1
|
Yuan Z, Li Y, Sun M, Yuan M, Han Z, Li X, Liu S, Sun Y, Cao J, Li F. Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases. Theranostics 2025; 15:5172-5219. [PMID: 40303333 PMCID: PMC12036867 DOI: 10.7150/thno.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Zhiyu Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Ying Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Ming Sun
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Xiaojing Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Yong Sun
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - Jie Cao
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
2
|
Fu Y, Gao C, Zhang H, Liu J, Li B, Chen W, Chen X, Lin X, Fang L, Wang Z. Fish Swim Bladder-Derived ECM Hydrogels Effectively Treat Myocardial Ischemic Injury through Immunomodulation and Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500036. [PMID: 40200862 DOI: 10.1002/advs.202500036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/18/2025] [Indexed: 04/10/2025]
Abstract
Injectable hydrogel implants represent a promising therapeutic approach for ischemic heart failure; but their efficacy is often limited by low bioactivity, poor durability, and inadequate injection techniques. Herein, a unique hydrogel incorporating extracellular matrix from fish swim bladder (FSB-ECM), which has distinct advantages over mammalian derived ECM, such as low antigenicity, bioactivity, and source safety, is developed. It consists of collagen, glycoproteins, and proteoglycans, including 13 proteins common in the myocardial matrix and three specific proteins: HSPG, Col12a1, and vWF. This hydrogel enhances cardiac cell adhesion and stretching while promoting angiogenesis and M2 macrophage polarization. In addition, its storage modulus (G') increases over time, reaching about 1000 Pa after 5 min, which facilitates transcatheter delivery and in situ gelling. Furthermore, this hydrogel provides sustained support for cardiac contractions, exhibiting superior longevity. In a rat model of ischemic heart failure, the ejection fraction significantly improves with FSB-ECM treatment, accompanied by increased angiogenesis, reduced inflammation, and decreased infarct size. Finally, RNA sequencing combined with in vitro assays identifies ANGPTL4 as a key protein involved in mediating the effects of FSB-ECM treatment. Overall, this new injectable hydrogel based on FSB-ECM is suitable for transcatheter delivery and possesses remarkable reparative capabilities for treating heart failure.
Collapse
Affiliation(s)
- Yulong Fu
- Institute of Transplant Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Canran Gao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100005, China
| | - Hailing Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jing Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Boxuan Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wei Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100005, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Xue Lin
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100005, China
| | - Ligang Fang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100005, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Wang L, Yu C, You T, Zhang X, Su H, Cao B, Anwaier S, Xiang H, Dai C, Long X, Han L, Zhang D, Wang J, Zhu P, Yan X, Liang J, Chen Z, Huang H, Zhu S, Sun T, Chen J, Zhu P. Injection of ROS-Responsive Hydrogel Loaded with IL-1β-targeted nanobody for ameliorating myocardial infarction. Bioact Mater 2025; 46:273-284. [PMID: 39811465 PMCID: PMC11732248 DOI: 10.1016/j.bioactmat.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.
Collapse
Affiliation(s)
- Lu Wang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ting You
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, China
| | - Xinkui Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Haotao Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Sainiwaer Anwaier
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Hongmo Xiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Chengming Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiang Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Linjiang Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Junwei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinjian Yan
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jialiang Liang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Zerui Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Huanlei Huang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| | - Shuoji Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jimei Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ping Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| |
Collapse
|
4
|
Zhu Y, Xiu Z, Jiang X, Zhang H, Li X, Feng Y, Li B, Cai R, Li C, Tao G. Injectable hydrogels with ROS-triggered drug release enable the co-delivery of antibacterial agent and anti-inflammatory nanoparticle for periodontitis treatment. J Nanobiotechnology 2025; 23:205. [PMID: 40075491 PMCID: PMC11900060 DOI: 10.1186/s12951-025-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Periodontitis, a chronic inflammatory disease caused by bacteria, is characterized by localized reactive oxygen species (ROS) accumulation, leading to an inflammatory response, which in turn leads to the destruction of periodontal supporting tissues. Therefore, antibacterial, scavenging ROS, reducing the inflammatory response, regulating periodontal microenvironment, and alleviating alveolar bone resorption are effective methods to treat periodontitis. In this study, we developed a ROS-responsive injectable hydrogel by modifying hyaluronic acid with 3-amino phenylboronic acid (PBA) and reacting it with poly(vinyl alcohol) (PVA) to form a borate bond. In addition, the ROS-responsive hydrogel encapsulated the antibacterial agent minocycline hydrochloride (MH) and Fe-Quercetin anti-inflammatory nanoparticles (Fe-Que NPs) for on-demand drug release in response to the periodontitis microenvironment. This hydrogel (HP-PVA@MH/Fe-Que) exhibited highly effective antibacterial properties. Moreover, by modulating the Nrf2/NF-κB pathway, it effectively eliminated ROS and promoted macrophage polarization to the M2 phenotype, reducing inflammation and enhancing the osteogenic differentiation potential of human periodontal ligament stem cells (hPDLSCs) in the periodontal microenvironment. Animal studies showed that HP-PVA@MH/Fe-Que significantly reduced alveolar bone loss and enhanced osteogenic factor expression by killing bacteria and inhibiting inflammation. Thus, HP-PVA@MH/Fe-Que hydrogel had efficient antibacterial, ROS-scavenging, anti-inflammatory, and alveolar bone resorption-alleviation abilities, showing excellent application potential for periodontitis healing.
Collapse
Affiliation(s)
- Yujing Zhu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ziliang Xiu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxi Jiang
- Department of Periodontics & Oral Mucosal Diseases, Deyang Stomatological Hospital, Deyang, 618000, China
| | - Huifang Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaofeng Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yunru Feng
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Bojiang Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Chunhui Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Gang Tao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
6
|
Cheng N, Luo Q, Yang Y, Shao N, Nie T, Deng X, Chen J, Zhang S, Huang Y, Hu K, Luo L, Xiao Z. Injectable pH Responsive Conductive Hydrogel for Intelligent Delivery of Metformin and Exosomes to Enhance Cardiac Repair after Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410590. [PMID: 39965141 DOI: 10.1002/advs.202410590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a leading cause of complications and high mortality associated with acute myocardial infarction. Injectable hydrogel emerges as a promising biomaterial for myocardial repair due to their ability to mimic the mechanical and electrophysiological properties of heart tissue. In this study, an injectable conductive hydrogel is developed that responds to the weakly acidic microenvironment of ischemic injury, enabling the intelligent release of metformin and exosomes to enhance cardiac repair following MIRI. This multifunctional hydrogel demonstrates self-healing properties, shear-thinning injectability, electrical conductivity, and an elastic modulus comparable to natural myocardium, alongside excellent biocompatibility. At the cellular level, the hydrogel system exhibits significant antioxidant, anti-apoptotic, improvement of electrophysiological characteristics, mitochondrial protection and angiogenic effects, with transcriptome sequencing revealing the effective activation of the PI3K/AKT, VEGF, and AMPK signaling pathways. In vivo studies further confirm that the hydrogel treatment reduces infarct size, cardiac fibrosis and incidence of arrhythmia, while improving ventricular ejection fraction and facilitating the restoration of cardiac function after MIRI. In conclusion, an injectable pH-responsive conductive hydrogel is presented that enables the intelligent delivery of metformin and exosomes, offering a promising and novel therapeutic approach for enhancing cardiac repair and treating MIRI.
Collapse
Affiliation(s)
- Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tianqi Nie
- Central laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liangping Luo
- Department of Radiology and Nuclear Medicine, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Li T, Ding L, Wang Q, Ma J, Wang S. Enhancing cardiac repair post-myocardial infarction: a study on GATM/Gel hydrogel therapeutics. Cell Biol Toxicol 2025; 41:44. [PMID: 39937362 PMCID: PMC11821695 DOI: 10.1007/s10565-025-09987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND AND PURPOSE Significant advancements in therapeutic approaches are imperative to address the prevalent impact of myocardial infarction (MI) on morbidity and mortality rates worldwide. This study explores the therapeutic potential of GATM/Gel hydrogel, focusing on its ability to enhance cardiac repair and functionality after MI through modulation of inflammatory and repair pathways. EXPERIMENTAL APPROACH The effects of GATM/Gel hydrogel on cardiac recovery were studied in a murine MI model. HA-CHO and gelatin solutions were mixed in situ using a dual syringe with a static mixing needle, and the resulting hydrogel was applied directly to the epicardium during MI modeling, followed by repositioning of the heart and closure of the thorax. Comprehensive in vivo assessments-including echocardiography, electrocardiography, and histopathological analysis-were combined with molecular techniques such as RT-qPCR, Western blotting, and immunofluorescence to elucidate the underlying mechanisms. Key cellular and molecular changes were tracked, focusing on macrophage polarization, angiogenesis, and modulation of the TNF/TNFR2 signaling pathway. KEY RESULTS Employing the GATM/Gel hydrogel led to a substantial improvement in heart function, shown through enhanced ejection fraction and fractional shortening, and reduced infarction size compared to control groups. Mechanistically, the hydrogel promoted the polarization of anti-inflammatory M2 macrophages and stimulated angiogenesis. Moreover, treatment with GATM/Gel hydrogel altered the TNF/TNFR2 pathway, pivotal in mediating inflammatory responses and facilitating myocardial repair. The discoveries highlight the possibility of GATM/Gel hydrogels as an innovative remedy for MI, providing a twofold role in regulating inflammation and fostering recovery.
Collapse
Affiliation(s)
- Te Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lijuan Ding
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qiang Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jianing Ma
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 1 Xinmin Street Avenue, Chaoyang District, Changchun, 130021, China.
| |
Collapse
|
8
|
Ge Y, Wu L, Mei S, Wu J. Nanomaterials: Promising Tools for the Diagnosis and Treatment of Myocardial Infarction. Int J Nanomedicine 2025; 20:1747-1768. [PMID: 39958320 PMCID: PMC11829642 DOI: 10.2147/ijn.s500146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Myocardial infarction (MI) is the leading cause of mortality from cardiovascular diseases. Rapid diagnosis and effective treatment are critical for improving patient prognosis. Although current diagnostic and therapeutic approaches have made significant progress, they still face challenges such as ischemia-reperfusion injury, microcirculatory disorders, adverse cardiac remodeling, and inflammatory responses. These issues highlight the urgent need for innovative solutions. Nanomaterials, with their diverse types, excellent physicochemical properties, biocompatibility, and targeting capabilities, offer promising potential in addressing these challenges. Advances in nanotechnology have increasingly drawn attention to the application of nanomaterials in both diagnosing and treating myocardial infarction. We summarize the pathophysiological mechanisms and staging of myocardial infarction. We systematically review the applications of nanomaterials in MI diagnosis, including the detection of biomarkers and imaging techniques, as well as in MI treatment, encompassing anti-inflammatory effects, antioxidant stress, inhibition of fibrosis, promotion of angiogenesis, and cardiac conduction repair. We analyze the existing challenges and provide insights into future research directions and potential solutions. Specifically, we discuss the need for rigorous safety assessments, long-term efficacy studies, and the development of robust strategies for translating laboratory findings into clinical practice. In conclusion, nanotechnology holds significant promise as a new strategy for diagnosing and treating myocardial infarction. Its potential to enhance clinical outcomes and revolutionize patient care makes it an exciting area of research with practical applications in real-world clinical settings.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shuyang Mei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
9
|
Wang T, Wang Y, Zhang Y, Fang Z, Li S, Gu Z, Ma Y, Wang L, Han D, Wang C, Zhou J, Cao F. Drug-Loaded Mesoporous Polydopamine Nanoparticles in Chitosan Hydrogels Enable Myocardial Infarction Repair through ROS Scavenging and Inhibition of Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61551-61564. [PMID: 39347611 PMCID: PMC11566824 DOI: 10.1021/acsami.4c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this study, we synthesized mesoporous polydopamine nanoparticles (MPDA NPs) using an emulsion-induced interface assembly strategy and loaded epigallocatechin gallate (EGCG) into MPDA NPs via electrostatic attraction to form EGCG@MPDA NPs. In the post myocardial infarction (MI) environment, these interventions specifically aimed to eliminate reactive oxygen species (ROS) and facilitate the repair of MI. We further combined them with a thermosensitive chitosan (CS) hydrogel to construct an injectable composite hydrogel (EGCG@MPDA/CS hydrogel). Utilizing in vitro experiments, the EGCG@MPDA/CS hydrogel exhibited excellent ROS-scavenging ability of H9C2 cells under the oxidative stress environment and also could inhibit their apoptosis. The EGCG@MPDA/CS hydrogel significantly promoted left ventricular ejection fraction (LVEF) in infarcted rat models post injection for 28 days compared to the PBS group (51.25 ± 1.73% vs 29.31 ± 0.78%, P < 0.05). In comparison to the PBS group, histological analysis revealed a substantial increase in left ventricular (LV) wall thickness in the EGCG@MPDA/CS hydrogel group (from 0.58 ± 0.03 to 1.39 ± 1.11 mm, P < 0.05). This work presents a novel approach to enhance MI repair by employing the EGCG@MPDA/CS hydrogel. This hydrogel effectively reduces local oxidative stress by ROS and stimulates the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway.
Collapse
Affiliation(s)
- Tianhu Wang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiyi Fang
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Sulei Li
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenghui Gu
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Ma
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Linghuan Wang
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Han
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Changyong Wang
- Beijing
Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jin Zhou
- Beijing
Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Cao
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Cao Y, Fan R, Zhu K, Gao Y. Advances in Functionalized Hydrogels in the Treatment of Myocardial Infarction and Drug-Delivery Strategies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48880-48894. [PMID: 39227344 DOI: 10.1021/acsami.4c09623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease with high morbidity and mortality rates, posing a significant threat to patient's health and quality of life. Following a MI, the damaged myocardial tissue is typically not fully repaired, leading to permanent impairment of myocardial function. While traditional treatments can alleviate symptoms and reduce pain, their ability to repair damaged heart muscle tissue is limited. Functionalized hydrogels, a broad category of materials with diverse functionalities, can enhance the properties of hydrogels to cater to the needs of tissue engineering, drug delivery, medical dressings, and other applications. Recently, functionalized hydrogels have emerged as a promising new therapeutic approach for the treatment of MI. Functionalized hydrogels possess outstanding biocompatibility, customizable mechanical properties, and drug-release capabilities. These properties enable them to offer scaffold support, drug release, and tissue regeneration promotion, making them a promising approach for treating MI. This paper aims to evaluate the advancements and delivery methods of functionalized hydrogels for treating MI, while also discussing their potential and the challenges they may pose for future clinical use.
Collapse
Affiliation(s)
- Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Rong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Kaiyi Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan 030032, China
| |
Collapse
|
11
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
13
|
Hua Y, He Z, Ni Y, Sun L, Wang R, Li Y, Li X, Jiang G. Silk fibroin and hydroxypropyl cellulose composite injectable hydrogel-containing extracellular vesicles for myocardial infarction repair. Biomed Phys Eng Express 2024; 10:045001. [PMID: 38640908 DOI: 10.1088/2057-1976/ad40b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair.In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay.In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.
Collapse
Affiliation(s)
- Yinjian Hua
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Zhengfei He
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Yunjie Ni
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Linggang Sun
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Xintong Li
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, People's Republic of China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
14
|
Zhang Y, Pan Y, Chang R, Chen K, Wang K, Tan H, Yin M, Liu C, Qu X. Advancing homogeneous networking principles for the development of fatigue-resistant, low-swelling and sprayable hydrogels for sealing wet, dynamic and concealed wounds in vivo. Bioact Mater 2024; 34:150-163. [PMID: 38225944 PMCID: PMC10788230 DOI: 10.1016/j.bioactmat.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kangli Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haoqi Tan
- Suzhou Innovation Center of Shanghai University, Shanghai University, Suzhou 215000, Jiangsu, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism Shanghai, 200237, China
| |
Collapse
|
15
|
Lu G, Zhao G, Wang S, Li H, Yu Q, Sun Q, Wang B, Wei L, Fu Z, Zhao Z, Yang L, Deng L, Zheng X, Cai M, Lu M. Injectable Nano-Micro Composites with Anti-bacterial and Osteogenic Capabilities for Minimally Invasive Treatment of Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306964. [PMID: 38234236 DOI: 10.1002/advs.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 01/19/2024]
Abstract
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.
Collapse
Affiliation(s)
- Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanqing Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linshan Yang
- Taikang Bybo Dental, Shanghai, 200001, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
16
|
He H, Yuan Y, Wu Y, Lu J, Yang X, Lu K, Liu A, Cao Z, Sun M, Yu M, Wang H. Exoskeleton Partial-Coated Stem Cells for Infarcted Myocardium Restoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307169. [PMID: 37962473 DOI: 10.1002/adma.202307169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The integration of abiotic materials with live cells has emerged as an exciting strategy for the control of cellular functions. Exoskeletons consisting ofmetal-organic frameworks are generated to produce partial-coated bone marrow stem cells (BMSCs) to overcome low cell survival leading to disappointing effects for cell-based cardiac therapy. Partially coated exoskeletons can promote the survival of suspended BMSCs by integrating the support of exoskeletons and unimpaired cellular properties. In addition, partial exoskeletons exhibit protective effects against detrimental environmental conditions, including reactive oxygen species, pH changes, and osmotic pressure. The partial-coated cells exhibit increased intercellular adhesion forces to aggregate and adhere, promoting cell survival and preventing cell escape during cell therapy. The exoskeletons interact with cell surface receptors integrin α5β1, leading to augmented biological functions with profitable gene expression alteration, such as Vegfa, Cxcl12, and Adm. The partial-coated BMSCs display enhanced cell retention in infarcted myocardium through non-invasive intravenous injections. The repair of myocardial infarction has been achieved with improved cardiac function, myocardial angiogenesis, proliferation, and inhibition of cell apoptosis. This discovery advances the elucidation of potential molecular and cellular mechanisms for cell-exoskeleton interactions and benefits the rational design and manufacture of next-generation nanobiohybrids.
Collapse
Affiliation(s)
- Huihui He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Yuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, China
| | - Yunhong Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaofu Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Kejie Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, China
| | - Zelin Cao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|