively Regulating 14-3-3σ Expressions in Chicken Fibroblast Cells. Viruses 2023; 15:v15020404. [PMID: 36851618 PMCID: PMC9960514 DOI: 10.3390/v15020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
This study focuses on clarifying the regulation of chicken 14-3-3σ protein on the fibrous histiocyte proliferation caused by ALV-J-SD1005 strain infection. DF-1 cells were inoculated with 102 TCID50 of ALV-J-SD1005 strain; the cell proliferation viability was dramatically increased and 14-3-3σ expressions were dramatically decreased within 48 h after inoculation. Chicken 14-3-3σ over-expression could significantly decrease the cell proliferation and the ratio of S-phase cells, but increase the ratio of G2/M-phase cells in ALV-J-infected DF-1 cells; by contrast, chicken 14-3-3σ knockdown expression could cause the opposite effects. Additionally, chicken 14-3-3σ over-expression could also dramatically down-regulate the expressions of CDK2/CDC2, but up-regulate p53 expressions in the DF-1 cells; in contrast, the knockdown expression could significantly increase the expressions of CDK2/CDC2 and decrease p53 expressions. It can be concluded that chicken 14-3-3σ can inhibit cell proliferation and cell cycle by regulating CDK2/CDC2/p53 expressions in ALV-J-infected DF1 cells. ALV-J-SD1005 strain can promote cell proliferation by reducing 14-3-3σ expressions. This study helps to clarify the forming mechanism of acute fibrosarcoma induced by ALV-J infection.
Collapse
|
22
|
Liu C, Liu L. Hypoxia-related tumor environment correlated with immune infiltration and therapeutic sensitivity in diffuse large B-cell lymphoma. Front Genet 2022; 13:1037716. [PMID: 36313435 PMCID: PMC9614142 DOI: 10.3389/fgene.2022.1037716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Due to the high heterogeneity of diffuse large B-cell lymphoma (DLBCL), traditional chemotherapy treatment ultimately failed in one-third of the patients. Big challenges existed in finding how to accurately predict prognosis and provide individualized treatment. Hypoxia, although being a key factor in the development and progression of DLBCL, plays its role in DLBCL prognosis, which has yet to be fully explored. Methods: Data used in the current study were sourced from the Gene Expression Omnibus (GEO) database. DLBCL patients were divided according to different hypoxia-related subtypes based on the expressions of hypoxia-related genes (HRGs) relevant to survival. Differentially expressed genes (DEGs) between subtypes were identified using the limma package. Using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses, the prognostic signature was established to calculate risk scores. The tumor microenvironment (TME) in low- and high-risk groups was evaluated by single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE. The chemotherapeutic sensitivity in two groups was assessed by IC50 values. Results: DLBCL patients were clustered into two hypoxia-related subtype groups according to different gene survival and expressions associated with increasing oxygen delivery and reducing oxygen consumption, and these two subtype groups were compared. Based on the differential expression, a risk model was established using univariate cox and LASSO regression analyses, FNDC1, ANTXR1, RARRES2, S100A9, and MT1M. The performance of the risk signature in predicting the prognosis of DLBCL patients was validated in the internal and external datasets, as evidenced by receiver operating characteristic (ROC) curves. In addition, we observed significant differences in the tumor microenvironment and chemotherapeutic response between low- and high-risk groups. Conclusion: Our study developed novel hypoxia-related subtypes in DLBCL and identified five prognostic signatures for DLBCL patients. These findings may enrich our understanding of the role of hypoxia in DLBCL and help improve the treatment of DLBCL patients.
Collapse
|