1
|
Chronic kidney disease induced by an adenine rich diet upregulates integrin linked kinase (ILK) and its depletion prevents the disease progression. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1284-1297. [PMID: 30726718 DOI: 10.1016/j.bbadis.2019.01.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
Kidney fibrosis is one of the main pathological findings of progressive chronic kidney disease (CKD) although the pathogenesis of renal scar formation remains incompletely explained. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix (ECM) and intracellular signaling pathways, is involved in several pathophysiological processes during renal damage. However, ILK contribution in the CKD progress remains to be fully elucidated. In the present work, we studied 1) the renal functional and structural consequences of CKD genesis and progression when ILK is depleted and 2) the potential of ILK depletion as a therapeutic approach to delay CKD progression. We induced an experimental CKD model, based on an adenine-supplemented diet on adult wild-type (WT) and ILK-depleted mice, with a tubulointerstitial damage profile resembling that is observed in human CKD. The adenine diet induced in WT mice a progressive increase in plasma creatinine and urea concentrations. In the renal cortex it was also observed tubular damage, interstitial fibrosis and progressive increased ECM components, pro-inflammatory and chemo-attractant cytokines, EMT markers and TGF-β1 expressions. These observations were highly correlated to a simultaneous increase of ILK expression and activity. In adenine-fed transgenic ILK-depleted mice, all these changes were prevented. Additionally, we evaluated the potential role of ILK depletion to be applied after the disease induction, as an effective approach to interventions in human CKD subjects. In this scenario, two weeks after the establishment of adenine-induced CKD, ILK was abrogated in WT mice and stabilized renal damage, avoiding CKD progression. We propose ILK to be a potential target to delay renal disease progression.
Collapse
|
2
|
Integrin-linked kinase: A new actor in the ageing process? Exp Gerontol 2017; 100:87-90. [PMID: 29101014 DOI: 10.1016/j.exger.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 02/05/2023]
Abstract
Integrin-linked kinase (ILK) is a protein located in focal adhesion complexes that is linked to the cytoplasmic domain of integrin receptors. Together with PINCH and parvin, ILK forms the IPP complex, which is associated with conserved intracellular signalling pathways and integrin regulation of the actin cytoskeleton. ILK plays an essential role in a wide variety of cellular functions, including cell migration, differentiation, survival, and division. The present review summarizes recent evidence, suggesting a new role for ILK in organismal ageing and cellular senescence, indicating that ILK is a key regulator of longevity and premature cellular senescence induced by extracellular stressors.
Collapse
|
3
|
Martín P, Mora I, Cortes MA, Calleros L, García-Jerez A, Ortiz A, Rodríguez-Puyol M, Rodríguez-Puyol D, Olmos G. Relevant role of PKG in the progression of fibrosis induced by TNF-like weak inducer of apoptosis. Am J Physiol Renal Physiol 2014; 307:F75-85. [DOI: 10.1152/ajprenal.00398.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TNF-like weak inducer of apoptosis (TWEAK) is an inflammatory cytokine that activates the FGF-inducible 14 receptor. Both TWEAK and the FGF-inducible 14 receptor are constitutively expressed in the kidney. TWEAK has been shown to modulate several biological responses, such as inflammation, proliferation, differentiation, and apoptosis, that contribute to kidney injury. However, the role of TWEAK in fibrosis and TWEAK-activated intracellular signaling pathways remain poorly understood. We tested the hypothesis that TWEAK can be a potent inducer of renal fibrosis by increasing transforming growth factor (TGF)-β1 expression (a well-known switch in the fibrosis process) through PKG-I downregulation. We showed that in human mesangial cells, TWEAK increased TGF-β1 expression and activity, leading to higher levels of the extracellular matrix protein fibronectin and decreased PKG-I expression and activity via the Ras pathway. PKG-I activation with 8-bromo-cGMP, Ras inactivation with dominant negative Ras, or Ras pathway inhibition with the ERK1/2 inhibitor PD-98059 resulted in the prevention of TWEAK-induced TGF-β1 upregulation. In vivo, exogenous administration of TWEAK to wild-type mice downregulated kidney PKG-I and increased kidney TGF-β1 expression. These effects were blunted in H-Ras knockout mice. Together, these data demonstrate, for the first time, the key role of PKG-I in TGF-β1 induction by TWEAK in kidney cells.
Collapse
Affiliation(s)
- Paloma Martín
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Inés Mora
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - M. Alicia Cortes
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Laura Calleros
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Andrea García-Jerez
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Alberto Ortiz
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Diego Rodríguez-Puyol
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
- Department of Medicine, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Nephrology Section and Research Unit, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain; and
| | - Gemma Olmos
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| |
Collapse
|
4
|
Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. FASEB J 2014; 28:3645-59. [PMID: 24784577 DOI: 10.1096/fj.13-249250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the clinical alterations observed in chronic renal disease (CRD) is the impaired urine concentration, known as diabetes insipidus (DI). Tubulointerstitial fibrosis of the kidney is also a pathological finding observed in CRD and involves composition of extracellular matrix (ECM). However, an association between these two events has not been elucidated. In this study, we showed that the extracellular-to-intracellular scaffold protein integrin-linked kinase (ILK) regulates expression of tubular water channel aquaporin-2 (AQP2) and its apical membrane presence in the renal tubule. Basally, polyuria and decreased urine osmolality were present in ILK conditional-knockdown (cKD-ILK) adult mice compared with nondepleted ILK littermates. No changes were observed in arginine-vasopressin (AVP) blood levels, renal receptor (V2R), or AQP3 expression. However, tubular AQP2 was decreased in expression and apical membrane presence in cKD-ILK mice, where the canonical V2R/cAMP axis activation is still functional, but independent of the absence of ILK. Thus, cKD-ILK constitutes a nephrogenic diabetes insipidus (NDI) model. AQP2 and ILK colocalize in cultured inner medullary collecting duct (mIMCD3) cells. Specific ILK siRNAs and collagen I (Col) decrease ILK and AQP2 levels and AQP2 presence on the membrane of tubular mIMCD3 cells, which impairs the capacity of the cells to transport water under hypotonic stress. The present work points to ILK as a therapeutic target in NDI.
Collapse
Affiliation(s)
- Jose Luis Cano-Peñalver
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Serrano
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; Biomedical Research Foundation and Department of Nephrology, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain;
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Gonzalez-Ramos M, de Frutos S, Griera M, Luengo A, Olmos G, Rodriguez-Puyol D, Calleros L, Rodriguez-Puyol M. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation. Free Radic Biol Med 2013; 61:416-27. [PMID: 23624332 DOI: 10.1016/j.freeradbiomed.2013.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 01/04/2023]
Abstract
Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.
Collapse
Affiliation(s)
- M Gonzalez-Ramos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - S de Frutos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - M Griera
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Biomedical Research Unit Foundation, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - A Luengo
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - G Olmos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - D Rodriguez-Puyol
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Department of Medicine, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; Nephrology Section, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - L Calleros
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain.
| | - M Rodriguez-Puyol
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| |
Collapse
|
6
|
Serrano I, De Frutos S, Griera M, Medrano D, Rodríguez-Puyol M, Dedhar S, Ruiz-Torres MP, Rodríguez-Puyol D. Ilk conditional deletion in adult animals increases cyclic GMP-dependent vasorelaxation. Cardiovasc Res 2013; 99:535-44. [PMID: 23715557 DOI: 10.1093/cvr/cvt131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Integrin-linked kinase (ILK) regulates proliferation, differentiation, cell adhesion, and motility in many cell types and has been related to cancer progression, fibrosis, and vascular diseases. We designed the present study to directly explore the effect of ILK deletion on the regulation of vascular tone through the soluble guanylate cyclase (sGC) /protein kinase G (PKG) pathway in healthy adult mice. METHODS AND RESULTS Experiments were carried out using a tamoxifen-inducible CRE-LOX system to conditionally delete the ILK gene in adult mice. Mice lacking ILK expression (cKO) presented increased vascular content and increased activity of sGC and PKG, resulting in a more intense vasodilatory response to a single dose of a nitric oxide (NO) donor [sodium nitroprusside (SNP)] or PKG agonist [8-bromoguanosine 3',5'-cyclic monophosphate sodium salt (8-Br)]. Five minutes after SNP or 8-Br administration the reduction in the systolic arterial pressure was enhanced in cKO mice (SNP WT: -7.4 ± 1.2 mmHG; SNP cKO: -14.0 ± 2.5; 8-Br WT: -2.9 ± 1.5 mmHG; 8-Br cKO: -10.0 ± 3.4 mmHG). ILK deletion restored the vascular response to SNP after chronic oral nitrite administration. In addition, ILK deletion also increased hypotensive SNP effect in angiotensin II-treated animals, suggesting a role for ILK in basal and pathological states. CONCLUSION Deletion of ILK in adult animals increased the vascular response to NO. These findings show, for the first time, a requirement for ILK in regulating sGC-PKG expression in vivo.
Collapse
Affiliation(s)
- Isabel Serrano
- Faculty of Medicine, Department of Physiology, University of Alcala, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation. Int J Biochem Cell Biol 2012; 45:232-42. [PMID: 23084979 DOI: 10.1016/j.biocel.2012.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases.
Collapse
|
8
|
González-Ramos M, Mora I, de Frutos S, Garesse R, Rodríguez-Puyol M, Olmos G, Rodríguez-Puyol D. Intracellular redox equilibrium is essential for the constitutive expression of AP-1 dependent genes in resting cells: studies on TGF-β1 regulation. Int J Biochem Cell Biol 2012; 44:963-71. [PMID: 22429882 DOI: 10.1016/j.biocel.2012.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 11/29/2022]
Abstract
The mechanisms involved in the continuous expression of constitutive genes are unclear. We hypothesize that steady state intracellular reactive oxygen species (ROS), which their levels are tightly maintained, could be regulating the expression of these constitutive genes in resting cells. We analyzed the regulation of an important constitutive gene, TGF-β1, after decreasing intracellular ROS concentration in human mesangial cells. Decreased intracellular hydrogen peroxide by catalase addition reduced TGF-β1 protein, mRNA expression and promoter activity. Furthermore, catalase decreased the basal activity of Activated Protein-1 (AP-1) that regulates TGF-β1 promoter activity. This effect disappeared when AP-1 binding site was removed. Similar results were observed with another protein containing AP-1 binding sites in its promoter, such as eNOS, but it was not the case in other constitutive genes without any AP-1 binding site, as COX1 or PKG1. The pharmacological inhibition of the different ROS synthesis sources by blocking NADPH oxidase, the mitochondrial respiratory chain or xanthine oxidase, or the use of human fibroblasts with genetically deficient mitochondrial activity, induced a similar, significant reduction of steady state ROS concentration as the one observed with catalase. Moreover, there was decreased TGF-β1 expression in all the cases excepting the xanthine oxidase blockade. These findings suggest a novel role for the steady state intracellular ROS concentration, where the compartmentalized, different systems involved in the intracellular ROS production, could be essential for the expression of constitutive AP1-dependent genes, as TGF-β1.
Collapse
Affiliation(s)
- Marta González-Ramos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Chamorro-Jorganes A, Calleros L, Griera M, Saura M, Luengo A, Rodriguez-Puyol D, Rodriguez-Puyol M. Fibronectin upregulates cGMP-dependent protein kinase type Iβ through C/EBP transcription factor activation in contractile cells. Am J Physiol Cell Physiol 2010; 300:C683-91. [PMID: 21160032 DOI: 10.1152/ajpcell.00251.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences. FN increased type I PKG (PKG-I) protein content in human mesangial cells, an effect dependent on the interaction with β(1)-integrin. The FN upregulation of PKG-I protein content was due to increased mRNA expression, determined by augmented transcriptional activity of the PKG-I promoter region. Akt and the transcription factor CCAAT enhancer-binding protein (C/EBP) mediated the genesis of these changes. FN also increased PKG-I in another type of contractile cell, rat vascular smooth muscle cells (RVSMC). Tirofiban, a pharmacological analog of FN, increased PKG-I protein content in RVSMC and rat aortic walls and magnified the hypotensive effect of dibutyryl cGMP in conscious Wistar rats. The present results provide evidence of a mechanism able to increase PKG-I protein content in contractile cells. Elucidation of this novel mechanism provides a rationale for future pharmacotherapy in certain vascular diseases.
Collapse
Affiliation(s)
- Aranzazu Chamorro-Jorganes
- Dept. of Physiology, Facultad de Medicina, Universidad de Alcalá, Campus Universitario s/n, Alcalá de Henares, 28871 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu SQ, Tian Q, Wang L, Hedrick JL, Hui JHP, Yang YY, Ee PLR. Injectable Biodegradable Poly(ethylene glycol)/RGD Peptide Hybrid Hydrogels for in vitro Chondrogenesis of Human Mesenchymal Stem Cells. Macromol Rapid Commun 2010; 31:1148-54. [DOI: 10.1002/marc.200900818] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/18/2010] [Indexed: 12/25/2022]
|