1
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025; 13:2836-2870. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Ghosh S, Bal T. Neem gum and its derivatives as potential polymeric scaffold for diverse applications: a review. Int J Biol Macromol 2025; 310:143012. [PMID: 40216102 DOI: 10.1016/j.ijbiomac.2025.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Naturally occurring polymers, particularly polysaccharides, are gaining significant attention for their eco-friendly, non-toxic nature and abundant availability. Neem Gum (NEG), a natural exudate from the neem tree (Azadirachta indica), is secreted as a defense mechanism to protect against microbial invasion and physical damage. Unlike common polysaccharides, NEG exhibits a distinct composition rich in bioactive constituents, including heteropolysaccharides and secondary metabolites, contributing to its diverse functional and therapeutic potential. These unique characteristics make NEG a promising biopolymer for applications in pharmaceuticals, food, cosmetics, and environmental industries, where it serves as a binding, emulsifying, gelling, and stabilizing agent. Recent advancements have focused on developing NEG composites and derivatives with enhanced properties and broader applications. Structural modifications like grafting and carboxymethylation have improved its utility in drug delivery, wound healing, and biodegradable materials. Modified NEG derivatives exhibit superior antimicrobial, anti-inflammatory, and antioxidant effects, expanding their biomedical potential in tissue engineering and controlled drug release. NEG-based hydrogels and films show promise in eco-friendly packaging and self-healing biomaterials. This review compiles NEG's diverse applications, highlighting its role in sustainable technologies and emerging fields like self-healing materials and smart polymers. It addresses challenges in scaling production, regulatory compliance, and technical constraints.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India.
| |
Collapse
|
3
|
Adibhosseini MS, Vasheghani-Farahani E, Hashemi-Najafabadi S, Jafarzadeh-Holagh S, Pouri H. Composite cryogel of gelatin/nanofibrillated cellulose/partially demineralized chitin with potential for bone tissue engineering. Int J Biol Macromol 2025; 307:142019. [PMID: 40090655 DOI: 10.1016/j.ijbiomac.2025.142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Fabrication of macroporous scaffolds with favorable mechanical and biological properties based on natural polysaccharides embedding inorganic components has emerged as a promising alternative for bone regeneration. We hypothesized that partially demineralized chitin containing natural calcium phosphate with suitable mechanical strength as the inorganic component is more favorable for this purpose than commonly used nano-hydroxyapatite (nHA). Therefore, a macroporous cryogel scaffold composed of gelatin (G), nanofibrillated cellulose (NFC), and partially demineralized chitin (PDCh), chemically crosslinked with oxidized dextran (ODex), was developed in this study. The scaffold exhibited suitable aqueous solvent absorption, with a controlled degradation and proper calcium phosphate concentration and a 50-500 μm pore size distribution that promoted cell growth and osteogenesis. Incorporating PDCh provided a high surface-to-volume ratio and significantly enhanced the scaffold's mechanical properties with a compressive strength of 315.4 kPa, suitable for cancellous bone regeneration. Moreover, the presence of natural calcium phosphate in PDCh led to superior biocompatibility and bone differentiation in human mesenchymal stem cells (hMSCs), as evidenced by an increase in calcium deposition, higher alkaline phosphatase (ALP) activity, and an increase in collagen-type 1 and osteocalcin gene expression compared to scaffold containing nHA. These results demonstrated the promising potential of gelatin/nanofibrillated cellulose/PDCh cryogel scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Sadat Adibhosseini
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | | - Samira Jafarzadeh-Holagh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
4
|
Jabeen S, Islam A, Khan RU, Ara C, Schubert DW. N-(3-trimethoxysilylpropyl)ethylenediamine-crosslinked sodium alginate hydrogel: applications in angiogenesis and wound healing across avian and murine models. Int J Biol Macromol 2025; 309:143050. [PMID: 40216106 DOI: 10.1016/j.ijbiomac.2025.143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Managing wounds remains a significant challenge in modern medicine. Biopolymer hydrogels provide a moist environment conducive to tissue healing. In this study, N-(3-trimethoxysilylpropyl)ethylenediamine (N-3-TMSPED) crosslinked sodium alginate hydrogels were synthesized via lyophilization, with varying concentrations of polyethylene glycol (PEG 600) to evaluate their role in angiogenesis and wound healing. Scanning electron microscopy confirmed porous structures essential for angiogenesis. The hydrogels showed maximum swelling at neutral and basic pH, and enhanced thermal stability with increasing PEG content. In vivo CAM assay results showed significantly increased blood vessels in PEG-containing hydrogels, with ANP2 exhibiting the highest vessel count (25.05 ± 0.0513) compared to control (13.02 ± 0.3600, p ≤ 0.05). PEG also ensured high embryo viability (94.6 %). Biochemical markers remained within normal physiological ranges, confirming hydrogel safety. All PEG-containing hydrogels displayed a significantly improved wound healing, affirming their therapeutic potential. Wound contraction analysis in mice showed ANP2 (loaded with XLC) achieved 72 % contraction by day 7 and 99.8 % by day 14, compared to untreated (57 %) and experimental controls (61 %) (p ≤ 0.05). Histology confirmed enhanced re-epithelialization and increased collagen deposition. These findings demonstrate that ANP hydrogels promote angiogenesis, accelerate wound healing, and exhibit excellent biocompatibility, highlighting their potential for tissue regeneration applications.
Collapse
Affiliation(s)
- Sehrish Jabeen
- Institute of Polymer and Textile Engineering, University of the Punjab, 54590 Lahore, Pakistan; Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan; Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nümberg, Martensstraße 7, 91058 Erlangen, Germany.
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, 54590 Lahore, Pakistan; School of Chemistry, University of the Punjab, 54590 Lahore, Pakistan.
| | - Rafi Ullah Khan
- Institute of Chemical Engineering and Technology, University of the Punjab, 54590 Lahore, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nümberg, Martensstraße 7, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Kapoor DU, Pareek A, Sharma S, Prajapati BG, Thanawuth K, Sriamornsak P. Alginate gels: Chemistry, gelation mechanisms, and therapeutic applications with a focus on GERD treatment. Int J Pharm 2025; 675:125570. [PMID: 40199431 DOI: 10.1016/j.ijpharm.2025.125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
Alginate, a natural polysaccharide derived primarily from marine algae, has become popular in biomedical research due to its versatile gelation properties and biocompatibility. This review explores the chemistry, gelation mechanisms, and therapeutic applications of alginate gels, with a particular focus on their role in gastroesophageal reflux disease (GERD) management. Alginate's structure, comprised of guluronic and mannuronic acid blocks, allows for gel formation by ionic cross-linking with divalent cations like calcium ions, generating a stable "egg-box" structure. The effects of pH, temperature, and ion concentration on gelation are explored, as well as other gel forms such as in situ and heat-sensitive gels. Alginate is widely used in the medical and pharmaceutical areas to promote tissue engineering through cell encapsulation and scaffolding, as well as in drug delivery systems for controlled and targeted release. In GERD therapy, alginate produces a gel raft that inhibits acid reflux, providing an effective alternative to proton pump inhibitors. Alginate-based products have demonstrated clinical success, strengthening alginate's medicinal promise. The review also discusses alginate-related issues, such as source variability and stability, as well as innovative modifications to improve treatment effects. These improvements establish alginate as a potential material for customized medication and tailored delivery systems.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Anil Pareek
- Department of Pharmaceutics, Lachoo Memorial College of Science and Technology (Autonomous), Jodhpur, Rajasthan 342003, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| | | | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
6
|
Mohammadi M, Rahmani S, Ebrahimi Z, Nowroozi G, Mahmoudi F, Shahlaei M, Moradi S. In Situ Forming Hydrogel Reinforced with Antibiotic-Loaded Mesoporous Silica Nanoparticles for the Treatment of Bacterial Keratitis. AAPS PharmSciTech 2024; 25:254. [PMID: 39443345 DOI: 10.1208/s12249-024-02969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Bacterial keratitis (BK) is a serious ocular infection that can lead to vision impairment or blindness if not treated promptly. Herein, we report the development of a versatile composite hydrogel consisting of silk fibroin and sodium alginate, reinforced by antibiotic-loaded mesoporous silica nanoparticles (MSNs) for the treatment of BK. The drug delivery system is constructed by incorporating vancomycin- and ceftazidime-loaded MSNs into the hydrogel network. The synthesized MSNs were found to be spherical in shape with an average size of about 95 nm. The loading capacities of both drugs were approximately 45% and 43%, for vancomycin and ceftazidime respectively. Moreover, the formulation exhibited a sustained release profile, with 92% of vancomycin and 90% of ceftazidime released over a 24 h period. The cytocompatibility of the drug carrier was also confirmed by MTT assay results. In addition, we performed molecular dynamics (MD) simulations to better reflect the drug-drug and drug-MSN interactions. The results obtained from RMSD, number of contacts, and MSD analyses perfectly corroborated the experimental findings. In brief, the designed drug-MSN@hydrogel could mark an intriguing new chapter in the treatment of BK.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoufeh Rahmani
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohre Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Nowroozi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Fernández-González A, de Lorenzo González C, Rodríguez-Varillas S, Badía-Laíño R. Bioactive silk fibroin hydrogels: Unraveling the potential for biomedical engineering. Int J Biol Macromol 2024; 278:134834. [PMID: 39154674 DOI: 10.1016/j.ijbiomac.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silk fibroin (SF) has received special attention from the scientific community due to its noteworthy properties. Its unique chemical structure results in an uncommon combination of macroscopically useful properties, yielding a strong, fine and flexible material which, in addition, presents good biodegradability and better biocompatibility. Therefore, silk fibroin in various formats, appears as an ideal candidate for supporting biomedical applications. In this review, we will focus on the hydrogels obtained from silk fibroin or in combination with it, paying special attention to the synthesis procedures, characterization methodologies and biomedical applications. Tissue engineering and drug-delivery systems are, undoubtedly, the two main areas where silk fibroin hydrogels find their place.
Collapse
Affiliation(s)
- Alfonso Fernández-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Clara de Lorenzo González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Sandra Rodríguez-Varillas
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Rosana Badía-Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain.
| |
Collapse
|
8
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
9
|
Xu W, Huang W, Cai X, Dang Z, Hao L, Wang L. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40581-40601. [PMID: 39074361 PMCID: PMC11311136 DOI: 10.1021/acsami.4c06661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.
Collapse
Affiliation(s)
- Weikang Xu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Guangdong
Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology
Research Centre, No.
10 Shiliugang Road, Jianghai Avenue Central, Haizhu
District, Guangzhou 510316, China
| | - Weihua Huang
- Affiliated
Qingyuan Hospital, Guangzhou Medical University,
Qingyuan People’s Hospital, No. 35, Yinquan North Road, Qingcheng District, Qingyuan 511518, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Department
of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou
Medical University, the Second Clinical
Medicine School of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu
District, Guangzhou 510260, China
| | - Xiayu Cai
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
| | - Zhaohui Dang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Lijing Hao
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Liyan Wang
- Department
of Stomatology, Foshan Women’s and Children’s Hospital, No. 11 Renmin Xi Road, Chancheng
District, Foshan 528000, China
| |
Collapse
|
10
|
Phan VHG, Thai NKL, Tran THH, Nguyen TKN, Thambi T, Murgia X, Ho DK, Elmaleh DR. Triple-Hybrid BioScaffold Based on Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates: Preparation, Characterization of Physiochemical and Biopharmaceutical Properties. J Pharm Sci 2024; 113:2286-2295. [PMID: 38527617 DOI: 10.1016/j.xphs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Bioscaffolds, which promote cell regeneration and restore tissues' functions, have emerged as significant need in clinic. The hybrid of several biomaterials in a bioscaffold renders clinically advanced and relevant properties for applications yet add challenges in cost efficiency, production, and clinical investigation. This study proposes a facile and sustainable method to formulate a triple-hybrid bioscaffold based on Vietnamese cocoon origin Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates (nano-BCP) that can be easily molded, has high porosity (55-80%), and swelling capacity that facilitates cell proliferation and nutrient diffusion. Notably, their mechanical properties, in particular compressive strength, can easily be tuned in a range from 50 - 200 kPa by changing the amount of nano-BCP addition, which is comparable to the successful precedents for productive cell regeneration. The latter parts investigate the biopharmaceutical properties of a representative bioscaffold, including drug loading and release studies with two kinds of active compounds, salmon calcitonin and methylprednisolone. Furthermore, the bioscaffold is highly biocompatible as the results of hemocompatibility and hemostasis tests, as well as ovo chick chorioallantoic membrane investigation. The findings of the study suggest the triple-hybrid scaffold as a promising platform for multi-functional drug delivery and bone defect repair.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Nguyen-Kim-Luong Thai
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thien-Kim Ngoc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| | | | - Duy-Khiet Ho
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - David R Elmaleh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| |
Collapse
|
11
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Vaziri AS, Vasheghani-Farahani E, Hosseinzadeh S, Bagheri F, Büchner M, Schubert DW, Boccaccini AR. Genipin-Cross-Linked Silk Fibroin/Alginate Dialdehyde Hydrogel with Tunable Gelation Kinetics, Degradability, and Mechanical Properties: A Potential Candidate for Tissue Regeneration. Biomacromolecules 2024; 25:2323-2337. [PMID: 38437165 DOI: 10.1021/acs.biomac.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Genipin-cross-linked silk fibroin (SF) hydrogel is considered to be biocompatible and mechanically robust. However, its use remains a challenge for in situ forming applications due to its prolonged gelation process. In our attempt to facilitate the in situ fabrication of a genipin-mediated SF hydrogel, alginate dialdehyde (ADA) was utilized as a reinforcement template. Here, SF/ADA-based hydrogels with different compositions were synthesized covalently and ionically. Incorporating ADA into the SF hydrogel increased pore size (44.66-174.66 μm), porosity (61.59-80.40%), and the equilibrium swelling degree (7.60-30.17). Moreover, a wide range of storage modulus and compressive modulus were obtained by adjusting the proportions of SF and ADA networks within the hydrogel. The in vitro cell analysis using preosteoblast cells (MC3T3-E1) demonstrated the cytocompatibility of all hydrogels. Overall, the covalently and ionically cross-linked SF/ADA hydrogel represents a promising solution for in situ forming hydrogels for applications in tissue regeneration.
Collapse
Affiliation(s)
- Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1968917313, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Margitta Büchner
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
13
|
Chen D, Ma X, Zhu J, Wang Y, Guo S, Qin J. Pectin based hydrogel with covalent coupled doxorubicin and limonin loading for lung tumor therapy. Colloids Surf B Biointerfaces 2024; 234:113670. [PMID: 38042108 DOI: 10.1016/j.colsurfb.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
14
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|