1
|
Effect of Dietary Methionine Deficiency Followed by a Re-Feeding Phase on the Hepatic Antioxidant Activities of Lambs. Animals (Basel) 2020; 11:ani11010007. [PMID: 33374518 PMCID: PMC7822206 DOI: 10.3390/ani11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Our objective was to investigate the effect of methionine restriction and resuming supply on liver antioxidant response in lambs. The concentrations of methionine and its metabolites and the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive factor, were detected after methionine restriction treatment for 50 days and methionine supply recovery for 29 days. The expression of glutathione (GSH) S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were characterized at the level of transcription and translation. Methionine restriction can directly change the content of methionine and its metabolites in plasma and liver, and affect the redox state of lambs by activating the Nrf2 signaling pathway. Liver tissue can adapt to oxidative environment by upregulating the expression of antioxidant enzymes such as GSH-Px and SOD. Moreover, it was found that there was a lag effect in the recovery of metabolism after methionine supplementation.
Collapse
|
2
|
Feng HZ, Jin JP. Transgenic expression of carbonic anhydrase III in cardiac muscle demonstrates a mechanism to tolerate acidosis. Am J Physiol Cell Physiol 2019; 317:C922-C931. [PMID: 31390226 DOI: 10.1152/ajpcell.00130.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase III (CAIII) is abundant in liver, adipocytes, and skeletal muscles, but not heart. A cytosolic enzyme that catalyzes conversions between CO2 and HCO3- in the regulation of intracellular pH, its physiological role in myocytes is not fully understood. Mouse skeletal muscles lacking CAIII showed lower intracellular pH during fatigue, suggesting its function in stress tolerance. We created transgenic mice expressing CAIII in cardiomyocytes that lack endogenous CAIII. The transgenic mice showed normal cardiac development and life span under nonstress conditions. Studies of ex vivo working hearts under normal and acidotic conditions demonstrated that the transgenic and wild-type mouse hearts had similar pumping functions under normal pH. At acidotic pH, however, CAIII transgenic mouse hearts showed significantly less decrease in cardiac function than that of wild-type control as shown by higher ventricular pressure development, systolic and diastolic velocities, and stroke volume via elongating the time of diastolic ejection. In addition to the effect of introducing CAIII into cardiomyocytes on maintaining homeostasis to counter acidotic stress, the results demonstrate the role of carbonic anhydrases in maintaining intracellular pH in muscle cells as a potential mechanism to treat heart failure.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
3
|
Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice. PLoS One 2017; 12:e0176502. [PMID: 28437447 PMCID: PMC5402959 DOI: 10.1371/journal.pone.0176502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.
Collapse
Affiliation(s)
- Sarah W. Renner
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Lauren M. Walker
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jay E. Brenman
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Habte-Tsion HM, Ren M, Liu B, Ge X, Xie J, Chen R. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 51:189-199. [PMID: 26631806 DOI: 10.1016/j.fsi.2015.11.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish.
Collapse
Affiliation(s)
- Habte-Michael Habte-Tsion
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Ministry of Marine Resources the State of Eritrea, P.O.Box: 27, Massawa, Eritrea.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| | - Ruli Chen
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, PR China
| |
Collapse
|
5
|
Caballero VJ, Mendieta JR, Lombardo D, Saceda M, Ferragut JA, Conde RD, Giudici AM. Liver damage and caspase-dependent apoptosis is related to protein malnutrition in mice: effect of methionine. Acta Histochem 2015; 117:126-35. [PMID: 25575574 DOI: 10.1016/j.acthis.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 01/18/2023]
Abstract
This study aimed to determine whether the effects on the mouse liver caused by three periods of feeding a protein-free diet for 5 days followed by a normal complete diet for 5 days (3PFD-CD) are prevented by a constant methionine supply (3PFD+Met-CD). The expressions of carbonic anhydrase III (CAIII), fatty acid synthase (FAS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione S-transferase P1 (GSTP1) were assessed by proteomics and reverse transcriptase-polymerase chain reactions. The liver redox status was examined by measuring the activities of superoxide dismutase (SOD) and catalase (CAT), as well as protein carbonylation. Because oxidative stress can result in apoptosis, the activity and content of caspase-3, as well as the x-linked inhibitor of the apoptosis protein (XIAP) and mitochondrial caspase-independent apoptosis inducing factor (AIF) contents were assessed. In addition, the liver histomorphology was examined. Compared to the controls fed a normal complete diet throughout, feeding with 3PFD-CD increased the FAS content, decreased the CAIII content, decreased both the SOD and CAT activities, and increased protein carbonylation. It also activated caspase-3, decreased the XIAP content, decreased the AIF content, increased the number of GSTP1-positive foci and caspase-3-positive cells, and caused fatty livers. Conversely, the changes were lessened to varying degrees in mice fed 3PFD+Met-CD. The present results indicate that a regular Met supply lessens the biochemical changes, damage, and caspase-dependent apoptosis provoked by recurrent dietary amino acid deprivation in the mouse liver.
Collapse
Affiliation(s)
- Verónica J Caballero
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Julieta R Mendieta
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Daniel Lombardo
- Institute of Research and Technology in Animal Reproduction (INITRA), Faculty of Veterinary Science. University of Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Miguel Saceda
- Institute of Molecular and Cellular Biology, University Miguel Hernandez, Building Torregaitán, Avda de la Universidad s/n, 03202, Elche, Spain
| | - José Antonio Ferragut
- Institute of Molecular and Cellular Biology, University Miguel Hernandez, Building Torregaitán, Avda de la Universidad s/n, 03202, Elche, Spain
| | - Rubén D Conde
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina
| | - Ana M Giudici
- Biological Research Institute, Faculty of Natural Sciences, National University of Mar del Plata - CONICET, CC 1245, CP 7600 Mar del Plata, Argentina.
| |
Collapse
|
6
|
Lin AH, Chen HW, Liu CT, Tsai CW, Lii CK. Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6537-6545. [PMID: 22676582 DOI: 10.1021/jf301567m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.
Collapse
Affiliation(s)
- Ai-Hsuan Lin
- School of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Caballero VJ, Mendieta JR, Giudici AM, Crupkin AC, Barbeito CG, Ronchi VP, Chisari AN, Conde RD. Alternation between dietary protein depletion and normal feeding cause liver damage in mouse. J Physiol Biochem 2010; 67:43-52. [PMID: 20878513 DOI: 10.1007/s13105-010-0047-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/15/2010] [Indexed: 01/12/2023]
Abstract
The effect of frequent protein malnutrition on liver function has not been intensively examined. Thus, the effects of alternating 5 days of a protein and amino acid-free diet followed by 5 days of a complete diet repeated three times (3 PFD-CD) on female mouse liver were examined. The expression of carbonic anhydrase III (CAIII), fatty acid synthase (FAS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione S-transferase P1 (GSTP1) in liver were assessed by proteomics, reverse transcriptase-polymerase chain reaction and Northern blotting. The activities of liver GSTs, glutathione reductase (GR) and catalase (CAT), as well as serum glutamic-oxaloacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT) were also tested. Additionally, oxidative damage was examined by measuring of protein carbonylation and lipid peroxidation. Liver histology was examined by light and electron microscopy. Compared with control mice, 3 PFD-CD increased the content of FAS protein (+90%) and FAS mRNA (+30%), while the levels of CAIII and CAIII mRNAs were decreased (-48% and -64%, respectively). In addition, 3 PFD-CD did not significantly change the content of GSTP1 but produced an increase in its mRNA level (+20%), while it decreased the activities of both CAT (-66%) and GSTs (-26%). After 3 PFD-CD, liver protein carbonylation and lipid peroxidation were increased by +55% and +95%, respectively. In serum, 3 PFD-CD increased the activities of both SGOT (+30%) and SGPT (+61%). In addition, 3 PFD-CD showed a histological pattern characteristic of hepatic damage. All together, these data suggest that frequent dietary amino acid deprivation causes hepatic metabolic and ultrastructural changes in a fashion similar to precancerous or cancerous conditions.
Collapse
Affiliation(s)
- Veronica J Caballero
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3250 4º Nivel, CP 7600, Mar del Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Oxidative stress in mouse liver caused by dietary amino acid deprivation: protective effect of methionine. J Physiol Biochem 2010; 66:93-103. [PMID: 20577846 DOI: 10.1007/s13105-010-0014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/30/2010] [Indexed: 01/24/2023]
Abstract
The aim of this work was to evaluate the effects of a diet depleted of amino acids (protein-free diet, or PFD), as well as the supplementation with methionine (PFD+Met), on the antioxidant status of the female mouse liver. With this purpose, cytosolic protein spots from two-dimensional non-equilibrium pH gel electrophoresis were identified by several procedures, such as mass spectrometry, Western blot, gel matching and enzymatic activity. PFD decreased the contents of catalase (CAT), peroxiredoxin I (Prx-I), and glutathione peroxidase (GPx) by 67%, 37% and 45%, respectively. Gene expression analyses showed that PFD caused a decrease in CAT (-20%) and GPx (-30%) mRNA levels but did not change that of Prx-I. It was also found that, when compared to a normal diet, PFD increased the liver contents of both reactive oxygen species (+50%) and oxidized protein (+88%) and decreased that of glutathione (-45%). Supplementation of PFD with Met prevented these latter effects to varying degrees, whereas CAT, Prx-I and GPx mRNA levels resulted unmodified. Present results suggest that dietary amino acid deprivation deranges the liver antioxidant defences, and this can be, in part, overcome by supplementation with Met.
Collapse
|
9
|
Tsai CW, Lin AH, Wang TS, Liu KL, Chen HW, Lii CK. Methionine restriction up-regulates the expression of the pi class of glutathione S
-transferase partially via
the extracellular signal-regulated kinase-activator protein-1 signaling pathway initiated by glutathione depletion. Mol Nutr Food Res 2009; 54:841-50. [DOI: 10.1002/mnfr.200900083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|