1
|
Paraskar G, Bhattacharya S, Kuttiappan A. The Role of Proteomics and Genomics in the Development of Colorectal Cancer Diagnostic Tools and Potential New Treatments. ACS Pharmacol Transl Sci 2025; 8:1227-1250. [PMID: 40370990 PMCID: PMC12070319 DOI: 10.1021/acsptsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
The complex molecular mechanisms involving genetic and epigenetic modifications contribute to colorectal cancer (CRC), which remains a significant threat to world health. This review elucidates the role of proteomics and genomics in the progression, diagnosis, and treatment of colorectal cancers. All potential key pathways involved in CRC, including WNT, MAPK, PI3K, and TGF-β pathways, are reviewed with a systematic analysis, concluding with their involvement in tumorigenesis and therapeutic resistance. Emerging next-generation sequencing technologies revealed critical mutations that are relevant to CRC development. Proteomics has contributed to identifying biomarkers and post-translational modifications that hold promise for targeted therapies. Recent technological advances have provided functional insights into protein signaling networks and pathways through mass spectrometry and integrated proteogenomic approaches. This work emphasizes biomarker-driven translational efforts that integrate genomic insights with protein expression profiles to refine personalized treatments. The application of innovations in liquid biopsy and computational biology advocates for precision medicine paths to improve the outcomes for CRC. Now, pharmacoproteomics offers novel domains for drug discovery and resistance management and serves as a foundation for comprehensive CRC treatment paradigms.
Collapse
Affiliation(s)
- Gaurav Paraskar
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Anitha Kuttiappan
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Liang Q, He M, Zhan B, Guo H, Qi X, Qu Y, Zhang Y, Zhong W, Gu J. Yolk-Shell CoNi@N-Doped Carbon-CoNi@CNTs for Enhanced Microwave Absorption, Photothermal, Anti-Corrosion, and Antimicrobial Properties. NANO-MICRO LETTERS 2025; 17:167. [PMID: 40009269 DOI: 10.1007/s40820-024-01626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
The previous studies mainly focused on improving microwave absorbing (MA) performances of MA materials. Even so, these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities. Herein, a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk-shell CoNi@N-doped carbon (NC)-CoNi@carbon nanotubes (CNTs) mixed-dimensional multicomponent nanocomposites (MCNCs), which were composed of zero-dimensional CoNi nanoparticles, three-dimensional NC nanocubes and one-dimensional CNTs. Because of good impedance matching and attenuation characteristics, the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances, which achieved a minimum reflection loss (RLmin) of -71.70 dB at 2.78 mm and Radar Cross section value of -53.23 dB m2. More importantly, the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal, antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk-shell structure, highlighting their potential multifunctional applications. It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk-shell magnetic NC-CNTs-based mixed-dimensional MCNCs, but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.
Collapse
Affiliation(s)
- Qiqin Liang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China.
| | - Yunpeng Qu
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | - Yali Zhang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City, 550025, People's Republic of China
| | - Wei Zhong
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
4
|
Jin L, Liu H, Wang C, Liu X, Mao C, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Zheng Y, Wu S. A Bacterial Capturing, Neural Network-Like Carbon Nanotubes/Prussian Blue/Puerarin Nanocomposite for Microwave Treatment of Staphylococcus Aureus-Infected Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407113. [PMID: 39420683 DOI: 10.1002/smll.202407113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Staphylococcus aureus (S. aureus)-infected osteomyelitis is a deep tissue infection that cannot be effectively treated with antibiotics. Microwave (MW) thermal therapy (MTT) and MW dynamic therapy (MDT) based on MW-responsive materials are promising for the therapy of bacteria-infected osteomyelitis occurring in deep tissues that cannot be effectively treated with antibiotics. In this work, the MW-responsive system of carbon nanotubes (CNTs)/Prussian blue (PB)/puerarin (Pue) with stable network-like structures is constructed. The PB is grown in situ on the CNTs, and its introduction not only reduces the aggregation of the network-like structures of the CNTs, but the large specific surface area and mesoporous structure can also provide many active sites for the adsorption of oxygen and polar molecules. Pue is a natural anti-inflammatory material that reduces inflammation at the infection site. The composite of the CNTs and PB avoids the skin effect and thus can improve dielectric and reflection losses. The MW thermal response of CNTs/PB/Pue is mainly due to the occurrence of reflection loss, dielectric loss, multiple reflections and scattering, interface polarization, and dipole polarization. In addition, under MW irradiation, the CNTs/PB/Pue can produce reactive oxygen species (ROS), such as singlet oxygen (1O2), hydroxyl radical (·OH).
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Congyang Mao
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Jin L, Liu H, Wang C, Mao C, Wu S, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Zheng Y, Liu X. Interface/Dipole Polarized Antibiotics-Loaded Fe 3O 4/PB Nanoparticles for Non-Invasive Therapy of Osteomyelitis Under Medical Microwave Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410917. [PMID: 39344940 DOI: 10.1002/adma.202410917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Due to their poor light penetration, photothermal therapy and photodynamic therapy are ineffective in treating deep tissue infections, such as osteomyelitis caused by Staphylococcus aureus (S. aureus). Here, a microwave (MW)-responsive magnetic targeting composite system consisting of ferric oxide (Fe3O4)/Prussian blue (PB) nanoparticles, gentamicin (Gent), and biodegradable poly(lactic-co-glycolic acid) (PLGA) is reported. The PLGA/Fe3O4/PB/Gent complex is used in combination with MW thermal therapy (MTT), MW dynamic therapy (MDT), and chemotherapy (CT) to treat acute osteomyelitis infected with S. aureus-infected. The powerful antibacterial effect of the PLGA/Fe3O4/PB/Gent is determined by the synergistic effects of heat and reactive oxygen species (ROS) generation by the Fe3O4/PB nanoparticles under MW irradiation and the effective release of Gent at the infection site via magnetic targeting. The antibacterial mechanism of the PLGA/Fe3O4/PB/Gent under MW irradiation is analyzed using bacterial transcriptome RNA sequencing. The MW heat and ROS reduce the activity of the protein transporters on the bacterial membrane, along with the transport of various ions and the acceleration of phosphate metabolism, which can lead to increased permeability of the bacterial membrane, damage the ribosome and DNA, and accompany the internal protein efflux of the bacteria, thus effectively killing the bacteria.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Congyang Mao
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
6
|
Zhang M, Lu M, Gong Y, Yang Y, Song J, Li J, Chen Z, Ling Y, Zhou Y. Tadpole-Like Carbon Nanotube with Fe Nanoparticle Encapsulated at the Head and Zn Single-Atom Anchored on the Body: One-Pot Carbonization for Tetramodal Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400587. [PMID: 38837673 DOI: 10.1002/smll.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Precise integration of diverse therapeutic approaches into nanomaterials is the key to the development of multimodal synergistic cancer therapy. In this work, tadpole-like carbon nanotubes with Fe nanoparticle encapsulated at the head and Zn single-atom anchored on the body (Fe@CNT-Zn) is precisely designed and facilely prepared via one-pot carbonization. In vitro studies revealed the integration of chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT) in Fe@CNT-Zn as well as the near-infrared light (NIR)-responsive cascade therapeutic efficacy. Furthermore, in vivo studies demonstrated the NIR-triggered cascade-amplifying synergistic cancer therapy in a B16 tumor-bearing mouse model. The results not only showcased the Fe@CNT-Zn as a potential tetramodal therapeutic platform, but also demonstrated a proof-of-concept on metal-organic framework-based "one stone for multiple birds" strategy for in situ functionalization of carbon materials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yimin Gong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junfei Song
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jianing Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Liao S, Wu S, Mao C, Wang C, Cui Z, Zheng Y, Li Z, Jiang H, Zhu S, Liu X. Electron Aggregation and Oxygen Fixation Reinforced Microwave Dynamic and Thermal Therapy for Effective Treatment of MRSA-Induced Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312280. [PMID: 38312094 DOI: 10.1002/smll.202312280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe2O3/Fe3S4 magnetic composite is constructed to achieve short-term and efficient treat osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). The Fe2O3/Fe3S4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe2O3/Fe3S4 possesses significant charge accumulation and oxygen-fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe2O3/Fe3S4 displays a larger electromagnetism field enhancement parameter than Fe2O3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe2O3/Fe3S4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep-tissue bacterial infections.
Collapse
Affiliation(s)
- Shasha Liao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|