1
|
Ma T, Liu Q, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused exosomal targeted therapy in periprosthetic osteolysis through regulation of bone metabolic homeostasis. Bioact Mater 2025; 50:171-188. [PMID: 40248188 PMCID: PMC12005309 DOI: 10.1016/j.bioactmat.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
The onset of periprosthetic osteolysis is mediated by wear particles following artificial arthroplasty. This manifests as a disturbed bone metabolism microenvironment, characterized by insufficient osteogenesis and angiogenesis, and enhanced osteoclastic activity. To target and remodel the homeostatic environment of bone metabolism in the sterile region around the prosthesis, we successfully pioneered the proposal and construction of a fused exosome (f-exo) system with M2 macrophage-derived exosomes (M2-exo) and urine-derived stem cell exosomes (USC-exo). The results demonstrate that f-exo effectively combines the osteolysis region-targeting capabilities of M2-exo with the bone metabolic homeostasis modulation effects of two exosomes (M2-exo and USC-exo), thereby achieving a significantly enhanced bone metabolic homeostasis targeting effect in the periprosthetic osteolysis region. The proteomic analysis of M2-exo, USC-exo, and f-exo revealed the potential mechanism of f-exo in targeting-regulation of bone metabolic homeostasis. Our study employs an innovative approach utilizing the fused exosome system for exosome targeted delivery, which offers a novel intervention strategy for the clinical management of periprosthetic osteolysis. Furthermore, it provides a novel conceptual framework for the development of exosome-based drug-targeting delivery systems.
Collapse
Affiliation(s)
| | | | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
2
|
Wang B, Lyu FJ, Deng Z, Zheng Q, Ma Y, Peng Y, Guo S, Lei G, Lai Y, Li Q. Therapeutic potential of stem cell-derived exosomes for bone tissue regeneration around prostheses. J Orthop Translat 2025; 52:85-96. [PMID: 40291635 PMCID: PMC12023751 DOI: 10.1016/j.jot.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Artificial joint replacement is a widely recognized treatment for arthritis and other severe joint conditions. However, one of the primary causes of failure in joint replacements is the loosening of the prosthesis. After implantation, wear particles between the implant and the adjacent bone tissue are the principal contributors to this loosening. Recently, exosomes have garnered significant interest due to their low immunogenicity and effective membrane binding. They have shown potential in promoting bone regeneration via the paracrine pathway. This review examines the role and mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in bone regeneration, their impact on the integration of various implants into surrounding bone tissue and current challenges and future directions for the clinical application of exosomes. The Translational Potential of this Article: Emerging evidence suggests that mesenchymal stem cell-derived exosomes may offer a promising therapeutic strategy for aseptic prosthesis loosening, potentially mediated through mechanisms such as modulation of inflammatory responses, suppression of osteoclastogenesis, enhancement of osteogenic differentiation and facilitation of bone regeneration. Preclinical studies further indicate that the therapeutic potential of these extracellular vesicles could be optimized through bioengineering strategies, including surface modification and cargo-loading techniques, warranting further investigation to advance their clinical translation.
Collapse
Affiliation(s)
- Biwu Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Xinling Road 22, Shantou, 515041, China
| | - Shujun Guo
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Guihua Lei
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yonggang Lai
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qingtian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
4
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Liu Q, Ma T, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused extracellular vesicles from M 2 macrophages and human umbilical cord mesenchymal stem cells for the targeted regulation of macrophage pyroptosis in periprosthetic osteolysis. J Extracell Vesicles 2024; 13:e70028. [PMID: 39711510 DOI: 10.1002/jev2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024] Open
Abstract
The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors. In a pioneering approach to precisely inhibit the pyroptosis of local macrophages induced by wear particles, we have engineered fused extracellular vesicles (fEV) from M2 macrophages and human umbilical cord mesenchymal stem cells. These fEV boast the distinctive capability for targeted transport and immune evasion, collectively enhancing the anti-pyroptosis effect of the therapeutic extracellular vesicles. Our research demonstrates the targeted, significant preventive and therapeutic potential of fEVs against periprosthetic osteolysis prompted by wear particles, highlighting its crucial clinical significance and application prospects. These findings suggest that extracellular vesicle fusion technology heralds a novel paradigm in the design and development of targeted extracellular vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Liao R, Dewey MJ, Rong J, Johnson SA, D’Angelo WA, Hussey GS, Badylak SF. Matrix-bound nanovesicles alleviate particulate-induced periprosthetic osteolysis. SCIENCE ADVANCES 2024; 10:eadn1852. [PMID: 39423278 PMCID: PMC11488533 DOI: 10.1126/sciadv.adn1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Aseptic loosening of orthopedic implants is an inflammatory disease characterized by immune cell activation, chronic inflammation, and destruction of periprosthetic bone, and is one of the leading reasons for prosthetic failure, affecting 12% of total joint arthroplasty patients. Matrix-bound nanovesicles (MBVs) are a subclass of extracellular vesicle recently shown to mitigate inflammation in preclinical models of rheumatoid arthritis and influenza-mediated "cytokine storm." The molecular mechanism of these anti-inflammatory properties is only partially understood. The objective of the present study was to investigate the effects of MBV on RANKL-induced osteoclast formation in vitro and particulate-induced osteolysis in vivo. Results showed that MBV attenuated osteoclast differentiation and activity by suppressing the NF-κB signaling pathway and downstream NFATc1, DC-STAMP, c-Src, and cathepsin K expression. In vivo, local administration of MBV attenuated ultrahigh molecular weight polyethylene particle-induced osteolysis, bone reconstruction, and periosteal inflammation. The results suggest that MBV may be a therapeutic option for preventing periprosthetic loosening.
Collapse
Affiliation(s)
- Runzhi Liao
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jiayang Rong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Scott A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William A. D’Angelo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
8
|
Liao TT, Li X, Ma DL, Leng YX. In Vitro and In Vivo Evaluation of Toxicity of Structurally Different Diamond-Like Carbon Wear Debris in Joint Replacements. ACS Biomater Sci Eng 2024; 10:5675-5688. [PMID: 39108014 DOI: 10.1021/acsbiomaterials.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Diamond-like carbon (DLC) wear debris, which is often composed of different types of structures, is generated from DLC-modified artificial joints in the human body, and its biocompatibility evaluation is especially important to prevent wear-debris-induced implant failure. Here, RAW 264.7 macrophages (inflammatory-reaction assay) and primary mouse osteoblasts (osteoblastogenesis assay) were employed to investigate the toxicity of DLC wear particles (DWPs) by evaluation of cell viability and morphology, enzyme-linked immunosorbent assays, and quantitative reverse-transcription polymerase chain reaction (PCR). Relevant histopathological analysis of rat joints was also performed in vivo. We found that DWPs with a relatively high sp2/sp3 ratio (graphite-phase tendency) manifested a higher cytotoxicity and significant inhibition of osteoblastogenesis. DWPs with a relatively low sp2/sp3 ratio (diamond-phase tendency) showed good biocompatibility in vivo. The DWPs exhibiting a low sp2/sp3 ratio demonstrated reduced secretion of TNF-α and IL-6, along with increased secretion of TIMP-1, resulting in the downregulation of MMP-2 and MMP-9 and upregulation of interleukin-10 (IL-10), thereby attenuating the inflammatory response. Moreover, coculturing osteoblasts with DWPs exhibiting a low sp2/sp3 ratio resulted in an elevated OPG/RANKL ratio and increased expression of OPG mRNA. Because of the absence of electrostatic repulsion, DWPs with a relatively low sp2/sp3 ratio enhanced bovine serum albumin adsorption, which favored cellular activities. Cytotoxicity assessment of DWPs can help establish an evaluation system for particle-related joint disease and can facilitate the clinical application of DLC-coated prostheses.
Collapse
Affiliation(s)
- T T Liao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China
- Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - X Li
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - D L Ma
- College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
| | - Y X Leng
- Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
9
|
Yin Z, Cheng Q, Wang C, Hu Q, Yin J, Wang B. Apelin-13 alleviates osteoclast formation and osteolysis through Nrf2-pyroptosis pathway. Microsc Res Tech 2024; 87:1348-1358. [PMID: 38380581 DOI: 10.1002/jemt.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Wear particle-induced periprosthetic osteolysis is the key to aseptic loosening after artificial joint replacement. Osteoclastogenesis plays a central role in this process. Apelin-13 is a member of the adipokine family with anti-inflammatory effects. Here, we report that apelin-13 alleviates RANKL-mediated osteoclast differentiation and titanium particle-induced osteolysis in mouse calvaria. Mechanistically, apelin-13 inhibits NLRP3 inflammasome-mediated pyroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In summary, apelin-13 is expected to be a potential drug for relieving aseptic osteolysis. RESEARCH HIGHLIGHTS: This study reveals the molecular mechanism by which apelin-13 inhibits NLRP3 inflammasome activation and pyroptosis by promoting Nrf2. This study confirms that apelin-13 alleviates osteoclast activation by inhibiting pyroptosis. In vivo studies further confirmed that apelin-13 alleviated mouse skull osteolysis by inhibiting the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People's Hospital of Lianyungang), Lianyungang, China
| | - Qinghua Cheng
- Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Chao Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qin Hu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Gu J, Wu J, Wang C, Xu Z, Jin Z, Yan D, Chen S. BMSCs-derived exosomes inhibit macrophage/microglia pyroptosis by increasing autophagy through the miR-21a-5p/PELI1 axis in spinal cord injury. Aging (Albany NY) 2024; 16:5184-5206. [PMID: 38466640 PMCID: PMC11006467 DOI: 10.18632/aging.205638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Spinal cord injury (SCI) results in a diverse range of disabilities and lacks effective treatment options. In recent years, exosomes derived from bone mesenchymal stem cells (BMSCs) have emerged as a promising cell-free therapeutic approach for treating ischemic brain injury and other inflammatory conditions. Macrophage/microglial pyroptosis has been identified as a contributing factor to neuroinflammation following SCI. The therapeutic potential of BMSC-derived exosomes in macrophage/microglia pyroptosis-induced neuroinflammation, however, has to be determined. Our findings demonstrate that exosomes derived from BMSCs can enhance motor function recovery and mitigate neuroinflammation subsequent to SCI by upregulating the expression of autophagy-related proteins and inhibiting the activation of NLRP3 inflammasomes in macrophage/microglia. Moreover, miR-21a-5p is markedly increased in BMSCs-derived exosomes, and knocking down miR-21a-5p in BMSCs-derived exosomes eliminates the beneficial effects of administration; upregulation of miR-21a-5p in BMSCs-derived exosomes enhances the beneficial effects of administration. Mechanistically, miR-21a-5p positively regulates the autophagy of macrophage/microglia by reducing PELI1 expression, which in turn inhibits their pyroptosis. This research provides novel evidence that exosomes derived from BMSCs can effectively suppress macrophage/microglia pyroptosis through the miR-21a-5p/PELI1 axis-mediated autophagy pathway, ultimately facilitating functional restoration following SCI. In particular, our constructed miR-21a-5p overexpression exosomes greatly improved the efficacy of BMSCs-derived exosomes in treating spinal cord injury. These results establish a foundation for the prospective utilization of exosomes derived from BMSCs as a novel biological intervention for spinal cord injury.
Collapse
Affiliation(s)
- Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jingyi Wu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Chunming Wang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Zhenwei Xu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Donghua Yan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
11
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Moya-Guzmán MJ, de Solminihac J, Padilla C, Rojas C, Pinto C, Himmel T, Pino-Lagos K. Extracellular Vesicles from Immune Cells: A Biomedical Perspective. Int J Mol Sci 2023; 24:13775. [PMID: 37762077 PMCID: PMC10531060 DOI: 10.3390/ijms241813775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis. We also discuss the function of immune cell-derived sEV and their relationship with pathological states, highlighting their potential application in the biomedical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 755000, Chile
| |
Collapse
|
13
|
Luo X, Meng C, Zhang Y, Du Q, Hou C, Qiang H, Liu K, Lv Z, Li J, Liu F. MicroRNA-21a-5p-modified macrophage exosomes as natural nanocarriers promote bone regeneration by targeting GATA2. Regen Biomater 2023; 10:rbad075. [PMID: 37719929 PMCID: PMC10504470 DOI: 10.1093/rb/rbad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Bone immune responses based on macrophages are critical in the osteogenesis of bone abnormalities. In general, M2 macrophage facilitate the promotion of osteogenesis, as well, M1 macrophage play an important role in early bone healing, as confirmed by previous studies. However, it is not clear how M1 macrophage are involved in the bone immune response. MiR-21a-5p is a highly expressed microRNA in M1 macrophage in contrast to M2. Therefore, the current work sought to ascertain the influence of M1 macrophage on bone healing via exosomal miR-21a-5p and the probable mechanism. We discovered that injecting M1 macrophage exosomes overexpressing miR-21a-5p into bone defect locations enhanced bone regeneration in vivo. Furthermore, by directly targeting GATA2, miR-21a-5p accelerated MC3T3-E1 osteogenic differentiation. Our findings showed that exosomal miR-21a-5p from M1 macrophage may be transported to osteoblasts and target GATA2 to enhance bone defect healing.
Collapse
Affiliation(s)
- Xin Luo
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Chunxiu Meng
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Yujue Zhang
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Qicui Du
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Caiyao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huifen Qiang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Kun Liu
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Zhaoyong Lv
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Jun Li
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Fengzhen Liu
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| |
Collapse
|