1
|
Jiang J, Wang J, Fan P, Zhao Z, Deng H, Li J, Wang Y, Wang Y. Biomaterial-based strategies for bone cement: modulating the bone microenvironment and promoting regeneration. J Nanobiotechnology 2025; 23:343. [PMID: 40361125 PMCID: PMC12070552 DOI: 10.1186/s12951-025-03363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Osteoporotic bone defect and fracture healing remain significant challenges in clinical practice. While traditional therapeutic approaches provide some regulation of bone homeostasis, they often present limitations and adverse effects. In orthopedic procedures, bone cement serves as a crucial material for stabilizing osteoporotic bone and securing implants. However, with the exception of magnesium phosphate cement, most cement variants lack substantial bone regenerative properties. Recent developments in biomaterial science have opened new avenues for enhancing bone cement functionality through innovative modifications. These advanced materials demonstrate promising capabilities in modulating the bone microenvironment through their distinct physicochemical properties. This review provides a systematic analysis of contemporary biomaterial-based modifications of bone cement, focusing on their influence on the bone healing microenvironment. The discussion begins with an examination of bone microenvironment pathology, followed by an evaluation of various biomaterial modifications and their effects on cement properties. The review then explores regulatory strategies targeting specific microenvironmental elements, including inflammatory response, oxidative stress, osteoblast-osteoclast homeostasis, vascular network formation, and osteocyte-mediated processes. The concluding section addresses current technical challenges and emerging research directions, providing insights for the development of next-generation biomaterials with enhanced functionality and therapeutic potential.
Collapse
Affiliation(s)
- Jiawei Jiang
- Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Wang
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, Jiangsu, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhe Zhao
- Department of Orthopaedics, Xuyi People's Hospital, Xuyi, 211700, Jiangsu, China
| | - Hongjian Deng
- Department of Orthopaedics, The Affiliated 2 Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jian Li
- Department of Orthopaedics, Xuyi People's Hospital, Xuyi, 211700, Jiangsu, China.
| | - Yi Wang
- Department of Orthopaedics, Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, 332000, Jiangxi, China.
| | - Yuntao Wang
- Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China.
- Department of Orthopaedics, Xuyi People's Hospital, Xuyi, 211700, Jiangsu, China.
| |
Collapse
|
2
|
Tao M, Cui Y, Sun S, Zhang Y, Ge J, Yin W, Li P, Wang Y. Versatile application of magnesium-related bone implants in the treatment of bone defects. Mater Today Bio 2025; 31:101635. [PMID: 40124334 PMCID: PMC11930110 DOI: 10.1016/j.mtbio.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Magnesium-related bone implants have garnered significant attention in the treatment of bone defects. The applications of magnesium in promoting bone repair mainly include degradable magnesium-based scaffolds owing to its special physical properties and composite materials modified by magnesium ions because of its biological activity. Although numerous studies have confirmed the unique application advantages and efficacy of magnesium in promoting bone repair, some obvious shortcomings persist, including the rapid degradation of magnesium-based scaffolds. In this review, the deficiencies of magnesium and its alloys in the construction of orthopedic implants and their key influencing factors were summarized; furthermore, some advanced improvement schemes were summarized and analyzed. Additionally, the application strategies of magnesium-modified bone implants are summarized and discussed. Lastly, this review incorporates the latest research and discoveries on magnesium in orthopedic science, comprehensively exploring the mechanism of magnesium's role in the complex microenvironment of bone defects from multiple dimensions. This paper provides a comprehensive summary and analysis of cutting-edge concepts in the design and development of magnesium-based bone implants, considering various perspectives such as the physical properties and biological functions of magnesium.
Collapse
Affiliation(s)
- Mijia Tao
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yutao Cui
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Shicai Sun
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, PR China
| | - Yan Zhang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianli Ge
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Wen Yin
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Peng Li
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yanbing Wang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
3
|
Bhattarai G, Shrestha SK, Rijal S, Kook SH, Lee JC. Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation. J Biomed Mater Res A 2025; 113:e37812. [PMID: 39462850 DOI: 10.1002/jbm.a.37812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Local implantation or supplementation of magnesium gluconate (MgG) is being investigated as an effective approach to bone repair. Although studies have highlighted the possible mechanisms in Mg ion-stimulated new bone formation, the role of MgG in healing bone defects and the signaling mechanisms are not yet completely understood. In this study, we explored how supplemental MgG has bone-specific beneficial effects by delivering MgG locally and orally in animal models. We fabricated MgG-incorporated (CMC-M) and -free chitosan (CMC) scaffolds with good microstructures and biocompatible properties. Implantation with CMC-M enhanced bone healing in rat model of mandible defects, compared with CMC, by activating Wnt signals and Wnt-related osteogenic and angiogenic molecules. Oral supplementation with MgG also stimulated bone healing in mouse model of femoral defects along with the increases in Wnt3a and angiogenic and osteogenic factors. Supplemental MgG did not alter nature bone accrual and bone marrow (BM) microenvironment in adult mouse model, but enhanced the functioning of BM stromal cells (BMSCs). Furthermore, MgG directly stimulated the induction of Wnt signaling-, angiogenesis-, and osteogenesis-related molecules in cultures of BMSCs, as well as triggered the migration of endothelial cells. These results suggest that supplemental MgG improves bone repair in a way that is synergistically enhanced by Wnt signal-associated angiogenic and osteogenic molecules. Overall, this study indicates that supplemental MgG might ameliorate oxidative damage in the BM, improve the functionality of BM stem cells, and maintain BM-microenvironmental homeostasis.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Shankar Rijal
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
4
|
Wekwejt M, Wojtala M, Mielewczyk-Gryń A, Kozień D, Ronowska A, Kozłowska J, Gbureck U. Injectable biocomposite cement: A dual-setting formula with magnesium potassium phosphate and κ-carrageenan hydrogel for orthopedic advancements. Int J Biol Macromol 2024; 283:137922. [PMID: 39577538 DOI: 10.1016/j.ijbiomac.2024.137922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Magnesium phosphate-based cements are highly regarded for their bioactive properties, making them excellent candidates as bone substitutes. Despite their promising attributes, challenges such as high reaction temperature, limited injectability, and brittleness limit their application. This study introduces a dual-setting biocomposite cement, which encompasses both cement hydration and hydrogel's cross-linking. The composition features magnesium potassium phosphate (MKP) combined with ionically cross-linked kappa-carrageenan (kC) plasticized with sorbitol (Sor). The investigation delves into the properties of the resultant biocomposite, with a particular focus on evaluating kC incorporation's influence on the main MKP properties. Our findings reveal that those biocomposites offer multiple benefits over traditional ceramic cements. The main advantages include: a longer setting time (up to ~15 min), lower setting temperature (~45 °C), different crystalline phase (bobierrite), better wettability (~22°), and improved injectability of the paste characterized by more stable cohesion. Specifically, the MKP (4:1 Mg/P ratio) with 1.5 % kC and Sor hydrogel obtained with 3.0 g/mL powder-to-liquid ratio demonstrated the most promising properties with no adverse effects on the microstructure diversity, the mechanical strength, the porosity, the biodegradation rate, and the osteoblasts cytocompatibility. Overall, our research indicates that these innovative cements hold significant potential for biomedical applications, especially minimally invasive orthopedic procedures.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Technology Department, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| | - Monika Wojtala
- Scientific Club 'Materials in Medicine', Advanced Materials Centre, Gdańsk University of Technology, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Department of Ceramic, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Dawid Kozień
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Krakow, Poland
| | - Anna Ronowska
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Kozłowska
- Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
He P, Zhao Y, Wang B, Liu G, Zhang L, Li M, Xu B, Cai W, Chu C, Cong Y. A biodegradable magnesium phosphate cement incorporating chitosan and rhBMP-2 designed for bone defect repair. J Orthop Translat 2024; 49:167-180. [PMID: 39483125 PMCID: PMC11525125 DOI: 10.1016/j.jot.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Background The repair of bone defects has always been a significant challenge in clinical medicine. To address this challenge, doctors often utilize autologous bone grafts, allogeneic bone grafts and artificial bone substitutes. However, the former two methods may result in additional trauma and complications, while allogeneic bone grafts carry the risks of immune rejection and disease transmission. Magnesium phosphate cement (MPC), as a artificial bone substitutes, has been a potential biomaterial for repairing bone defects, but its clinical application is limited by insufficient mechanical strength and poor osteoinductive activity. Methods In this study, the cement liquid phase base on rhBMP-2 and chitosan solution into MPC were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, and cellular responses and bone regeneration in response to CHI-rhBMP2 MPC were investigated in vitro and in vivo. Results After the chemical component modification, CHI-rhBMP2 MPC possessed controllable degradation rate, moderate setting time, appropriate cuing temperature, good injectability, and improved initial strength. In vitro tests showed that the CHIrhBMP2 MPC could promote cell proliferation and adhesion, as well as that contribute to osteoblast differentiation and mineralization. In addition, cement materials were implanted into the rabbit femoral condyles for in vivo osseointegration evaluation. The results displayed that more new bone grew around CHI-rhBMP2 MPC, verifying improved osseointegration capacity. Transcriptome analysis revealed that focal adhesion, Forkhead box O(FoxO) signaling pathway and P13K/AKT signaling pathway were may involved in CHI-rhBMP2 MPC induced new bone formation. Conclusion This work provides a new strategy for the rational design of potential bone repair candidate materials.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Guoyin Liu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Lei Zhang
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Xu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211166, China
| |
Collapse
|
6
|
Wekwejt M, Jesiołkiewicz R, Mielewczyk-Gryń A, Kozień D, Ronowska A, Kozłowska J, Gbureck U. Injectable bone cement based on magnesium potassium phosphate and cross-linked alginate hydrogel designed for minimally invasive orthopedic procedures. Sci Rep 2024; 14:20279. [PMID: 39217204 PMCID: PMC11365944 DOI: 10.1038/s41598-024-70984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium phosphate and sodium alginate cross-linked with calcium carbonate and gluconolactone. The properties of the obtained composite material and the influence of sodium alginate modification on cement reaction were investigated. Our results indicated that proposed cements have several advantages compared to ceramic cement, like shortened curing time, diverse microstructure, increased wettability and biodegradability and improved paste cohesion and injectability. The magnesium phosphate cement with 1.50% sodium alginate obtained using a powder-to-liquid ratio of 2.5 g/mL and cross-linking ratio 90/120 of GDL/CC showed the most favorable properties, with no adverse effect on mechanical strength and osteoblasts cytocompatibility. Overall, our research suggested that this novel cement might have promising medical application prospects, especially in minimally invasive procedures.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Technology Department, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland.
| | - Rafał Jesiołkiewicz
- Scientific Club 'Materials in Medicine', Advanced Materials Centre, Gdańsk University of Technology, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Department of Ceramic, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Dawid Kozień
- Faculty of Materials Science and Ceramics, AGH University of Kraków, Kraków, 30-059, Poland
| | - Anna Ronowska
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Kozłowska
- Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Liu X, Pei J, Zhao D, Yan Y. A novel strategy for calcium magnesium phosphate/carboxymethyl chitosan composite bone cements with enhanced physicochemical properties, excellent cytocompatibility and osteogenic differentiation. Biomed Mater 2024; 19:055014. [PMID: 38955344 DOI: 10.1088/1748-605x/ad5e2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.
Collapse
Affiliation(s)
- Xuesha Liu
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Juan Pei
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Dechuan Zhao
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong 637009 Sichuan, People's Republic of China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu 610064 Sichuan, People's Republic of China
| |
Collapse
|
8
|
Zhao Y, Li Y, Wang B, Yao J, Fan Y, He P, Bai J, Wang C, Xue F, Chu C. An Injectable Magnesium-Based Cement Stimulated with NIR for Drug-Controlled Release and Osteogenic Potential. Adv Healthc Mater 2024; 13:e2400207. [PMID: 38529833 DOI: 10.1002/adhm.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Magnesium phosphate bone cement (MPC) has gained widespread usage in orthopedic implantation due to its fast-setting and high initial strength benefits. However, the simultaneous attainment of drug-controlled release and osteogenic potential in MPC remains a significant challenge. Herein, a strategy to create a smart injectable cement system using nanocontainers and chondroitin sulfate is proposed. It employs nanocontainers containing alendronate-loaded mesoporous silica nanoparticles, which are surface-modified with polypyrrole to control drug release in response to near-infrared (NIR) stimulation. The alendronate-incorporated cement (ACMPC) exhibits improved compressive strength (70.6 ± 5.9 MPa), prolonged setting time (913 s), and exceptional injectability (96.5% of injection rate and 242 s of injection time). It also shows the capability to prevent degradation, thus preserving mechanical properties. Under NIR irradiation, the cement shows good antibacterial properties due to the combined impact of hyperthermia, reactive oxygen species, and alendronate. Furthermore, the ACMPC (NIR) group displays good biocompatibility and osteogenesis capabilities, which also lead to an increase in alkaline phosphatase activity, extracellular matrix mineralization, and the upregulation of osteogenic genes. This research has significant implications for developing multifunctional biomaterials and clinical applications.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Rudong People's Hospital, Nantong, 226400, China
| | - Junyan Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yue Fan
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Chen J, Yu L, Gao T, Dong X, Li S, Liu Y, Yang J, Xia K, Yu Y, Li Y, Wang S, Fan Z, Deng H, Guo W. Nanofiber-induced hierarchically-porous magnesium phosphate bone cements accelerate bone regeneration by inhibiting Notch signaling. Bioact Mater 2024; 37:459-476. [PMID: 38698920 PMCID: PMC11063995 DOI: 10.1016/j.bioactmat.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Magnesium phosphate bone cements (MPC) have been recognized as a viable alternative for bone defect repair due to their high mechanical strength and biodegradability. However, their poor porosity and permeability limit osteogenic cell ingrowth and vascularization, which is critical for bone regeneration. In the current study, we constructed a novel hierarchically-porous magnesium phosphate bone cement by incorporating extracellular matrix (ECM)-mimicking electrospun silk fibroin (SF) nanofibers. The SF-embedded MPC (SM) exhibited a heterogeneous and hierarchical structure, which effectively facilitated the rapid infiltration of oxygen and nutrients as well as cell ingrowth. Besides, the SF fibers improved the mechanical properties of MPC and neutralized the highly alkaline environment caused by excess magnesium oxide. Bone marrow stem cells (BMSCs) adhered excellently on SM, as illustrated by formation of more pseudopodia. CCK8 assay showed that SM promoted early proliferation of BMSCs. Our study also verified that SM increased the expression of OPN, RUNX2 and BMP2, suggesting enhanced osteogenic differentiation of BMSCs. We screened for osteogenesis-related pathways, including FAK signaing, Wnt signaling and Notch signaling, and found that SM aided in the process of bone regeneration by suppressing the Notch signaling pathway, proved by the downregulation of NICD1, Hes1 and Hey2. In addition, using a bone defect model of rat calvaria, the study revealed that SM exhibited enhanced osteogenesis, bone ingrowth and vascularization compared with MPC alone. No adverse effect was found after implantation of SM in vivo. Overall, our novel SM exhibited promising prospects for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Jingteng Chen
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shiyu Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinchu Liu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Yang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kezhou Xia
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaru Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingshuo Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sen Wang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - ZhengFu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Weichun Guo
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
10
|
Soltani L, Varmira K, Nazari M. Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds. Sci Rep 2024; 14:161. [PMID: 38168144 PMCID: PMC10762099 DOI: 10.1038/s41598-023-50664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study, the creation of a chitosan/alginate scaffold hydrogel with and without FeO-NPs or CuO-NPs was studied. From fetal ovine bone marrow mesenchymal stem cells (BM-MSCs) were isolated and cultivated. Their differentiation into osteocyte and adipose cells was investigated. Also, on the scaffolds, cytotoxicity and apoptosis were studied. To investigate the differentiation, treatment groups include: (1) BM-MSCs were plated in DMEM culture medium with high glucose containing 10% FBS and antibiotics (negative control); (2) BM-MSCs were plated in osteogenic differentiation medium (positive control); (3) positive control group + FeO-NPs, (4) positive control group + CuO-NPs; (5) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold; (6) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/FeO-NPs scaffold; and (7) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/CuO-NPs scaffold. Alkaline phosphatase enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were evaluated after 21 days of culture. In addition, qRT-PCR was used to assess the expression of the ALP, ColA, and Runx2 genes. When compared to other treatment groups, the addition of CuO-NPs in the chitosan/alginate hydrogel significantly increased the expression of the ColA and Runx2 genes (p < 0.05). However, there was no significant difference between the chitosan/alginate hydrogel groups containing FeO-NPs and CuO-NPs in the expression of the ALP gene. It appears that the addition of nanoparticles, in particular CuO-NPs, has made the chitosan/alginate scaffold more effective in supporting osteocyte differentiation.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, 67144-14971, Iran.
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
11
|
Gelli R, Tonelli M, Ridi F, Terefinko D, Dzimitrowicz A, Pohl P, Bielawska-Pohl A, Jamroz P, Klimczak A, Bonini M. Effect of Atmospheric Pressure Plasma Jet Treatments on Magnesium Phosphate Cements: Performance, Characterization, and Applications. ACS Biomater Sci Eng 2023; 9:6632-6643. [PMID: 37982239 PMCID: PMC10716815 DOI: 10.1021/acsbiomaterials.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells. MPCs were prepared and treated for 5, 7.5, and 10 min with a cold atmospheric pressure plasma jet. The reactive nitrogen and oxygen species formed during the treatment were characterized. The surfaces of MPCs were studied in terms of the phase composition, morphology, and topography. After a preliminary test in simulated body fluid, the proliferation, adhesion, and osteogenic differentiation of human mesenchymal cells on MPCs were assessed. Plasma treatments induce modifications in the relative amounts of struvite, newberyite, and farringtonite on the surfaces on MPCs in a time-dependent fashion. Nonetheless, all investigated scaffolds show a good biocompatibility and cell adhesion, also supporting osteogenic differentiation of mesenchymal cells.
Collapse
Affiliation(s)
- Rita Gelli
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Tonelli
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Dominik Terefinko
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Anna Dzimitrowicz
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Pawel Pohl
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of
Sciences, The Laboratory of Biology of Stem
and Neoplastic Cells, 12 R. Weigla, 53-114 Wroclaw, Poland
| | - Piotr Jamroz
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of
Sciences, The Laboratory of Biology of Stem
and Neoplastic Cells, 12 R. Weigla, 53-114 Wroclaw, Poland
| | - Massimo Bonini
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Wekwejt M, Khamenka M, Ronowska A, Gbureck U. Dual-Setting Bone Cement Based On Magnesium Phosphate Modified with Glycol Methacrylate Designed for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55533-55544. [PMID: 38058111 DOI: 10.1021/acsami.3c14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Magnesium phosphate cement (MPC) is a suitable alternative for the currently used calcium phosphates, owing to beneficial properties like favorable resorption rate, fast hardening, and higher compressive strength. However, due to insufficient mechanical properties and high brittleness, further improvement is still expected. In this paper, we reported the preparation of a novel type of dual-setting cement based on MPC with poly(2-hydroxyethyl methacrylate) (pHEMA). The aim of our study was to evaluate the effect of HEMA addition, especially its concentration and premix time, on the selected properties of the composite. Several beneficial effects were found: better formability, shortened setting time, and improvement of mechanical strengths. The developed cements were hardening in ∼16-21 min, consisted of well-crystallized phases and polymerized HEMA, had porosity between ∼2-11%, degraded slowly by ∼0.1-4%/18 days, their wettability was ∼20-30°, they showed compressive and bending strength between ∼45-73 and 13-20 MPa, respectively, and, finally, their Young's Modulus was close to ∼2.5-3.0 GPa. The results showed that the optimal cement composition is MPC+15%HEMA and 4 min of polymer premixing time. Overall, our research suggested that this developed cement may be used in various biomedical applications.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Technology Department, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, G. Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Maryia Khamenka
- Scientific Club "Materials in Medicine", Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Anna Ronowska
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 2x, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2 Street, D-97070 Würzburg, Germany
| |
Collapse
|
13
|
Xu C, Xia Y, Zhuang P, Liu W, Mu C, Liu Z, Wang J, Chen L, Dai H, Luo Z. FePSe 3 -Nanosheets-Integrated Cryogenic-3D-Printed Multifunctional Calcium Phosphate Scaffolds for Synergistic Therapy of Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303636. [PMID: 37217971 DOI: 10.1002/smll.202303636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Clinical treatment of osteosarcoma encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To develop an advanced artificial bone substitute that can achieve synergistic bone regeneration and tumor therapy for osteosarcoma treatment, a multifunctional calcium phosphate composite enabled by incorporation of bioactive FePSe3 -nanosheets within the cryogenic-3D-printed α-tricalcium phosphate scaffold (TCP-FePSe3 ) is explored. The TCP-FePSe3 scaffold exhibits remarkable tumor ablation ability due to the excellent NIR-II (1064 nm) photothermal property of FePSe3 -nanosheets. Moreover, the biodegradable TCP-FePSe3 scaffold can release selenium element to suppress tumor recurrence by activating of the caspase-dependent apoptosis pathway. In a subcutaneous tumor model, it is demonstrated that tumors can be efficiently eradicated via the combination treatment with local photothermal ablation and the antitumor effect of selenium element. Meanwhile, in a rat calvarial bone defect model, the superior angiogenesis and osteogenesis induced by TCP-FePSe3 scaffold have been observed in vivo. The TCP-FePSe3 scaffold possesses improved capability to promote the repair of bone defects via vascularized bone regeneration, which is induced by the bioactive ions of Fe, Ca, and P released during the biodegradation of the implanted scaffolds. The TCP-FePSe3 composite scaffolds fabricated by cryogenic-3D-printing illustrate a distinctive strategy to construct multifunctional platform for osteosarcoma treatment.
Collapse
Affiliation(s)
- Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuhao Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengzhen Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenliang Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jianglin Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Gelli R, Ridi F. An Overview of Magnesium-Phosphate-Based Cements as Bone Repair Materials. J Funct Biomater 2023; 14:424. [PMID: 37623668 PMCID: PMC10455751 DOI: 10.3390/jfb14080424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
In the search for effective biomaterials for bone repair, magnesium phosphate cements (MPCs) are nowadays gaining importance as bone void fillers thanks to their many attractive features that overcome some of the limitations of the well-investigated calcium-phosphate-based cements. The goal of this review was to highlight the main properties and applications of MPCs in the orthopedic field, focusing on the different types of formulations that have been described in the literature, their main features, and the in vivo and in vitro response towards them. The presented results will be useful to showcase the potential of MPCs in the orthopedic field and will suggest novel strategies to further boost their clinical application.
Collapse
Affiliation(s)
| | - Francesca Ridi
- Department of Chemistry “Ugo Schiff” and CSGI Consortium, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
15
|
Qin B, Wu S, Dong H, Deng S, Liu Y, Zhang W, Feng G, Lei L, Xie H. Accelerated Healing of Infected Diabetic Wounds by a Dual-Layered Adhesive Film Cored with Microsphere-Loaded Hydrogel Composite Dressing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33207-33222. [PMID: 37418597 DOI: 10.1021/acsami.2c22650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Diabetic wounds, a prevalent chronic disease, are associated with older age. The hyperglycemic microenvironment in diabetic wounds significantly reduces the immune system, inducing bacterial invasion. The coupling of tissue repair and antibacterial treatment is critical for infected diabetic ulcer regeneration. In this study, a dual-layered sodium alginate/carboxymethyl chitosan (SA/CMCS) adhesive film cored with an SA-bFGF microsphere-loaded small intestine submucosa (SIS) hydrogel composite dressing with a graphene oxide (GO)-based antisense transformation system was developed to promote infected diabetic wound healing and bacterial eradication. Initially, our injectable SIS-based hydrogel composite stimulated angiogenesis, collagen deposition, and immunoregulation in diabetic wound repair. The GO-based transformation system subsequently inhibited bacterial viability in infected wounds by post-transformation regulation. Meanwhile, the SA/CMCS film provided stable adhesion covering the wound area to maintain a moist microenvironment, which promoted in situ tissue repair. Our findings provide a promising clinical translation strategy for promoting the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Boquan Qin
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shizhou Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxian Dong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02215-1300, United States
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wanli Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
16
|
Huang J, Ma Y, Pang K, Ma X, Zheng Z, Xu D, Xiong K, Yu B, Liao L. Anisotropic Microspheres-Cryogel Composites Loaded with Magnesium l-Threonate Promote Osteogenesis, Angiogenesis, and Neurogenesis for Repairing Bone Defects. Biomacromolecules 2023. [PMID: 37326596 DOI: 10.1021/acs.biomac.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To achieve osteogenesis, angiogenesis, and neurogenesis for repairing bone defects, we constructed an anisotropic microspheres-cryogel composite loaded with magnesium l-threonate (MgT). These composites were prepared by the photo-click reaction of norbornene-modified gelatin (GB) in the presence of MgT-loaded microspheres through the bidirectional freezing method. The composites possessed an anisotropic macroporous (around 100 μm) structure and sustained release of bioactive Mg2+, which facilitate vascular ingrowth. These composites could significantly promote osteogenic differentiation of bone marrow mesenchymal stem cells, tubular formation of human umbilical vein vessel endothelial cells, and neuronal differentiation in vitro. Additionally, these composites significantly promoted early vascularization and neurogenesis as well as bone regeneration in the rat femoral condyle defects. In conclusion, owing to the anisotropic macroporous microstructure and bioactive MgT, these composites could simultaneously promote bone, blood vessel, and nerve regeneration, showing great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Junhai Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuan Ma
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kaiteng Pang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaochen Ma
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiyu Zheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daorong Xu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
17
|
Hou Y, Zhang R, Cheng H, Wang Y, Zhang Q, Zhang L, Wang L, Li R, Wu X, Li B. Mg2+-doped carbon dots synthesized based on Lycium ruthenicum in cell imaging and promoting osteogenic differentiation in vitro. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Ke Y, Ye Y, Wu J, Ma Y, Fang Y, Jiang F, Yu J. Phosphoserine-loaded chitosan membranes promote bone regeneration by activating endogenous stem cells. Front Bioeng Biotechnol 2023; 11:1096532. [PMID: 37034248 PMCID: PMC10076862 DOI: 10.3389/fbioe.2023.1096532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bone defects that result from trauma, infection, surgery, or congenital malformation can severely affect the quality of life. To address this clinical problem, a phosphoserine-loaded chitosan membrane that consists of chitosan membranes serving as the scaffold support to accommodate endogenous stem cells and phosphoserine is synthesized. The introduction of phosphoserine greatly improves the osteogenic effect of the chitosan membranes via mutual crosslinking using a crosslinker (EDC, 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide). The morphology of PS-CS membranes was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of phosphoserine into chitosan membranes was confirmed by energy dispersive spectrum (EDS), Fourier Transforms Infrared (FTIR), and X-ray diffraction (XRD) spectrum. The CCK8 assay and Live/Dead staining, Hemolysis analysis, and cell adhesion assay demonstrated that PS-CS membranes had good biocompatibility. The osteogenesis-related gene expression of BMSCs was higher in PS-CS membranes than in CS membranes, which was verified by alkaline phosphatase (ALP) activity, immunofluorescence staining, and real-time quantitative PCR (RT-qPCR). Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that PS-CS membranes dramatically stimulated bone regeneration in vivo. Moreover, H&E staining of the main organs (heart, liver, spleen, lung, or kidney) showed no obvious histological abnormalities, revealing that PS-CS membranes were no additional systemic toxicity in vivo. Collectively, PS-CS membranes may be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanxia Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of General Dentistry, Nanjing Medical University, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| |
Collapse
|