1
|
Wiesli MG, Huber MW, Weisse B, Zboray R, Kiderlen S, González‐Vázquez A, Maniura‐Weber K, Rottmar M, Lackington WA. Immunomodulation Using BMP-7 and IL-10 to Enhance the Mineralization Capacity of Bone Progenitor Cells in a Fracture Hematoma-Like Environment. Adv Healthc Mater 2025; 14:e2400077. [PMID: 38599586 PMCID: PMC11834375 DOI: 10.1002/adhm.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Following biomaterial implantation, a failure to resolve inflammation during the formation of a fracture hematoma can significantly limit the biomaterial's ability to facilitate bone regeneration. This study aims to combine the immunomodulatory and osteogenic effects of BMP-7 and IL-10 with the regenerative capacity of collagen-hydroxyapatite (CHA) scaffolds to enhance in vitro mineralization in a hematoma-like environment. Incubation of CHA scaffolds with human whole blood leads to rapid adsorption of fibrinogen, significant stiffening of the scaffold, and the formation of a hematoma-like environment characterized by a limited capacity to support the infiltration of human bone progenitor cells, a significant upregulation of inflammatory cytokines and acute phase proteins, and significantly reduced osteoconductivity. CHA scaffolds functionalized with BMP-7 and IL-10 significantly downregulate the production of key inflammatory cytokines, including IL-6, IL-8, and leptin, creating a more permissive environment for mineralization, ultimately enhancing the biomaterial's osteoconductivity. In conclusion, targeting the onset of inflammation in the early phase of bone healing using BMP-7 and IL-10 functionalized CHA scaffolds is a promising approach to effectively downregulate inflammatory processes, while fostering a more permissive environment for bone regeneration.
Collapse
Affiliation(s)
- Matthias Guido Wiesli
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Matthias Werner Huber
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Bernhard Weisse
- Laboratory for Mechanical Systems EngineeringEmpaDübendorf8600Switzerland
| | - Robert Zboray
- Center of X‐ray AnalyticsEmpaDübendorf8600Switzerland
| | | | - Arlyng González‐Vázquez
- Tissue Engineering Research GroupRoyal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublin 2Ireland
| | - Katharina Maniura‐Weber
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Markus Rottmar
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - William Arthur Lackington
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| |
Collapse
|
2
|
Zhou H, Zhao Y, Zha X, Zhang Z, Zhang L, Wu Y, Ren R, Zhao Z, Yang W, Zhao L. A Janus, robust, biodegradable bacterial cellulose/Ti 3C 2Tx MXene bilayer membranes for guided bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213892. [PMID: 38795472 DOI: 10.1016/j.bioadv.2024.213892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.
Collapse
Affiliation(s)
- Hongling Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Linli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Abdulaziz D, Anastasiou AD, Panagiotopoulou V, Raif EM, Giannoudis PV, Jha A. Physiologically engineered porous titanium/brushite scaffolds for critical-size bone defects: A design and manufacturing study. J Mech Behav Biomed Mater 2023; 148:106223. [PMID: 37976684 DOI: 10.1016/j.jmbbm.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Repairing critical-size bone defects still represents a critical clinical challenge in the field of trauma surgery. This study focuses on a physiological design and manufacturing of porous composite scaffold (titanium Ti with 10 % mole iron doped brushite DCPD-Fe3+) which can mimic the biomechanical properties of natural cortical bone, specifically for the purpose of repairing critical-size defects. To achieve this, the principle of design of experiments (DOE) was applied for investigating the impact of sintering temperature, mineral ratio, and volume fraction of porosity on the mechanical properties of the fabricated scaffolds. The fabricated scaffolds had open porosity up to 60 %, with pore size approximately between 100 μm and 850 μm. The stiffness of the porous composite scaffolds varied between 3.30 GPa and 20.50 GPa, while the compressive strength ranged from approximately 130 MPa-165 MPa at sintering temperatures equal to or exceeding 1000 °C. Scaffolds with higher porosity and mineral content demonstrated lower stiffness values, resembling natural bone. Numerical simulation was employed by Ansys Workbench to investigate the stress and strain distribution of a critical size defect in mid-shaft femur which was designed to be replaced with the fabricated scaffold. The fabricated scaffolds showed flexible biomechanical behaviour at the bone/scaffold interface, generating lower stress levels and indicating a better match with the femoral shaft stiffness. The experimental and numerical findings demonstrated promising applications for manufacturing a patient-specific bone scaffold for critical and potentially large defects for reducing stress shielding and minimizing non-union risk.
Collapse
Affiliation(s)
- Dina Abdulaziz
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Antonios D Anastasiou
- Department of Chemical Engineering, University of Manchester, Manchester, M1 3AL, UK
| | | | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Glatt V, Tetsworth K. Biomimetic Hematoma as a Novel Delivery Vehicle for rhBMP-2 to Potentiate the Healing of Nonunions and Bone Defects. J Orthop Trauma 2023; 37:S33-S39. [PMID: 37828700 DOI: 10.1097/bot.0000000000002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
SUMMARY The management of bone defects and nonunions creates unique clinical challenges. Current treatment alternatives are often insufficient and frequently require multiple surgeries. One promising option is bone morphogenetic protein-2 (BMP-2), which is the most potent inducer of osteogenesis. However, its use is associated with many side effects, related to the delivery and high doses necessary. To address this need, we developed an ex vivo biomimetic hematoma (BH), replicating naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin. It is an autologous carrier able to deliver reduced doses of rhBMP-2 to enhance bone healing for complex fractures. More than 50 challenging cases involving recalcitrant nonunions and bone defects have already been treated using the BH delivering reduced doses of rhBMP-2, to evaluate both the safety and efficacy. Preliminary data suggest the BH is currently the only clinically used carrier able to effectively deliver reduced doses (∼70% less) of rhBMP-2 with high efficiency, rapidly and robustly initiating the bone repair cascade to successfully reconstruct complex bone injuries without side effects. The presented case provides a clear demonstration of this technology's ability to significantly alter the clinical outcome in extremely challenging scenarios where other treatment options have failed or are considered unsuitable. A favorable safety profile would portend considerable promise for BH as an alternative to bone grafts and substitutes. Although further studies regarding its clinical efficacy are still warranted, this novel approach nevertheless has tremendous potential as a favorable treatment option for bone defects, open fractures, and recalcitrant nonunions.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio, TX
- Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia
| | - Kevin Tetsworth
- Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Herston Biofabrication Institute, Orthopaedic Clinical Stream, Herston, Queensland, Australia
| |
Collapse
|