1
|
Wang X, Wang G, Wang J, Xue J, Liu G, Fan C. Catechol-rich gelatin microspheres as restorative medical implants intended for inhibiting seroma formation and promoting wound healing. Mater Today Bio 2024; 29:101313. [PMID: 39534679 PMCID: PMC11554634 DOI: 10.1016/j.mtbio.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Seroma formation and poor wound healing are common complications of many surgeries that create anatomical dead space (i.e., mastectomy), often causing tissue infection and even necrosis. Although negative pressure drainage and tissue adhesives are investigated to alleviate fluid accumulation post-surgery, however, their therapeutic efficacy remains unsatisfactory in most cases. Herein, the catechol-rich chemically crosslinked gelatin microspheres (ca-CGMSs) have been developed as biodegradable reconstructive implants for preventing seroma formation and concurrently promoting subcutaneous wound healing. Compared with the most representative hydrogel adhesive, i.e. commercial porcine fibrin sealant (PFS), the loosely packed ca-CGMSs with diameters range from 50 to 350 μm, provide numerous cell-adhesive interfaces and interconnected macro-pores for enhanced cell adhesion, proliferation and migration. Subcutaneous embedding trials show the in situ swelling aggregation and wet tissue adhesion of ca-CGMSs as well as their capacity in recruiting autologous cells in rat mastectomy models. The trials in rabbit mastectomy models demonstrate that, compared with PFS gluing, the implanted dried ca-CGMSs not only significantly inhibit seroma formation, but also achieve enhanced wound healing by inducing the formation of vascularized neo-tissue. The ca-CGMSs show a great potential to be the next-generation of restorative materials for both preventing seroma formation and healing subcutaneous wounds.
Collapse
Affiliation(s)
- Xinping Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Guoqing Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao Medical College, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Jianfei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266000, Shandong, PR China
| | - Gaoli Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao Medical College, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| |
Collapse
|
2
|
Dong Z, Xu J, Lun P, Wu Z, Deng W, Sun P. Dynamic Cross-Linking, Self-Healing, Antibacterial Hydrogel for Regenerating Irregular Cranial Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39035-39050. [PMID: 39026394 DOI: 10.1021/acsami.4c07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Given the widespread clinical demand, addressing irregular cranial bone defects poses a significant challenge following surgical procedures and traumatic events. In situ-formed injectable hydrogels are attractive for irregular bone defects due to their ease of administration and the ability to incorporate ceramics, ions, and proteins into the hydrogel. In this study, a multifunctional hydrogel composed of oxidized sodium alginate (OSA)-grafted dopamine (DO), carboxymethyl chitosan (CMCS), calcium ions (Ca2+), nanohydroxyapatite (nHA), and magnesium oxide (MgO) (DOCMCHM) was prepared to address irregular cranial bone defects via dynamic Schiff base and chelation reactions. DOCMCHM hydrogel exhibits strong adhesion to wet tissues, self-healing properties, and antibacterial characteristics. Biological evaluations indicate that DOCMCHM hydrogel has good biocompatibility, in vivo degradability, and the ability to promote cell proliferation. Importantly, DOCMCHM hydrogel, containing MgO, promotes the expression of osteogenic protein markers COL-1, OCN, and RUNX2, and stimulates the formation of new blood vessels by upregulating CD31. This study could provide meaningful insights into ion therapy for the repair of cranial bone defects.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jian Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Peng Lun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Zeyu Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Wenshuai Deng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| |
Collapse
|
3
|
Zhan Y, Yang K, Zhao J, Wang K, Li Z, Liu J, Liu H, Liu Y, Li W, Su X. Injectable and In Situ Formed Dual-Network Hydrogel Reinforced by Mesoporous Silica Nanoparticles and Loaded with BMP-4 for the Closure and Repair of Skull Defects. ACS Biomater Sci Eng 2024; 10:2414-2425. [PMID: 38446137 DOI: 10.1021/acsbiomaterials.3c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Bone defects are a common and challenging orthopedic problem with poor self-healing ability and long treatment cycles. The difficult-to-heal bone defects cause a significant burden of medical expenses on patients. Currently, biomaterials with mechanical stability, long-lasting action, and osteogenic activity are considered as a suitable way to effectively heal bone defects. Here, an injectable double network (DN) hydrogel prepared using physical and chemical cross-linking methods is designed. The first rigid network is constructed using methylpropenylated hyaluronic acid (HAMA), while the addition of chitosan oligosaccharide (COS) forms a second flexible network by physical cross-linking. The mesoporous silica nanoparticles (MSN) loaded with bone morphogenetic protein-4 (BMP-4) were embedded into DN hydrogel, which not only enhanced the mechanical stability of the hydrogel, but also slowly released BMP-4 to achieve long-term skull repair. The designed composite hydrogel showed an excellent compression property and deformation resistance. In vitro studies confirmed that the HAMA/COS/MSN@BMP-4 hydrogel had good biocompatibility and showed great potential in supporting proliferation and osteogenic differentiation of mouse embryo osteoblast precursor (MC3T3-E1) cells. Furthermore, in vivo studies confirmed that the DN hydrogel successfully filled and closed irregular skull defect wounds, effectively promoted bone regeneration, and significantly promoted bone repair compared with the control group. In addition, HAMA/COS/MSN@BMP-4 hydrogel precursor solution can quickly form hydrogel in situ at the wound by ultraviolet light, which can be applied to the closure and repair of wounds of different shapes, which provides the new way for the treatment of bone defects.
Collapse
Affiliation(s)
- Yi Zhan
- Clinical Research Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, P. R. China
| | - Keqin Yang
- Department of Orthopedics, Guigang City People's Hospital, Guigang, Guangxi 537100, P. R. China
| | - Jun Zhao
- Department of Orthopedics, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523000, P. R. China
| | - Kelie Wang
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong 518116, P. R. China
| | - Zhidong Li
- Laboratory Animal Center, Guangdong Medical University, Dongguan, Guangdong 523109, P. R. China
| | - Jizhen Liu
- Laboratory Animal Center, Guangdong Medical University, Dongguan, Guangdong 523109, P. R. China
| | - Hongsheng Liu
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, Guangdong 511441, P. R. China
| | - Ying Liu
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, Guangdong 511441, P. R. China
| | - Wenqiang Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Xiaohua Su
- Clinical Research Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, P. R. China
- Laboratory Animal Center, Guangdong Medical University, Dongguan, Guangdong 523109, P. R. China
| |
Collapse
|
4
|
Ozhava D, Bektas C, Lee K, Jackson A, Mao Y. Human Mesenchymal Stem Cells on Size-Sorted Gelatin Hydrogel Microparticles Show Enhanced In Vitro Wound Healing Activities. Gels 2024; 10:97. [PMID: 38391427 PMCID: PMC10887759 DOI: 10.3390/gels10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The demand for innovative therapeutic interventions to expedite wound healing, particularly in vulnerable populations such as aging and diabetic patients, has prompted the exploration of novel strategies. Mesenchymal stem cell (MSC)-based therapy emerges as a promising avenue for treating acute and chronic wounds. However, its clinical application faces persistent challenges, notably the low survivability and limited retention time of engraftment in wound environments. Addressing this, a strategy to sustain the viability and functionality of human MSCs (hMSCs) in a graft-able format has been identified as crucial for advanced wound care. Hydrogel microparticles (HMPs) emerge as promising entities in the field of wound healing, showcasing versatile capabilities in delivering both cells and bioactive molecules/drugs. In this study, gelatin HMPs (GelMPs) were synthesized via an optimized mild processing method. GelMPs with distinct diameter sizes were sorted and characterized. The growth of hMSCs on GelMPs with various sizes was evaluated. The release of wound healing promoting factors from hMSCs cultured on different GelMPs were assessed using scratch wound assays and gene expression analysis. GelMPs with a size smaller than 100 microns supported better cell growth and cell migration compared to larger sizes (100 microns or 200 microns). While encapsulation of hMSCs in hydrogels has been a common route for delivering viable hMSCs, we hypothesized that hMSCs cultured on GelMPs are more robust than those encapsulated in hydrogels. To test this hypothesis, hMSCs were cultured on GelMPs or in the cross-linked methacrylated gelatin hydrogel (GelMA). Comparative analysis of growth and wound healing effects revealed that hMSCs cultured on GelMPs exhibited higher viability and released more wound healing activities in vitro. This observation highlights the potential of GelMPs, especially those with a size smaller than 100 microns, as a promising carrier for delivering hMSCs in wound healing applications, providing valuable insights for the optimization of advanced therapeutic strategies.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Processing Technologies, Cumra Vocational School, Selcuk University, 42130 Konya, Turkey
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Wu L, Morrow B, Hong L, Rajasingh J. Preparation of Monodispersed Nanofibrous Gelatin Microspheres Using Homebuilt Microfluidics. Methods Mol Biol 2024; 2835:325-337. [PMID: 39105928 DOI: 10.1007/978-1-0716-3995-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gelatin, a protein derivative from collagen, is a versatile material with promising applications in tissue engineering. Among the various forms of gelatin scaffolds, nanofibrous gelatin microspheres (NFGMs) are attracting research efforts due to their fibrous nature and injectability. However, current methods for synthesizing nanofibrous gelatin microspheres (NFGMs) have limitations, such as wide size distributions and the use of toxic solvents. To address these challenges, the article introduces a novel approach. First, it describes the creation of a microfluidic device using readily available supplies. Subsequently, it outlines a unique process for producing monodispersed NFGMs through a combination of the microfluidic device and thermally induced phase separation (TIPS). This innovative method eliminates the need for sieving and the use of toxic solvents, making it a more ecofriendly and efficient alternative.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liang Hong
- Department of Pediatric Dentistry & Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Yu F, Pan J, ur Rehman Khan A, Zhao B, Yuan Z, Cai P, Li XL, EL-Newehy M, EL-Hamshary H, Morsi Y, Sun B, Cong R, Mo X. Evaluation of Natural Protein-based Nanofiber Composite Photocrosslinking Hydrogel for skin wound regeneration. Colloids Surf B Biointerfaces 2023; 226:113292. [PMID: 37028231 DOI: 10.1016/j.colsurfb.2023.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Protein based photocrosslinking hydrogels with nanofiber dispersions were reported to be an effective wound dressing. In this study, two kinds of protein (gelatin and decellularized dermal matrix) were modified to obtain GelMA and ddECMMA, respectively. Poly(ε-caprolactone) nanofiber dispersions (PCLPBA) and thioglycolic acid-modified chitosan (TCS) were added into GelMA solution and ddECMMA solution, respectively. After photocrosslinking, four kinds of hydrogel (GelMA, GTP4, DP and DTP4) were fabricated. The hydrogels showed excellent physico-chemical property, biocompatibility and negligible cytotoxicity. When applied on the full-thickness cutaneous deficiency of SD rats, hydrogel treated groups exhibited an enhanced wound healing effect than Blank group. Besides, the histological staining of H&E and Masson's showed that hydrogels groups with PCLPBA and TCS (GTP4 and DTP4) improved wound healing. Furthermore, GTP4 group performed better healing effect than other groups, which had great potential in skin wound regeneration.
Collapse
|
7
|
Townsend JM, Kiyotake EA, Easley J, Seim HB, Stewart HL, Fung KM, Detamore MS. Comparison of a Thiolated Demineralized Bone Matrix Hydrogel to a Clinical Product Control for Regeneration of Large Sheep Cranial Defects. MATERIALIA 2023; 27:101690. [PMID: 36743831 PMCID: PMC9897238 DOI: 10.1016/j.mtla.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regeneration of calvarial bone remains a major challenge in the clinic as available options do not sufficiently regenerate bone in larger defect sizes. Calvarial bone regeneration cases involving secondary medical conditions, such as brain herniation during traumatic brain injury (TBI) treatment, further exacerbate treatment options. Hydrogels are well-positioned for severe TBI treatment, given their innate flexibility and potential for bone regeneration to treat TBI in a single-stage surgery. The current study evaluated a photocrosslinking pentenoate-modified hyaluronic acid polymer with thiolated demineralized bone matrix (i.e., TDBM hydrogel) capable of forming a completely interconnected hydrogel matrix for calvarial bone regeneration. The TDBM hydrogel demonstrated a setting time of 120 s, working time of 3 to 7 days, negligible change in setting temperature, physiological setting pH, and negligible cytotoxicity, illustrating suitable performance for in vivo application. Side-by-side ovine calvarial bone defects (19 mm diameter) were employed to compare the TDBM hydrogel to the standard-of-care control material DBX®. After 16 weeks, the TDBM hydrogel had comparable healing to DBX® as demonstrated by mechanical push-out testing (~800 N) and histology. Although DBX® had 59% greater new bone volume compared to the TDBM hydrogel via micro-computed tomography, both demonstrated minimal bone regeneration overall (15 to 25% of defect volume). The current work presents a method for comparing the regenerative potential of new materials to clinical products using a side-by-side cranial bone defect model. Comparison of novel biomaterials to a clinical product control (i.e., standard-of-care) provides an important baseline for successful regeneration and potential for clinical translation.
Collapse
Affiliation(s)
| | - Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Jeremiah Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Holly L. Stewart
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
8
|
Tao J, Wu K, Chen Y, Li W, Gu Y, Liu R, Luo J. A facile one-pot strategy for the preparation of porous polymeric microspheres via UV irradiation-induced polymerization in emulsions. SOFT MATTER 2023; 19:1407-1417. [PMID: 36723259 DOI: 10.1039/d2sm01459a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a facile one-pot strategy was developed to prepare porous polymeric microspheres via photopolymerization, where organic solvents functioned as porogens. In this strategy, an oil phase containing organic solvents and photopolymerizable materials was stabilized in water to form a stable oil-in-water emulsion. Upon UV irradiation, the photopolymerizable materials (photosensitive monomers/photosensitive prepolymers) underwent polymerization to form microspheres and the subsequent removal of organic solvents left pores in microspheres, leading to the generation of porous polymeric microspheres with high yielding. The effects of organic solvents and the chemical structure and concentration of photopolymerizable materials on the microsphere structure were systematically explored. It was found that the polarity of the organic solvents played a decisive role in the preparation of porous microspheres. In addition, the increases in the solvent content and functionalities of photopolymerizable materials were more favorable for the generation of porous microspheres. This strategy could be applicable for a wide selection of photopolymerizable materials, which endowed this strategy with good applicability. The preparation of porous microspheres by this method was facile and easy to handle, enabling the scalable preparation of porous microspheres. In addition, the whole process can be completed within a few minutes at ambient temperature, which was time-saving and energy-saving.
Collapse
Affiliation(s)
- Junjie Tao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Yaxin Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Wei Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| |
Collapse
|