1
|
Zhang X, Zheng J, Zhang L, Zhang J, Feng L, Zhang L, Huang X. Transcriptomic and proteomic integrated analysis reveals molecular mechanisms of 3D bioprinted vaginal scaffolds in vaginal regeneration. Sci Rep 2025; 15:18601. [PMID: 40436951 PMCID: PMC12119898 DOI: 10.1038/s41598-025-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
3D Bioprinting technology has been applied to vaginal reconstruction with satisfactory results. Understanding the transcriptome and proteome of regenerated vaginas is essential for knowing how biomaterials and seed cells contribute to vaginal regeneration. There are no reports on the systemic analysis of vaginal regeneration transcriptomes or proteomes. This study aims to explore the transcriptomic and proteomic features of vaginal tissue reconstructed with 3D bioprinted scaffolds. The scaffolds were made with biomaterials and bone marrow-derived mesenchymal stem cells (BMSCs) and then transplanted into a rabbit model.rna sequencing was used to analyze the transcriptomes of reconstructed and normal vaginal tissues, identifying 11,956 differentially expressed genes (DEGs). Proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and data-independent acquisition (DIA) identified 7,363 differentially expressed proteins (DEPs). Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed on DEGs and deps. Results showed that DEGs and deps.were involved in extracellular matrix remodeling, angiogenesis, inflammatory response, epithelialization, and muscle formation. This study shows that 3D bioprinted scaffolds are feasible for vaginal reconstruction and offers new insights into the molecular mechanisms involved.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- Department of Pelvic floor clinic, Cangzhou Central Hospital, Cangzhou, 061600, Hebei Province, China
| | - Jiahua Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Liye Zhang
- Chengde Medical University, Chengde, 067000, Hebei Province, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Li Feng
- Department of Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei Province, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
2
|
Jin X, Liu S, Fang J, Chen F, Xu B, Nan L, Zhao S, Wu Z, Guan Z, Tao K, Liu J. Optimally Aligned Nerve Scaffolds with Sustained Astaxanthin Release Improve the Inflammatory Microenvironment through Mitophagy Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502939. [PMID: 40370272 DOI: 10.1002/smll.202502939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Effective repair of peripheral nerve injury (PNI) depends on the scaffold orientation and immunomodulatory capabilities of functionalized scaffolds, both of which substantially influence nerve regeneration. In this study, composite nerve scaffolds incorporating astaxanthin (AXT) and polycaprolactone (PCL) are developed to investigate the influence of scaffold orientation and blend concentration on cellular behavior, including adhesion, migration, and proliferation. In vitro analysis identifies 0.2% AXT/PCL fabricated at a rotational speed of 400 rpm as the optimal configuration for facilitating directed cell growth and guiding nerve repair. Moreover, the controlled release of AXT improves the microenvironment by preserving mitochondrial homeostasis, promoting mitophagy, and reducing oxidative stress and inflammation. In vivo assessments reveal that the AXT/PCL group (0.2% AXT/PCL-400) achieves better morphological, histological, electrophysiological, and functional recovery than the PCL, AXT/PCL+M0, and AXT/PCL+M4 groups, approaching the outcomes observed in the autograft (Auto) group. Moreover, the AXT/PCL+M4 group demonstrates better regenerative outcomes than the PCL and AXT/PCL+M0 groups, underscoring the critical role of mitophagy in regulating the regenerative microenvironment.
Collapse
Affiliation(s)
- Xuehan Jin
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Shengfu Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
- Fudan University Affliated Stomatological Hospital, Shanghai, 200040, P. R. China
| | - Bo Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, Anhui, 233004, P. R. China
| | - Liping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Shihong Zhao
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646600, P. R. China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Zhiyuan Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Kun Tao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
3
|
Fagundes TP, Caetano GA, Ribas VT, Calderaro DC, Castro UB. Chitosan conduits for peripheral nerve repair: a systematic review of animal studies. BRAZ J BIOL 2025; 84:e280569. [PMID: 40197895 DOI: 10.1590/1519-6984.280569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/07/2024] [Indexed: 04/10/2025] Open
Abstract
Peripheral nerve injuries are major causes of disability worldwide. The current standard treatment, autologous nerve grafting, puts the donor region at risk and has limited availability. A systematic search of MEDLINE, EMBASE, and Web of Science databases for studies published between January 1, 2008, and September 04, 2024, was performed to compare interventions using chitosan tubes with non-intervention or autologous nerve grafts in rats with artificially injured sciatic nerves. Twenty-one experimental studies including 738 animals were selected. Nerve repair using chitosan conduits resulted in a higher sciatic functional index compared to non-intervention. Higher conduction velocity and a greater number of myelinated fibers were observed in nerve fibers treated with chitosan compared to the no intervention or primary repair groups. However, compound muscle action potentials and somatosensory evoked potentials were superior in the latter compared to nerves treated with the polymer.
Collapse
Affiliation(s)
| | - G A Caetano
- Universidade Federal de Minas Gerais - UFMG, Faculdade de Medicina, Departamento do Sistema Locomotor, Belo Horizonte, MG, Brasil
| | - V T Ribas
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, MG, Brasil
| | - D C Calderaro
- Universidade Federal de Minas Gerais - UFMG, Faculdade de Medicina, Departamento do Sistema Locomotor, Belo Horizonte, MG, Brasil
| | - U B Castro
- Universidade Federal de Minas Gerais - UFMG, Faculdade de Medicina, Departamento do Sistema Locomotor, Belo Horizonte, MG, Brasil
| |
Collapse
|
4
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
5
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
6
|
Wan T, Li QC, Zhang FS, Zhang XM, Han N, Zhang PX. Biomimetic ECM nerve guidance conduit with dynamic 3D interconnected porous network and sustained IGF-1 delivery for enhanced peripheral nerve regeneration and immune modulation. Mater Today Bio 2025; 30:101403. [PMID: 39790488 PMCID: PMC11713512 DOI: 10.1016/j.mtbio.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs). Nerve conduits made by blending chitosan (CS) with GMs demonstrate suitable degradation rates, reduced swelling rates, increased suture tensile strength, improved elongation at break, and 50 % radial compression performance that meet clinical application requirements. In vitro cytological studies indicate that biomimetic ECM NGCs exhibit good biocompatibility, promote early survival, proliferation, and remyelination potential of Schwann cells (SCs), and support neurite outgrowth. The biomimetic ECM NGCs comprising a 3D interconnected porous network in a 10-mm sciatic nerve defect rat model sustain IGF-1 delivery, promoting early infiltration of macrophages and polarisation towards M2-type macrophages. Furthermore, observations at 12 weeks post-implantation revealed improvements in electrophysiological performance, alleviation of gastrocnemius muscle atrophy, increased peripheral nerve regeneration, and motor function restoration. Thus, biomimetic ECM NGCs offer a therapeutic strategy for peripheral nerve regeneration with promising clinical applications and transformation prospects to regulate immune microenvironments, promoting SC proliferation and differentiation with nerve axon growth.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
- Peking University People's Hospital Qingdao Hospital, Qingdao, 266000, China
| |
Collapse
|
7
|
Zhu H, Wang Y, Xu S, Song Y, Li Y, Wang Y, Sun Q, Tong M, Huang T, Pan Y, Wang H, Xu X, Xue C. Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration. J Nanobiotechnology 2024; 22:796. [PMID: 39725969 DOI: 10.1186/s12951-024-03076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments. However, the underlying molecular mechanisms based on SKP-SCs mediated tissue engineering-aid regeneration remain elusive. In the present work, we systematically identified gene modules associated with the differentiation of SKPs into SCs by employing weighted gene co-expression network analysis (WGCNA). By integrating transcriptomic data from the regenerated nerve segment, we constructed a network that delineated the molecular signatures of TENG aid neuroregeneration. Subsequent quantitative PCR (qPCR) validation was performed to substantiate the WGCNA findings. Our WGCNA approach revealed a robust molecular landscape, highlighting hub genes pivotal for tissue engineering-aid regeneration. Notably, the upregulation of specific genes was observed to coincide with the acquisition of SC characteristics. The qPCR validation confirmed the expression patterns of these genes, underscoring their role in promoting neuroregeneration. The current study harnesses the power of WGCNA to elucidate the molecular blueprint governing tissue engineering-aid regeneration. The identified gene modules and validated targets offer novel insights into the cellular and molecular underpinnings of tissue engineering-augmented neuroregeneration. These findings pave the way for developing targeted therapeutics and advanced tissue engineering grafts to enhance peripheral nerve repair.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China
| | - Ying Wang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Yunjian Song
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yifan Li
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Qiuwen Sun
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Muyuan Tong
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yulin Pan
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China.
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China.
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
| |
Collapse
|
8
|
Guo Q, Zhu H, Xu X, Huang T, Pan Y, Gu X, Cui S, Xue C. Hybrid construction of tissue-engineered nerve graft using skin derived precursors induced neurons and Schwann cells to enhance peripheral neuroregeneration. Mater Today Bio 2024; 28:101196. [PMID: 39221212 PMCID: PMC11364897 DOI: 10.1016/j.mtbio.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Peripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration. SKPs were induced to differentiate into neurons and SCs in vitro and incorporated into nerve grafts composed of a biocompatible scaffold including chitosan neural conduit and silk fibroin filaments. In vivo experiments using a rat model of peripheral nerve injury showed that TENGs significantly enhanced nerve regeneration compared to the scaffold control group, catching up with the autograft group. Histological analysis showed improved axonal regrowth, myelination and functional recovery in animals treated with these TENGs. In addition, immunohistochemical staining confirmed the presence of induced neurons and SCs within the regenerated nerve tissue. Our results suggest that SKP-induced neurons and SCs in tissue-engineered nerve grafts have great potential for promoting peripheral nerve regeneration and represent a promising approach for clinical translation in the treatment of peripheral nerve injury. Further optimization and characterization of these engineered constructs is warranted to improve their clinical applicability and efficacy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, The Third Bethune Hospital of Jilin University, Changchun, JL, 130033, PR China
| | - Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yulin Pan
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, The Third Bethune Hospital of Jilin University, Changchun, JL, 130033, PR China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
9
|
Sun J, He L, An Q, Ye X, Ma J, Yan J, Xie X, Sun X, Niu Y, Cao W. Graphene/ chitosan tubes inoculated with dental pulp stem cells promotes repair of facial nerve injury. Front Chem 2024; 12:1417763. [PMID: 38887698 PMCID: PMC11180760 DOI: 10.3389/fchem.2024.1417763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction: Facial nerve injury significantly impacts both the physical and psychological] wellbeing of patients. Despite advancements, there are still limitations associated with autografts transplantation. Consequently, there is an urgent need for effective artificial grafts to address these limitations and repair injuries. Recent years have witnessed the recognition of the beneficial effects of chitosan (CS) and graphene in the realm of nerve repair. Dental pulp stem cells (DPSCs) hold great promise due to their high proliferative and multi-directional differentiation capabilities. Methods: In this study, Graphene/CS (G/CST) composite tubes were synthesized and their physical, chemical and biological properties were evaluated, then DPSCs were employed as seed cells and G/CST as a scaffold to investigate their combined effect on promoting facial nerve injury repair. Results and Disscussion: The experimental results indicate that G/CST possesses favorable physical and chemical properties, along with good cyto-compatibility. making it suitable for repairing facial nerve transection injuries. Furthermore, the synergistic application of G/CST and DPSCs significantly enhanced the repair process for a 10 mm facial nerve defect in rabbits, highlighting the efficacy of graphene as a reinforcement material and DPSCs as a functional material in facial nerve injury repair. This approach offers an effective treatment strategy and introduces a novel concept for clinically managing facial nerve injuries.
Collapse
Affiliation(s)
- Jingxuan Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Lina He
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Qi An
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xu Ye
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Jinjie Ma
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Jing Yan
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiaoqi Xie
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| |
Collapse
|