1
|
Zhang Q, Sjögren B. Palmitoylation of RGS20 affects Gα o-mediated signaling independent of its GAP activity. Cell Signal 2023; 107:110682. [PMID: 37075876 DOI: 10.1016/j.cellsig.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Regulator of protein signaling (RGS20) is a member of the RGS protein superfamily, which serve as key negative regulators of G protein-mediated signal transduction. Through their GTPase accelerating protein (GAP) activity, RGS proteins deactivate α-subunits of heterotrimeric G proteins. In addition, the majority of RGS proteins also have the ability to act through other, non-GAP related, functions. RGS20 is one of three members of the RZ subfamily, which all show selective GAP activity towards Gαz, however emerging data suggest that RGS20 can also regulate Gi/o-mediated signaling. While increased RGS20 expression is associated with the progression of multiple cancers, a large gap still exists relating to the mechanisms of RGS20 regulation and function. RGS20 contains a poly-cysteine string motif and a conserved cysteine in RGS domain, which are assumed to be palmitoylated. Palmitoylation, an important post-translational modification, plays an important role in cells by changing cellular functions of proteins. Consequently, the aim of this study was to confirm that RGS20 is palmitoylated and determine how palmitoylation affects its inhibition of Gαo-mediated signaling. We found a significant positive correlation between RGS20 palmitoylation and its association with active Gαo. We also showed that a conserved cysteine residue in the RGS domain is a critical site for its palmitoylation, with large impact on its association with Gαo. Palmitoylation on this site did not affect its GAP activity, however, it increased the inhibition of Gαo-mediated cAMP signaling. Altogether these data suggest that palmitoylation is a regulatory mechanism controlling RGS20 function, and that RGS20 can inhibit Gαo signaling through both GAP activity and non-GAP mechanisms.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
2
|
Amanakis G, Sun J, Fergusson MM, McGinty S, Liu C, Molkentin JD, Murphy E. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovasc Res 2021; 117:212-223. [PMID: 32129829 PMCID: PMC7797215 DOI: 10.1093/cvr/cvaa053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Cyclophilin-D is a well-known regulator of the mitochondrial permeability transition pore (PTP), the main effector of cardiac ischaemia/reperfusion injury. However, the binding of CypD to the PTP is poorly understood. Cysteine 202 (C202) of CypD is highly conserved among species and can undergo redox-sensitive post-translational modifications. We investigated whether C202 regulates the opening of PTP. METHODS AND RESULTS We developed a knock-in mouse model using CRISPR where CypD-C202 was mutated to a serine (C202S). Infarct size is reduced in CypD-C202S Langendorff perfused hearts compared to wild type (WT). Cardiac mitochondria from CypD-C202S mice also have higher calcium retention capacity compared to WT. Therefore, we hypothesized that oxidation of C202 might target CypD to the PTP. Indeed, isolated cardiac mitochondria subjected to oxidative stress exhibit less binding of CypD-C202S to the proposed PTP component F1F0-ATP-synthase. We previously found C202 to be S-nitrosylated in ischaemic preconditioning. Cysteine residues can also undergo S-acylation, and C202 matched an S-acylation motif. S-acylation of CypD-C202 was assessed using a resin-assisted capture (Acyl-RAC). WT hearts are abundantly S-acylated on CypD C202 under baseline conditions indicating that S-acylation on C202 per se does not lead to PTP opening. CypD C202S knock-in hearts are protected from ischaemia/reperfusion injury suggesting further that lack of CypD S-acylation at C202 is not detrimental (when C is mutated to S) and does not induce PTP opening. However, we find that ischaemia leads to de-acylation of C202 and that calcium overload in isolated mitochondria promotes de-acylation of CypD. Furthermore, a high bolus of calcium in WT cardiac mitochondria displaces CypD from its physiological binding partners and possibly renders it available for interaction with the PTP. CONCLUSIONS Taken together the data suggest that with ischaemia CypD is de-acylated at C202 allowing the free cysteine residue to undergo oxidation during the first minutes of reperfusion which in turn targets it to the PTP.
Collapse
Affiliation(s)
- Georgios Amanakis
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Maria M Fergusson
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Shane McGinty
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery D Molkentin
- Division of Molecular and Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Isono A, Tsuji M, Sanada Y, Matsushita A, Masunaga S, Hirayama T, Nagasawa H. Design, Synthesis, and Evaluation of Lipopeptide Conjugates of Mercaptoundecahydrododecaborate for Boron Neutron Capture Therapy. ChemMedChem 2019; 14:823-832. [DOI: 10.1002/cmdc.201800793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/23/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Aoi Isono
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Yu Sanada
- Particle Radiation BiologyInstitute for Integrated Radiation and Nuclear ScienceKyoto University 2-1010 Asashiro-Nishi Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Akari Matsushita
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Shinichiro Masunaga
- Particle Radiation BiologyInstitute for Integrated Radiation and Nuclear ScienceKyoto University 2-1010 Asashiro-Nishi Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| |
Collapse
|
4
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Zhang P, Mende U. Functional role, mechanisms of regulation, and therapeutic potential of regulator of G protein signaling 2 in the heart. Trends Cardiovasc Med 2013; 24:85-93. [PMID: 23962825 DOI: 10.1016/j.tcm.2013.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
G protein-mediated signal transduction is essential for the regulation of cardiovascular function, including heart rate, growth, contraction, and vascular tone. Regulators of G protein Signaling (RGS proteins) fine-tune G protein-coupled receptor-induced signaling by regulating its magnitude and duration through direct interaction with the α subunits of heterotrimeric G proteins. Changes in the RGS protein expression and/or function in the heart often lead to pathophysiological changes and are associated with cardiac disease in animals and humans, including hypertrophy, fibrosis development, heart failure, and arrhythmias. This article focuses on Regulator of G protein Signaling 2 (RGS2), which is widely expressed in many tissues and is highly regulated in its expression and function. Most information to date has been obtained in biochemical, cellular, and animal studies, but data from humans is emerging. We review recent advances on the functional role of cardiovascular RGS2 and the mechanisms that determine its signaling selectivity, expression, and functionality. We highlight key unanswered questions and discuss the potential of RGS2 as a therapeutic target.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Park-Windhol C, Zhang P, Zhu M, Su J, Chaves L, Maldonado AE, King ME, Rickey L, Cullen D, Mende U. Gq/11-mediated signaling and hypertrophy in mice with cardiac-specific transgenic expression of regulator of G-protein signaling 2. PLoS One 2012; 7:e40048. [PMID: 22802950 PMCID: PMC3388988 DOI: 10.1371/journal.pone.0040048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C β activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCβ activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Peng Zhang
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ming Zhu
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jialin Su
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Leonard Chaves
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Angel E. Maldonado
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Michelle E. King
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Lisa Rickey
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Darragh Cullen
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulrike Mende
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
8
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
9
|
Sjögren B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:315-47. [PMID: 21907914 DOI: 10.1016/b978-0-12-385952-5.00002-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulators of G protein signaling (RGS) proteins have emerged in the past two decades as novel drug targets in many areas of research. Their importance in regulating signaling via G protein-coupled receptors has become evident as numerous studies have been published on the structure and function of RGS proteins. A number of genetic models have also been developed, demonstrating the potential clinical importance of RGS proteins in various disease states, including central nervous system disorders, cardiovascular disease, diabetes, and several types of cancer. Apart from their classical mechanism of action as GTPase-activating proteins (GAPs), RGS proteins can also serve other noncanonical functions. This opens up a new approach to targeting RGS proteins in drug discovery as the view on the function of these proteins is constantly evolving. This chapter summarizes the latest development in RGS protein drug discovery with special emphasis on noncanonical functions and regulatory mechanisms of RGS protein expression. As more reports are being published on this group of proteins, it is becoming clear that modulation of GAP activity might not be the only way to therapeutically target RGS proteins.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Hooks SB, Martemyanov K, Zachariou V. A role of RGS proteins in drug addiction. Biochem Pharmacol 2007; 75:76-84. [PMID: 17880927 DOI: 10.1016/j.bcp.2007.07.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 11/22/2022]
Abstract
The diverse family of Regulators of G protein signaling (RGS) proteins are widely distributed proteins with multiple functions, including GAP activity for heterotrimeric G protein alpha subunits. Three members of the RGS family, RGS9-2, RGS4 and RGSz, have been shown to play an essential modulatory role in psychostimulant and opiate drug actions. Interestingly, these proteins show distinct structure, distribution pattern and cellular localization. In addition, each of these proteins is differentially regulated by drugs of abuse in particular brain networks and appears to modulate distinct signal transduction events. The striatal enriched RGS9 plays a prominent role in opiate and psychostimulant drug reward; RGS4 appears to modulate opiate dependence via actions in the locus coeruleus, whereas RGSz modulates analgesia via activation of the PKC pathway.
Collapse
Affiliation(s)
- Shelley B Hooks
- University of Georgia, Department of Pharmaceutical and Biomedical Sciences, Athens, GA, USA
| | | | | |
Collapse
|