1
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
2
|
Ullah A, Khan A, Al-Harrasi A, Ullah K, Shabbir A. Three-Dimensional Structure Characterization and Inhibition Study of Exfoliative Toxin D From Staphylococcus aureus. Front Pharmacol 2022; 13:800970. [PMID: 35250557 PMCID: PMC8895341 DOI: 10.3389/fphar.2022.800970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
The Staphylococcus aureus exfoliative toxins (ETs) are the main toxins that produce staphylococcal scalded skin syndrome (SSSS), an abscess skin disorder. The victims of the disease are usually newborns and kids, as well as grown-up people. Five ETs namely, exfoliative toxins A, B, C, D, and E have been identified in S. aureus. The three-dimensional (3D) structure of exfoliative toxins A, B, C and E is known, while that of exfoliative toxin D (ETD) is still unknown. In this work, we have predicted the 3D structure of ETD using protein modeling techniques (software used for 3D structure modeling comprising the MODELLER 9v19 program, SWISS-Model, and I-TESSER). The validation of the build model was done using PROCHECK (Ramachandran plot), ERRAT2, and Verify 3D programs. The results from 3D modeling show that the build model was of good quality as indicated by a GMQE score of 0.88 and by 91.1% amino acid residues in the most favored region of the Ramachandran plot, the ERRAT2 quality factor of 90.1%, and a verify3D score of >0.2 for 99.59% of amino acid residues. The 3D structure analysis indicates that the overall structure of ETD is similar to the chymotrypsin-like serine protease fold. The structure is composed of 13 β-strands and seven α-helices that fold into two well-defined six-strand β-barrels whose axes are roughly perpendicular to each other. The active site residues include histidine-97, aspartic acid-147, and serine-221. This represents the first structure report of ETD. Structural comparison with the other ETs shows some differences, particularly in the loop region, which also change the overall surface charge of these toxins. This may convey variable substrate specificity to these toxins. The inhibition of these toxins by natural (2S albumin and flocculating proteins from Moringa oleifera seeds) and synthetic inhibitors (suramin) was also carried out in this study. The results from docking indicate that the inhibitors bind near the C-terminal domain which may restrict the movement of this domain and may halt the access of the substrate to the active site of this enzyme. Molecular dynamic simulation was performed to see the effect of inhibitor binding to the enzyme. This work will further elucidate the structure-function relationship of this enzyme. The inhibition of this enzyme will lead to a new treatment for SSSS.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences COMSATS University Islamabad, Islamabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Kifayat Ullah
- Department of Biosciences COMSATS University Islamabad, Islamabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
Abstract
Suramin is 100 years old and is still being used to treat the first stage of acute human sleeping sickness, caused by Trypanosoma brucei rhodesiense Suramin is a multifunctional molecule with a wide array of potential applications, from parasitic and viral diseases to cancer, snakebite, and autism. Suramin is also an enigmatic molecule: What are its targets? How does it get into cells in the first place? Here, we provide an overview of the many different candidate targets of suramin and discuss its modes of action and routes of cellular uptake. We reason that, once the polypharmacology of suramin is understood at the molecular level, new, more specific, and less toxic molecules can be identified for the numerous potential applications of suramin.
Collapse
|
4
|
Atkins SL, Motaib S, Wiser LC, Hopcraft SE, Hardy PB, Shackelford J, Foote P, Wade AH, Damania B, Pagano JS, Pearce KH, Whitehurst CB. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Antiviral Res 2020; 173:104649. [PMID: 31711927 PMCID: PMC7017600 DOI: 10.1016/j.antiviral.2019.104649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Herpesviral deubiquitinating enzymes (DUBs) were discovered in 2005, are highly conserved across the family, and are proving to be increasingly important players in herpesviral infection. EBV's DUB, BPLF1, is known to regulate both cellular and viral target activities, yet remains largely unstudied. Our work has implicated BPLF1 in a wide range of processes including infectivity, viral DNA replication, and DNA repair. Additionally, knockout of BPLF1 delays and reduces human B-cell immortalization and lymphoma formation in humanized mice. These findings underscore the importance of BPLF1 in viral infectivity and pathogenesis and suggest that inhibition of EBV's DUB activity may offer a new approach to specific therapy for EBV infections. We set out to discover and characterize small molecule inhibitors of BPLF1 deubiquitinating activity through high-throughput screening. An initial small pilot screen resulted in discovery of 10 compounds yielding >80% decrease in BPLF1 DUB activity at a 10 μM concentration. Follow-up dose response curves of top hits identified several compounds with an IC50 in the low micromolar range. Four of these hits were tested for their ability to cleave ubiquitin chains as well as their effects on viral infectivity and cell viability. Further characterization of the top hit, commonly known as suramin was found to not be selective yet decreased viral infectivity by approximately 90% with no apparent effects on cell viability. Due to the conserved nature of Herpesviral deubiquitinating enzymes, identification of an inhibitor of BPLF1 may prove to be an effective and promising new avenue of therapy for EBV and other herpesviral family members.
Collapse
Affiliation(s)
- Sage L Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Safiyyah Motaib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura C Wiser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon E Hopcraft
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul B Hardy
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia Shackelford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ashley H Wade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph S Pagano
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Al-Horani RA, Clemons D, Mottamal M. The In Vitro Effects of Pentamidine Isethionate on Coagulation and Fibrinolysis. Molecules 2019; 24:E2146. [PMID: 31174390 PMCID: PMC6600542 DOI: 10.3390/molecules24112146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pentamidine is bis-oxybenzamidine-based antiprotozoal drug. The parenteral use of pentamidine appears to affect the processes of blood coagulation and/or fibrinolysis resulting in rare but potentially life-threatening blood clot formation. Pentamidine was also found to cause disseminated intravascular coagulation syndrome. To investigate the potential underlying molecular mechanism(s) of pentamidine's effects on coagulation and fibrinolysis, we studied its effects on clotting times in normal and deficient human plasmas. Using normal plasma, pentamidine isethionate doubled the activated partial thromboplastin time at 27.5 µM, doubled the prothrombin time at 45.7 µM, and weakly doubled the thrombin time at 158.17 µM. Using plasmas deficient of factors VIIa, IXa, XIa, or XIIa, the concentrations to double the activated partial thromboplastin time were similar to that obtained using normal plasma. Pentamidine also inhibited plasmin-mediated clot lysis with half-maximal inhibitory concentration (IC50) value of ~3.6 μM. Chromogenic substrate hydrolysis assays indicated that pentamidine inhibits factor Xa and plasmin with IC50 values of 10.4 µM and 8.4 µM, respectively. Interestingly, it did not significantly inhibit thrombin, factor XIa, factor XIIIa, neutrophil elastase, or chymotrypsin at the highest concentrations tested. Michaelis-Menten kinetics and molecular modeling studies revealed that pentamidine inhibits factor Xa and plasmin in a competitive fashion. Overall, this study provides quantitative mechanistic insights into the in vitro effects of pentamidine isethionate on coagulation and fibrinolysis via the disruption of the proteolytic activity of factor Xa and plasmin.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Daytriona Clemons
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | | |
Collapse
|
6
|
Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK, Coronado MA. Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B 12 Metabolism. Sci Rep 2019; 9:6350. [PMID: 31015525 PMCID: PMC6478909 DOI: 10.1038/s41598-019-42935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
Vitamin B12 acts as a cofactor for various metabolic reactions important in living organisms. The Vitamin B12 biosynthesis is restricted to prokaryotes, which means, all eukaryotic organisms must acquire this molecule through diet. This study presents the investigation of Vitamin B12 metabolism and the characterization of precorrin-4 C(11)-methyltransferase (CobM), an enzyme involved in the biosynthesis of Vitamin B12 in Corynebacterium pseudotuberculosis. The analysis of the C. pseudotuberculosis genome identified two Vitamin B12-dependent pathways, which can be strongly affected by a disrupted vitamin metabolism. Molecular dynamics, circular dichroism, and NMR-STD experiments identified regions in CobM that undergo conformational changes after s-adenosyl-L-methionine binding to promote the interaction of precorrin-4, a Vitamin B12 precursor. The binding of s-adenosyl-L-methionine was examined along with the competitive binding of adenine, dATP, and suramin. Based on fluorescence spectroscopy experiments the dissociation constant for the four ligands and the target protein could be determined; SAM (1.4 ± 0.7 µM), adenine (17.8 ± 1.5 µM), dATP (15.8 ± 2.0 µM), and Suramin (6.3 ± 1.1 µM). The results provide rich information for future investigations of potential drug targets within the C. pseudotuberculosis's Vitamin B12 metabolism and related pathways to reduce the pathogen's virulence in its hosts.
Collapse
Affiliation(s)
- Rafaela Dos S Peinado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Danilo S Olivier
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Fabio R de Moraes
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Marcos S Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79090-700, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| | - Monika A Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| |
Collapse
|
7
|
Lira AL, Ferreira RS, Torquato RJS, Oliva MLV, Schuck P, Sousa AA. Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles. NANOSCALE ADVANCES 2019; 1:378-388. [PMID: 30931428 PMCID: PMC6394888 DOI: 10.1039/c8na00081f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Rodrigo S Ferreira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Ricardo J S Torquato
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Maria Luiza V Oliva
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , MD , USA
| | - Alioscka A Sousa
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| |
Collapse
|
8
|
Ullah A, Masood R, Ali I, Ullah K, Ali H, Akbar H, Betzel C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int J Biol Macromol 2018; 114:788-811. [PMID: 29604354 DOI: 10.1016/j.ijbiomac.2018.03.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 01/15/2023]
Abstract
Snake venom thrombin-like enzymes (SVTLEs) constitute the major portion (10-24%) of snake venom and these are the second most abundant enzymes present in the crude venom. During envenomation, these enzymes had shown prominently the various pathological effects, such as disturbance in hemostatic system, fibrinogenolysis, fibrinolysis, platelet aggregation, thrombosis, neurologic disorders, activation of coagulation factors, coagulant, procoagulant etc. These enzymes also been used as a therapeutic agent for the treatment of various diseases such as congestive heart failure, ischemic stroke, thrombotic disorders etc. Although the crystal structures of five SVTLEs are available in the Protein Data Bank (PDB), there is no single article present in the literature that has described all of them. The current work describes the structural aspects, structure-based mechanism of action, processing and inhibition of these enzymes. The sequence analysis indicates that these enzymes show a high sequence identity (57-85%) with each other and low sequence identity with trypsin (36-43%), human alpha-thrombin (29-36%) and other snake venom serine proteinases (57-85%). Three-dimensional structural analysis indicates that the loops surrounding the active site are variable both in amino acids composition and length that may convey variable substrate specificity to these enzymes. The surface charge distributions also vary in these enzymes. Docking analysis with suramin shows that this inhibitor preferably binds to the C-terminal region of these enzymes and causes the destabilization of their three-dimensional structure.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan.
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Haji Akbar
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
9
|
Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin. Sci Rep 2016; 6:24043. [PMID: 27053426 PMCID: PMC4823711 DOI: 10.1038/srep24043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding.
Collapse
|
10
|
Marques AF, Esser D, Rosenthal PJ, Kassack MU, Lima LMTR. Falcipain-2 inhibition by suramin and suramin analogues. Bioorg Med Chem 2013; 21:3667-73. [PMID: 23680445 DOI: 10.1016/j.bmc.2013.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
Falcipain-2 is a cysteine protease of the malaria parasite Plasmodium falciparum that plays a key role in the hydrolysis of hemoglobin, a process that is required by intraerythrocytic parasites to obtain amino acids. In this work we show that the polysulfonated napthylurea suramin is capable of binding to falcipain-2, inhibiting its catalytic activity at nanomolar concentrations against both synthetic substrates and the natural substrate hemoglobin. Kinetic measurements suggest that the inhibition occurs through an noncompetitive allosteric mechanism, eliciting substrate inhibition. Smaller suramin analogues and those with substituted methyl groups also showed inhibition within the nanomolar range. Our results identify the suramin family as a potential starting point for the design of falcipain-2 inhibitor antimalarials that act through a novel inhibition mechanism.
Collapse
Affiliation(s)
- Adriana Fonseca Marques
- Laboratory for Pharmaceutical Biotechnology, School of Pharmacy, Federal University of Rio de Janeiro, CCS, Bss34, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
11
|
Allosteric activation of human α-thrombin through exosite 2 by suramin analogs. Arch Biochem Biophys 2012; 520:36-41. [DOI: 10.1016/j.abb.2012.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|
12
|
Silva VDA, Cargnelutti MT, Giesel GM, Palmieri LC, Monteiro RQ, Verli H, Lima LMTR. Structure and behavior of human α-thrombin upon ligand recognition: thermodynamic and molecular dynamics studies. PLoS One 2011; 6:e24735. [PMID: 21935446 PMCID: PMC3173475 DOI: 10.1371/journal.pone.0024735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors.
Collapse
Affiliation(s)
- Vivian de Almeira Silva
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Federal Institute of Rio de Janeiro for Science and Technology Education, Rio de Janeiro, Brazil
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Thereza Cargnelutti
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilherme M. Giesel
- School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo C. Palmieri
- School of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Medical Biochemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hugo Verli
- School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
13
|
Lima LMTR, Becker CF, Giesel GM, Marques AF, Cargnelutti MT, de Oliveira Neto M, Monteiro RQ, Verli H, Polikarpov I. Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:873-81. [PMID: 19332154 DOI: 10.1016/j.bbapap.2009.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 02/24/2009] [Accepted: 03/09/2009] [Indexed: 11/15/2022]
Abstract
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin:suramin complex, refined at 2.4 A resolution. While a single thrombin:suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin.
Collapse
Affiliation(s)
- Luis Maurício T R Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fernandes RS, Assafim M, Arruda EZ, Melo PA, Zingali RB, Monteiro RQ. Suramin counteracts the haemostatic disturbances produced by Bothrops jararaca snake venom. Toxicon 2007; 49:931-8. [PMID: 17316730 DOI: 10.1016/j.toxicon.2007.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/24/2006] [Accepted: 01/11/2007] [Indexed: 11/25/2022]
Abstract
Snakebite accidents produced by Bothrops jararaca typically results in haemostatic changes including pro- and anticoagulant disturbs as well as interference with platelets. Suramin is a hexasulfonated naphthylurea derivative that was recently characterized as a thrombin inhibitor (Monteiro et al., 2004. Suramin interaction with human alpha-thrombin: inhibitory effects and binding studies. Int. J. Biochem. Cell Biol. 36(10), 2077-2085). Here, we evaluated the ability of suramin to counteract some of the haemostatic disturbs produced by B. jararaca venom. In vitro assays showed that suramin inhibited venom-induced hydrolysis of a number of synthetic substrates: S-2238, S-2266, S-2302 and S-2288, being this ability more prominent towards the thrombin substrate S-2238 (IC(50)=4.3 microM). It was also observed that suramin impaired the fibrinogen clotting induced by B. jararaca venom (IC(50)=124 microM). Accordingly, increasing concentrations of suramin progressively delayed venom-induced plasma clotting, with complete inhibition attained at concentrations above 1.0 mM. In addition, the platelet-aggregating properties of B. jararaca venom were inhibited by suramin in a dose-dependent fashion (IC(50)=127 microM). Suramin showed no effect in the in vivo hemorrhagic effect of venom in mouse skin. The in vivo effect of suramin was further tested using a previously established venous thrombosis model in rats induced by intravenous administration of B. jararaca venom combined with stasis. Venom doses of 100 microg/kg produced 100% of thrombus incidence (10.6+/-1.7 mg). On the other hand, previous administration of suramin partially inhibited thrombus formation. Thus, 12.5 or 25 mg/kg of suramin decreased thrombus weight by 24% and 40%, respectively. Remarkably, co-administration of 3 microL/kg of antibothropic serum (which has no effect on thrombus formation) and 12.5 mg/kg of suramin decreased thrombus weight by 75%, suggesting a synergic effect. Altogether, we demonstrate here that suramin inhibits in vitro and in vivo haemostatic changes caused by B. jararaca venom. At this point, this drug could be of potential interest for association with conventional antiserum therapy.
Collapse
Affiliation(s)
- Renato S Fernandes
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Cidado Universitária, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|