1
|
Li J, Huang S, Liu S, Liao X, Yan S, Liu Q. SLC26 family: a new insight for kidney stone disease. Front Physiol 2023; 14:1118342. [PMID: 37304821 PMCID: PMC10247987 DOI: 10.3389/fphys.2023.1118342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The solute-linked carrier 26 (SLC26) protein family is comprised of multifunctional transporters of substrates that include oxalate, sulphate, and chloride. Disorders of oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly expressed during kidney stone formation, and consequently may present therapeutic targets. SLC26 protein inhibitors are in preclinical development. In this review, we integrate the findings of recent reports with clinical data to highlight the role of SLC26 proteins in oxalate metabolism during urolithogenesis, and discuss limitations of current studies and potential directions for future research.
Collapse
Affiliation(s)
- Jialin Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sigen Huang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shengyin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinzhi Liao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sheng Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Quanliang Liu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Atcheson RJ, Burne THJ, Dawson PA. Serum sulfate level and Slc13a1 mRNA expression remain unaltered in a mouse model of moderate vitamin D deficiency. Mol Cell Biochem 2022:10.1007/s11010-022-04634-7. [PMID: 36566486 DOI: 10.1007/s11010-022-04634-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022]
Abstract
Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.
Collapse
Affiliation(s)
- Ranita J Atcheson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Clarke T, Fernandez FE, Dawson PA. Sulfation Pathways During Neurodevelopment. Front Mol Biosci 2022; 9:866196. [PMID: 35495624 PMCID: PMC9047184 DOI: 10.3389/fmolb.2022.866196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Sulfate is an important nutrient that modulates a diverse range of molecular and cellular functions in mammalian physiology. Over the past 2 decades, animal studies have linked numerous sulfate maintenance genes with neurological phenotypes, including seizures, impaired neurodevelopment, and behavioral abnormalities. Despite sulfation pathways being highly conserved between humans and animals, less than one third of all known sulfate maintenance genes are clinically reportable. In this review, we curated the temporal and spatial expression of 91 sulfate maintenance genes in human fetal brain from 4 to 17 weeks post conception using the online Human Developmental Biology Resource Expression. In addition, we performed a systematic search of PubMed and Embase, identifying those sulfate maintenance genes linked to atypical neurological phenotypes in humans and animals. Those findings, together with a search of the Online Mendelian Inheritance in Man database, identified a total of 18 candidate neurological dysfunction genes that are not yet considered in clinical settings. Collectively, this article provides an overview of sulfate biology genes to inform future investigations of perturbed sulfate homeostasis associated with neurological conditions.
Collapse
Affiliation(s)
- Taylor Clarke
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Francesca E. Fernandez
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Paul A. Dawson
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Paul A. Dawson,
| |
Collapse
|
4
|
Clavaguéra C, Thaunay F, Ohanessian G. Manifolds of low energy structures for a magic number of hydrated sulfate: SO 42-(H 2O) 24. Phys Chem Chem Phys 2021; 23:24428-24438. [PMID: 34693943 DOI: 10.1039/d1cp03123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low energy structures of SO42-(H2O)24 have been obtained using a combination of classical molecular dynamics simulations and refinement of structures and energies by quantum chemical calculations. Extensive exploration of the potential energy surface led to a number of low-energy structures, confirmed by accurate calibration calculations. An overall analysis of this large set was made after devising appropriate structural descriptors such as the numbers of cycles and their combinations. Low energy structures bear common motifs, the most prominent being fused cycles involving alternatively four and six water molecules. The latter adopt specific conformations which ensure the appropriate surface curvature to form a closed cage without dangling O-H bonds and at the same time provide 12-coordination of the sulfate ion. A prominent feature to take into account is isomerism via inversion of hydrogen bond orientations along cycles. This generates large families of ca. 100 isomers for this cluster size, spanning energy windows of 10-30 kJ mol-1. This relatively ignored isomerism must be taken into account to identify reliably the lowest energy minima. The overall picture is that the magic number cluster SO42-(H2O)24 does not correspond to formation of a single, remarkable structure, but rather to a manifold of structural families with similar stabilities. Extensive calculations on isomerization mechanisms within a family indicate that large barriers are associated to direct inversion of hydrogen bond networks. Possible implications of these results for magic number clusters of other anions are discussed.
Collapse
Affiliation(s)
- Carine Clavaguéra
- Institut de Chimie Physique, Université Paris-Saclay - CNRS, UMR 8000, 91405 Orsay, France.
| | - Florian Thaunay
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| | - Gilles Ohanessian
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| |
Collapse
|
5
|
Knorke H, Li H, Warneke J, Liu ZF, Asmis KR. Cryogenic ion trap vibrational spectroscopy of the microhydrated sulfate dianions SO 42-(H 2O) 3-8. Phys Chem Chem Phys 2020; 22:27732-27745. [PMID: 33242322 DOI: 10.1039/d0cp04386a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infrared photodissociation spectra of the D2-tagged microhydrated sulfate dianions with three to eight water molecules are presented over a broad spectral range that covers the OH stretching and H2O bending modes of the solvent molecules at higher energies, the sulfate stretching modes of the solute at intermediate energies and the intermolecular solute librational modes at the lowest energies. A low ion temperature combined with messenger-tagging ensures well-resolved vibrational spectra that allow for structure assignments based on a comparison to harmonic and anharmonic IR spectra from density functional theory (DFT) calculations. DFT ab initio molecular dynamics simulations are required to disentangle the broad and complex spectral signatures of microhydrated sulfate dianions in the OH stretching region and to identify systematic trends in the correlation of the strength and evolution of the solute-solvent and solvent-solvent interactions with cluster size. The onset for the formation of the second solvation shell is observed for n = 8.
Collapse
Affiliation(s)
- Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
6
|
Lee S, Temple FT, Dawson PA. Kidney microRNA profile in pregnant mice reveals molecular insights into kidney adaptation to pregnancy: A pilot study. Mol Genet Metab Rep 2019; 20:100486. [PMID: 31249785 PMCID: PMC6587019 DOI: 10.1016/j.ymgmr.2019.100486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
The maternal kidneys undergo numerous physiological changes during pregnancy to maintain a healthy pregnancy for mother and child. Over the past decade, interest in microRNAs (miRNAs) for regulating gene expression during pregnancy has expanded. However, the role of miRNAs in modulating kidney physiology during pregnancy has not been extensively investigated. In this study, miRNome profiling suggested differential expression of 163 miRNAs (of 887 miRNAs detected) in the kidneys from pregnant mice at 6.5 days gestation when compared to non-pregnant female mice, of which 35 and 128 miRNAs were potentially down- and up-regulated, respectively. We performed network and pathway analyses of the >1700 potential mRNA targets of the differentially expressed miRNAs using MiRNet, Gene Ontology, Reactome and KEGG analyses. The mRNA targets were over-represented in numerous cellular signalling pathways, including cellular protective responses. In addition, we explored 13 and 29 potential differentially expressed miRNAs to have putative binding sites in the Slc13a1 and Slc26a1 sulfate transporter mRNAs, respectively, and that decreased levels of mir-466k may potentially explain the increased expression of these sulfate transporters in early mouse gestation. Collectively, this study suggests altered expression levels of miRNAs during mouse gestation, which provides pilot data for future investigations into the molecular events that modulate kidney adaptsation to pregnancy.
Collapse
Affiliation(s)
- Soohyun Lee
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fergal Thomas Temple
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Paul Anthony Dawson
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Knorke H, Li H, Liu ZF, Asmis KR. Vibrational spectroscopy of the hexahydrated sulfate dianion revisited: role of isomers and anharmonicities. Phys Chem Chem Phys 2019; 21:11651-11659. [PMID: 31119259 DOI: 10.1039/c9cp01802f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the gas phase vibrational spectroscopy of the hexahydrated sulfate dianion, SO42-(H2O)6, and its fully deuterated isotopologue, SO42-(D2O)6, using infrared photodissociation (IRPD) spectroscopy of the D2-tagged dianions in combination with density-functional-theory calculations on minimum-energy structures as well as finite temperature ab initio molecular dynamics (AIMD) simulations. The IRPD spectra were recorded at an ion trap temperature of 12 K and in the spectral range from 650 to 3800 cm-1, covering the intramolecular modes of the solvent (OH/OD stretches and H2O/D2O bends) at higher energies, those of the solute (sulfate stretches) at intermediate energies and the intermolecular solute librational modes at the lowest energies. Isomer-specific double resonance in combination with messenger-tag dependent IRPD spectra show that only a single isomer is contributing significantly and that this isomer is not the highly symmetric Td but rather the lower symmetry C3 isomer. Temperature-dependent IR multiple photon dissociation spectra of bare SO42-(H2O)6 suggest that the C3 isomer remains the most stable one up to 200 K. The AIMD simulations reveal that the IRPD spectra can only be fully understood when anharmonic effects as well as entropy-driven hydrogen bond network fluctuations are considered.
Collapse
Affiliation(s)
- Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
8
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Barnes SK, Eiby YA, Lee S, Lingwood BE, Dawson PA. Structure, organization and tissue expression of the pig SLC13A1 and SLC13A4 sulfate transporter genes. Biochem Biophys Rep 2017; 10:215-223. [PMID: 28955749 PMCID: PMC5614667 DOI: 10.1016/j.bbrep.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 02/04/2023] Open
Abstract
Sulfate is an obligate nutrient for fetal growth and development. In mice, the renal Slc13a1 sulfate transporter maintains high maternal circulating levels of sulfate in pregnancy, and the placental Slc13a4 sulfate transporter mediates sulfate supply to the fetus. Both of these genes have been linked to severe embryonal defects and fetal loss in mice. However, the clinical significance of SLC13A1 and SLC13A4 in human gestation is unknown. One approach towards understanding the potential involvement of these genes in human fetal pathologies is to use an animal model, such as the pig, which mimics the developmental trajectory of the human fetus more closely than the previously studied mouse models. In this study, we determined the tissue distribution of pig SLC13A1 and SLC13A4 mRNA, and compared the gene, cDNA and protein sequences of the pig, human and mouse homologues. Pig SLC13A1 mRNA was expressed in the ileum and kidney, whereas pig SLC13A4 mRNA was expressed in the placenta, choroid plexus and eye, which is similar to the tissue distribution in human and mouse. The pig SLC13A1 gene contains 15 exons spread over 76 kb on chromosome 8, and encodes a protein of 594 amino acids that shares 90% and 85% identity with the human and mouse homologues, respectively. The pig SLC13A4 gene is located approximately 11 Mb from SLC13A1 on chromosome 8, and contains 16 exons spanning approximately 70 kb. The pig SLC13A4 protein contains 626 amino acids that share 91% and 90% identity with human and mouse homologues, respectively. The 5’-flanking region of SLC13A1 contains several putative transcription factor binding sites, including GATA-1, GATA-3, Oct1 and TATA-box consensus sequences, which are conserved in the homologous human and mouse sequences. The 5’-flanking sequence of SLC13A4 contains multiple putative transcription factor consensus sites, including GATA-1, TATA-box and Vitamin D responsive elements. This is the first report to define the tissue distribution of pig SLC13A1 and SLC13A4 mRNAs, and compare the gene, cDNA, 5’-flanking region and protein sequences to human and mouse. Pig SLC13A1 and SLC13A4 are highly conserved with human and mouse homologues. Pig SLC13A1 and SLC13A4 proteins share high identity with human and mouse sequences. Tissue distribution of pig SLC13A1 and SLC26A1 mRNA is similar to human and mouse.
Collapse
Affiliation(s)
- Samuel K Barnes
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yvonne A Eiby
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Soohyun Lee
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Barbara E Lingwood
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
10
|
Dawson PA, Richard K, Perkins A, Zhang Z, Simmons DG. Review: Nutrient sulfate supply from mother to fetus: Placental adaptive responses during human and animal gestation. Placenta 2017; 54:45-51. [PMID: 28089504 DOI: 10.1016/j.placenta.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/20/2023]
Abstract
Nutrient sulfate has numerous roles in mammalian physiology and is essential for healthy fetal growth and development. The fetus has limited capacity to generate sulfate and relies on sulfate supplied from the maternal circulation via placental sulfate transporters. The placenta also has a high sulfate requirement for numerous molecular and cellular functions, including sulfate conjugation (sulfonation) to estrogen and thyroid hormone which leads to their inactivation. Accordingly, the ratio of sulfonated (inactive) to unconjugated (active) hormones modulates endocrine function in fetal, placental and maternal tissues. During pregnancy, there is a marked increase in the expression of genes involved in transport and generation of sulfate in the mouse placenta, in line with increasing fetal and placental demands for sulfate. The maternal circulation also provides a vital reservoir of sulfate for the placenta and fetus, with maternal circulating sulfate levels increasing by 2-fold from mid-gestation. However, despite evidence from animal studies showing the requirement of maternal sulfate supply for placental and fetal physiology, there are no routine clinical measurements of sulfate or consideration of dietary sulfate intake in pregnant women. This is also relevant to certain xenobiotics or pharmacological drugs which when taken by the mother use significant quantities of circulating sulfate for detoxification and clearance, and thereby have the potential to decrease sulfonation capacity in the placenta and fetus. This article will review the physiological adaptations of the placenta for maintaining sulfate homeostasis in the fetus and placenta, with a focus on pathophysiological outcomes in animal models of disturbed sulfate homeostasis.
Collapse
Affiliation(s)
- P A Dawson
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia.
| | - K Richard
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Herston, Australia
| | - A Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
| | - Z Zhang
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - D G Simmons
- Mater Research Institute, The University of Queensland, Woolloongabba, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
11
|
Gutiérrez A, Perpiñán MF, Sánchez AE, Torralba MC, González V. Water inclusion mediated structural diversity and the role of H-bonds in molecular assemblies of manganese(III) bicompartmental Schiff-base complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Riccardi K, Li Z, Brown JA, Gorgoglione MF, Niosi M, Gosset J, Huard K, Erion DM, Di L. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake. Drug Metab Dispos 2016; 44:1633-42. [PMID: 27417179 DOI: 10.1124/dmd.116.071837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 02/13/2025] Open
Abstract
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems.
Collapse
Affiliation(s)
- Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Zhenhong Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Janice A Brown
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Matthew F Gorgoglione
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Mark Niosi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - James Gosset
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Kim Huard
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Derek M Erion
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| |
Collapse
|
13
|
Huard K, Gosset JR, Montgomery JI, Gilbert A, Hayward MM, Magee TV, Cabral S, Uccello DP, Bahnck K, Brown J, Purkal J, Gorgoglione M, Lanba A, Futatsugi K, Herr M, Genung NE, Aspnes G, Polivkova J, Garcia-Irizarry CN, Li Q, Canterbury D, Niosi M, Vera NB, Li Z, Khunte B, Siderewicz J, Rolph T, Erion DM. Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family. J Med Chem 2016; 59:1165-75. [DOI: 10.1021/acs.jmedchem.5b01752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kim Huard
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - James R. Gosset
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Justin I. Montgomery
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Adam Gilbert
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Matthew M. Hayward
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Thomas V. Magee
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Daniel P. Uccello
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kevin Bahnck
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Janice Brown
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Julie Purkal
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Matthew Gorgoglione
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Adhiraj Lanba
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Michael Herr
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Nathan E. Genung
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Gary Aspnes
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jana Polivkova
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Carmen N. Garcia-Irizarry
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Qifang Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Daniel Canterbury
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Mark Niosi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Nicholas B. Vera
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Zhenhong Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Bhagyashree Khunte
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jaclyn Siderewicz
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Timothy Rolph
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Derek M. Erion
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
14
|
Pathak AK. Microhydration of selenate, chromate and sulphate dianions: observation of indistinguishable IR spectra. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1087599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Dutta R, Akhuli B, Ghosh P. Encapsulation of [(SO₄)₄(H₂O)1₁₂]⁸⁻ clusters in a metal organic framework of pyridyl functionalized cyanuric acid based tris-urea. Dalton Trans 2015; 44:15075-8. [PMID: 25357177 DOI: 10.1039/c4dt02877e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Encapsulation of hydrated sulfate in a bowl-shaped metal organic coordination polymer formed by Zn(2+) assisted self-assembly of a 3-pyridyl terminated cyanuric acid platform based urea receptor is reported in aqueous medium. Trapping of an unusual [(SO4)4(H2O)12](8-) cluster in a [Zn(H2O)6](2+) capped self-assembled structure is characterized by single crystal X-ray crystallography. Furthermore, selective binding of SO4(2-) is established from the (1)H-NMR titration study.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
16
|
Markovich D. Na+–sulfate cotransporter SLC13A1. Pflugers Arch 2013; 466:131-7. [DOI: 10.1007/s00424-013-1388-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
|
17
|
Human SLC26A1 gene variants: a pilot study. ScientificWorldJournal 2013; 2013:541710. [PMID: 24250268 PMCID: PMC3819931 DOI: 10.1155/2013/541710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/04/2013] [Indexed: 12/12/2022] Open
Abstract
Kidney stones are a global health problem, incurring massive health costs annually. Why stones recur in many patients remains unknown but likely involves environmental, physiological, and genetic factors. The solute linked carrier (SLC) 26A1 gene has previously been linked to kidney stones in mice. SLC26A1 encodes the sulfate anion transporter 1 (SAT1) protein, and its loss in mice leads to hyperoxaluria and calcium oxalate renal stones. To investigate the possible involvement of SAT1 in human urolithiasis, we screened the SLC26A1 gene in a cohort of 13 individuals with recurrent calcium oxalate urolithiasis, which is the commonest type. DNA sequence analyses showed missense mutations in seven patients: one individual was heterozygous R372H; 4 individuals were heterozygous Q556R; one patient was homozygous Q556R; and one patient with severe nephrocalcinosis (requiring nephrectomy) was homozygous Q556R and heterozygous M132T. The M132 amino acid in human SAT1 is conserved with 15 other species and is located within the third transmembrane domain of the predicted SAT1 protein structure, suggesting that this amino acid may be important for SAT1 function. These initial findings demonstrate genetic variants in SLC26A1 of recurrent stone formers and warrant wider independent studies of SLC26A1 in humans with recurrent calcium oxalate stones.
Collapse
|
18
|
Abstract
Sulphate contributes to numerous processes in mammalian physiology, particularly during development. Sulphotransferases mediate the sulphate conjugation (sulphonation) of numerous compounds, including steroids, glycosaminoglycans, proteins, neurotransmitters and xenobiotics, transforming their biological activities. Importantly, the ratio of sulphonated to unconjugated molecules plays a significant physiological role in many of the molecular events that regulate mammalian growth and development. In humans, the fetus is unable to generate its own sulphate and therefore relies on sulphate being supplied from maternal circulation via the placenta. To meet the gestational needs of the growing fetus, maternal blood sulphate concentrations double from mid-gestation. Maternal hyposulphataemia has been linked to fetal sulphate deficiency and late gestational fetal loss in mice. Disorders of sulphonation have also been linked to a number of developmental disorders in humans, including skeletal dysplasias and premature adrenarche. While recognised as an important nutrient in mammalian physiology, sulphate is largely unappreciated in clinical settings. In part, this may be due to technical challenges in measuring sulphate with standard pathology equipment and hence the limited findings of perturbed sulphate homoeostasis affecting human health. This review article is aimed at highlighting the importance of sulphate in mammalian development, with basic science research being translated through animal models and linkage to human disorders.
Collapse
|
19
|
Bergeron M, Clémençon B, Hediger M, Markovich D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol Aspects Med 2013; 34:299-312. [DOI: 10.1016/j.mam.2012.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022]
|
20
|
Bowling FG, Heussler HS, McWhinney A, Dawson PA. Plasma and urinary sulfate determination in a cohort with autism. Biochem Genet 2012; 51:147-53. [PMID: 23104138 DOI: 10.1007/s10528-012-9550-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/09/2012] [Indexed: 11/25/2022]
Abstract
Sulfate is important for mammalian development but is not routinely measured in clinical settings. The renal NaS1 sulfate transporter maintains circulating sulfate levels and is linked to renal sulfate wasting in mice. Some autistic individuals exhibit renal sulfate wasting, but the etiology is yet unknown. We measured plasma and urinary sulfate levels, calculated the fractional excretion index (FEI) of sulfate, and screened for two loss-of-function NaS1 sequence variants (R12X and N174S) in 23 autistic individuals. The FEI sulfate values ranged from 0.13 to 0.50. NaS1 variants were detected in 18 of the 23 individuals (11 heterozygous N174S, four homozygous N174S, two heterozygous R12X, and one individual carried both R12X and N174S). Those individuals with neither sequence variant had FEI sulfate ≤ 0.34, whereas FEI sulfate ≥ 0.35 was found in about 60 % (11 of 18) of individuals that had R12X and/or N174S. This study links renal sulfate wasting with loss-of-function NaS1 sequence variants in humans.
Collapse
Affiliation(s)
- Francis G Bowling
- Mater Children's Hospital, Mater Health Services, South Brisbane, QLD, 4102, Australia.
| | | | | | | |
Collapse
|
21
|
|
22
|
Dawson PA, Rakoczy J, Simmons DG. Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biol Reprod 2012; 87:43. [PMID: 22674389 DOI: 10.1095/biolreprod.111.098749] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sulfate is important for mammalian growth and development. During pregnancy, maternal circulating sulfate levels increase by 2-fold, enhancing sulfate availability to the fetus. We used quantitative real-time PCR to determine sulfate transporter mRNA levels during mouse gestation in three tissues: kidney and ileum, to identify transporters involved in sulfate absorption and maintaining high maternal circulating sulfate level; and placenta, to build a model of directional sulfate transport from mother to fetus. In the kidney, Slc13a1 and Slc26a1 were the most abundant sulfate transporter mRNAs, which increased by ≈2-fold at E4.5 or E6.5, whereas lower levels of Slc26a2, Slc26a6, and Slc26a7 mRNA increased by ≈3- to 6-fold from E4.5. Ileal sulfate transporter mRNA levels were not increased in gestation, but slight decreases (by ≈30-40%) were found for Slc26a3 and Slc26a6. In placentae, Slc13a4 and Slc26a2 mRNAs were most abundant, with levels increasing from E10.5 and peaking (≈8-fold) from E14.5 to E18.5, whereas Slc26a1 increased by ≈3-fold at E18.5. The spatial expression of placental mRNAs was determined by in situ hybridization showing Slc13a4 and Slc26a6 in yolk sac, Slc26a1 in spongiotrophoblasts, and Slc13a4, Slc26a2, Slc26a3, and Slc26a7 in the labyrinthine layer. Within the labyrinth, cell-specific staining revealed Slc13a4 expression in syncytiotrophoblast-II (SynT-II) and Slc26a2 in SynT-I. Together, these data show kidney Slc13a1 and Slc26a1 and placental Slc13a4 and Slc26a2 to be the most abundant sulfate transporter mRNAs in mouse gestation, which likely play important physiological roles in maintaining high maternal serum sulfate levels during pregnancy and mediating sulfate supply to the fetus.
Collapse
Affiliation(s)
- Paul A Dawson
- Mater Medical Research Institute, South Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
23
|
Markovich D. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda) 2012; 27:7-14. [PMID: 22311966 DOI: 10.1152/physiol.00041.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anion transporters NaS1 (SLC13A1) and Sat1 (SLC26A1) mediate sulfate (re)absorption across renal proximal tubule and small intestinal epithelia, thereby regulating blood sulfate levels. Disruption of murine NaS1 and Sat1 genes leads to hyposulfatemia and hypersulfaturia. Sat1-null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. This review will highlight the current pathophysiological features of NaS1- and Sat1-null mice resulting from alterations in circulating sulfate and oxalate anion levels.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
24
|
Asmis KR, Neumark DM. Vibrational spectroscopy of microhydrated conjugate base anions. Acc Chem Res 2012; 45:43-52. [PMID: 21675714 DOI: 10.1021/ar2000748] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface speciation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO(4)(2-)(H(2)O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water-water hydrogen bonding is observed. When there are more than three hydrating water molecules (n > 3), the formation of a particularly stable four-membered water ring is observed for hydrated nitrate and bicarbonate clusters. This ring binds in either a side-on (bicarbonate) or top-on (nitrate) fashion. In the case of bicarbonate, additional water molecules then add to this water ring rather than directly to the anion, indicating a preference for surface hydration. In contrast, doubly charged sulfate dianions are internally hydrated and characterized by the closing of the first hydration shell at n = 12. The situation is different for the (-)O(2)C(CH(2))(6)CO(2-) (suberate) dianion, which adapts to the hydration network by changing from a linear to a folded structure at n > 15. This change is driven by the formation of additional solute-solvent hydrogen bonds.
Collapse
Affiliation(s)
- Knut R. Asmis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Pathak AK. Theoretical study on microhydration of SeO42-: On the number of water molecules necessary to stabilize the dianion. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol 2011; 300:F1267-70. [PMID: 21490138 DOI: 10.1152/ajprenal.00061.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review will briefly summarize current knowledge on the renal anion transporters sodium-sulfate cotransporter-1 (NaS1; Slc13a1) and sulfate-anion transporter-1 (Sat1; Slc26a1). NaS1 and Sat1 mediate renal proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Sat1 also mediates renal oxalate transport and controls blood oxalate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. NaS1 and Sat1 null mice also have other phenotypes that result due to changes in blood sulfate and oxalate levels. Experimental data indicate that NaS1 is essential for maintaining sulfate homeostasis, whereas Sat1 controls both sulfate and oxalate homeostasis in vivo.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, Univ. of Queensland, St. Lucia, Australia.
| |
Collapse
|
27
|
Stieger B. Regulation of the expression of the hepatocellular sulfate-oxalate exchanger SAT-1 (SLC26A1) by glyoxylate: a metabolic link between liver and kidney? J Hepatol 2011; 54:406-7. [PMID: 21084130 DOI: 10.1016/j.jhep.2010.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/27/2010] [Indexed: 12/04/2022]
|
28
|
Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp (Warsz) 2011; 59:113-6. [PMID: 21298488 DOI: 10.1007/s00005-011-0114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
This review summarizes the physiological roles of the renal sulfate transporters NaS1 (Slc13a1) and Sat1 (Slc26a1). NaS1 and Sat1 encode renal anion transporters that mediate proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria and calcium oxalate urolithiasis. Dysregulation of NaS1 and Sat1 leads to hypersulfaturia, hyposulfatemia and liver damage. Loss of Sat1 leads additionally to hyperoxaluria with hyperoxalemia, nephrocalcinosis and calcium oxalate urolithiasis. These data indicate that the renal anion transporters NaS1 and Sat1 are essential for sulfate and oxalate homeostasis, respectively.
Collapse
Affiliation(s)
- Daniel Markovich
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
29
|
Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 2010; 120:706-12. [PMID: 20160351 DOI: 10.1172/jci31474] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 01/06/2010] [Indexed: 11/17/2022] Open
Abstract
Urolithiasis, a condition in which stones are present in the urinary system, including the kidneys and bladder, is a poorly understood yet common disorder worldwide that leads to significant health care costs, morbidity, and work loss. Acetaminophen-induced liver damage is a major cause of death in patients with acute liver failure. Kidney and urinary stones and liver toxicity are disturbances linked to alterations in oxalate and sulfate homeostasis, respectively. The sulfate anion transporter-1 (Sat1; also known as Slc26a1) mediates epithelial transport of oxalate and sulfate, and its localization in the kidney, liver, and intestine suggests that it may play a role in oxalate and sulfate homeostasis. To determine the physiological roles of Sat1, we created Sat1-/- mice by gene disruption. These mice exhibited hyperoxaluria with hyperoxalemia, nephrocalcinosis, and calcium oxalate stones in their renal tubules and bladder. Sat1-/- mice also displayed hypersulfaturia, hyposulfatemia, and enhanced acetaminophen-induced liver toxicity. These data suggest that Sat1 regulates both oxalate and sulfate homeostasis and may be critical to the development of calcium oxalate urolithiasis and hepatotoxicity.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dawson PA, Gardiner B, Lee S, Grimmond S, Markovich D. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 2008; 112:55-62. [PMID: 18790054 DOI: 10.1016/j.jsbmb.2008.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Sulfate is essential for human growth and development, and circulating sulfate levels are maintained by the NaS1 sulfate transporter which is expressed in the kidney. Previously, we generated a NaS1-null (Nas1(-/-)) mouse which exhibits hyposulfatemia. In this study, we investigated the kidney transcriptome of Nas1(-/-) mice. We found increased (n=25) and decreased (n=60) mRNA levels of genes with functional roles that include sulfate transport and steroid metabolism. Corticosteroid-binding globulin was the most up-regulated gene (110% increase) in Nas1(-/-) mouse kidney, whereas the sulfate anion transporter-1 (Sat1) was among the most down-regulated genes (>or=50% decrease). These findings led us to investigate the circulating and urinary steroid levels of Nas1(-/-) and Nas1(+/+) mice, which revealed reduced blood levels of corticosterone ( approximately 50% decrease), dehydroepiandrosterone (DHEA, approximately 30% decrease) and DHEA-sulfate ( approximately 40% decrease), and increased urinary corticosterone ( approximately 16-fold increase) and DHEA ( approximately 40% increase) levels in Nas1(-/-) mice. Our data suggest that NaS1 is essential for maintaining a normal metabolic state in the kidney and that loss of NaS1 function leads to reduced circulating steroid levels and increased urinary steroid excretion.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.
| | | | | | | | | |
Collapse
|
31
|
Marengo SR, Romani AMP. Oxalate in renal stone disease: the terminal metabolite that just won't go away. ACTA ACUST UNITED AC 2008; 4:368-77. [PMID: 18523430 DOI: 10.1038/ncpneph0845] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/09/2008] [Indexed: 01/15/2023]
Abstract
The incidence of calcium oxalate nephrolithiasis in the US has been increasing throughout the past three decades. Biopsy studies show that both calcium oxalate nephrolithiasis and nephrocalcinosis probably occur by different mechanisms in different subsets of patients. Before more-effective medical therapies can be developed for these conditions, we must understand the mechanisms governing the transport and excretion of oxalate and the interactions of the ion in general and renal physiology. Blood oxalate derives from diet, degradation of ascorbate, and production by the liver and erythrocytes. In mammals, oxalate is a terminal metabolite that must be excreted or sequestered. The kidneys are the primary route of excretion and the site of oxalate's only known function. Oxalate stimulates the uptake of chloride, water, and sodium by the proximal tubule through the exchange of oxalate for sulfate or chloride via the solute carrier SLC26A6. Fecal excretion of oxalate is stimulated by hyperoxalemia in rodents, but no similar phenomenon has been observed in humans. Studies in which rats were treated with (14)C-oxalate have shown that less than 2% of a chronic oxalate load accumulates in the internal organs, plasma, and skeleton. These studies have also demonstrated that there is interindividual variability in the accumulation of oxalate, especially by the kidney. This Review summarizes the transport and function of oxalate in mammalian physiology and the ion's potential roles in nephrolithiasis and nephrocalcinosis.
Collapse
Affiliation(s)
- Susan R Marengo
- Department of Physiology and Biophysics at Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
32
|
Lee H, Hubbert ML, Osborne TF, Woodford K, Zerangue N, Edwards PA. Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha. J Biol Chem 2007; 282:21653-61. [PMID: 17545158 DOI: 10.1074/jbc.m700897200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fxralpha is known to regulate a variety of metabolic processes, including bile acid, cholesterol, and carbohydrate metabolism. In this study, we show direct evidence that Fxralpha is a key player in maintaining sulfate homeostasis. We identified and characterized the sodium/sulfate co-transporter (NaS-1; Slc13a1) as an Fxralpha target gene expressed in the kidney and intestine. Electromobility shift assays, chromatin immunoprecipitation, and promoter reporter studies identified a single functional Fxralpha response element in the second intron of the mouse Slc13a1 gene. Treatment of wild-type mice with GW4064, a synthetic Fxralpha agonist, induced Slc13a1 mRNA in the intestine and kidney. Slc13a1 mRNA was also induced in the kidney and intestine of wild-type, but not Fxralpha-/- mice, after treatment with the hepatotoxin alpha-naphthylisothiocyanate, which is known to result in elevated blood bile acid levels. Finally, we observed a decrease in Slc13a1 mRNA in the kidney and intestine of Fxralpha-/- mice and a corresponding increase in urinary excretion of free sulfates as compared with wild-type mice. These results demonstrate that mouse Slc13a1 is a novel Fxralpha target gene expressed in the kidney and intestine and that in the absence of Fxralpha, mice waste sulfate into the urine. Thus, Fxralpha is necessary for normal sulfate homeostasis in vivo.
Collapse
Affiliation(s)
- Hans Lee
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dawson PA, Pirlo KJ, Steane SE, Kunzelmann K, Chien YJ, Markovich D. Molecular cloning and characterization of the mouse Na+ sulfate cotransporter gene (Slc13a4): Structure and expression. Genes Genet Syst 2007; 81:265-72. [PMID: 17038798 DOI: 10.1266/ggs.81.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sulfate is an essential ion required for numerous functions in mammalian physiology. Due to its hydrophilic nature, cells require sulfate transporters on their plasma membranes to allow entry of sulfate into cells. In this study, we identified a new mouse Na(+)-sulfate cotransporter (mNaS2), characterized its tissue distribution and determined its cDNA and gene (Slc13a4) structures. mNaS2 mRNA was expressed in placenta, brain, lung, eye, heart, testis, thymus and liver. The mouse NaS2 cDNA spans 3384 nucleotides and its open frame encodes a protein of 624 amino acids. Slc13a4 maps to mouse chromosome 6B1 and contains 16 exons, spanning over 40 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, MTF-1, STAT6 and HNF4 consensus sequences. This is the first study to define the tissue distribution of mNaS2 and resolve its cDNA and gene structures, which will allow us to investigate mNaS2 gene expression in vivo and determine its role in mammalian physiology.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Zhou J, Santambrogio G, Brümmer M, Moore DT, Wöste L, Meijer G, Neumark DM, Asmis KR. Infrared spectroscopy of hydrated sulfate dianions. J Chem Phys 2006; 125:111102. [PMID: 16999457 DOI: 10.1063/1.2351675] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the first infrared spectra of multiply-charged anions in the gas phase. The spectra of SO(4) (2-)(H(2)O)(n), with n=3-24, show four main bands assigned to two vibrations of the dianionic core, the water bending mode, and solvent libration. The triply degenerate SO(4) (2-) antisymmetric stretch vibration probes the local solvent symmetry, while the solvent librational band is sensitive to the hydrogen bonding network. The spectra and accompanying electronic structure calculations indicate a highly symmetric structure for the n=6 cluster and closure of the first solvation shell at n=12.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dawson PA, Gardiner B, Grimmond S, Markovich D. Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiol Genomics 2006; 26:116-24. [PMID: 16621889 DOI: 10.1152/physiolgenomics.00300.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout (Nas1-/-) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1-/- mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased (n = 51) or decreased (n = 41) in Nas1-/- mice when compared with Nas1+/+ mice. The most upregulated transcript levels in Nas1-/- mice were found for the sulfotransferase genes, Sult3a1 (approximately 500% increase) and Sult2a2 (100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes (70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated (> or = 30% increase) in Nas1-/- mice. In addition, Nas1-/- mice exhibited increased levels of hepatic lipid (approximately 16% increase), serum cholesterol (approximately 20% increase), and low-density lipoprotein (approximately 100% increase) and reduced hepatic glycogen (approximately 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1-/- mouse and provide new insights into the metabolic state of the liver in Nas1-/- mice.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
36
|
Dawson PA, Pirlo KJ, Steane SE, Nguyen KA, Kunzelmann K, Chien YJ, Markovich D. The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflugers Arch 2005; 450:262-8. [PMID: 15889308 DOI: 10.1007/s00424-005-1414-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/16/2005] [Indexed: 11/25/2022]
Abstract
Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K(M) for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0+/-0.7, suggesting a Na+:SO4 (2-) stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.
Collapse
Affiliation(s)
- Paul A Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|