1
|
Wang D, Hei Y, Sun H, Pan T, Ma Z. HEPARIN AND DNase I TREAT MYOCARDIAL INJURY IN SEPTIC MICE. Shock 2025; 63:908-918. [PMID: 40138729 DOI: 10.1097/shk.0000000000002566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
ABSTRACT Background: Sepsis is a life-threatening clinical condition often seen in intensive care units, leading to multi-organ dysfunction. Myocardial injury is a prevalent complication, significantly increasing mortality among sepsis patients. Although heparin is used in sepsis management, its specific effects on myocardial injury and the role of neutrophil extracellular traps (NETs) in this context remain insufficiently understood. Aim: This study investigates the role of unfractionated heparin (UFH) combined with DNase I in reducing myocardial injury in a septic mouse model. Methods: A cecal ligation and puncture (CLP)-induced sepsis model was established in C57BL/6 mice to study myocardial injury. The experimental groups included treatments with UFH, UFH with DNase I, and NETs introduction. Myocardial injury was assessed using hematoxylin and eosin staining, enzyme linked immunosorbent assay for injury markers (creatine kinase MB [CK-MB] and lactate dehydrogenase [LDH]), and Western blotting for inflammatory proteins (TNF-α and IL-6). Differential proteomic analysis using data independent acquisition mass spectrometry and pathway enrichment analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) were conducted to identify molecular pathways and key proteins affected by the treatments. Results: Single UFH treatment increased the formation of NETs, upregulated TNF-α and IL-6, and increased CK-MB and LDH, worsening myocardial injury. The combination of UFH and DNase I significantly reduced myocardial injury, suppressing NETs formation and inflammation. Proteomic analysis identified crucial pathways related to NETs, metabolism, and complement and coagulation cascades, with proteins Ccn1 and Tagln highlighted as potential therapeutic targets. Conclusion: UFH combined with DNase I effectively alleviates myocardial injury in septic mice by modulating NETs formation and associated inflammatory processes. This study may provide new insights and options for the early use of heparin in the treatment of septic patients, particularly in cases with a higher risk of myocardial injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | | | | | | | | |
Collapse
|
2
|
Uciechowska-Kaczmarzyk U, Frank M, Samsonov SA, Maszota-Zieleniak M. Structural Insights into Endostatin-Heparan Sulfate Interactions Using Modeling Approaches. Molecules 2024; 29:4040. [PMID: 39274888 PMCID: PMC11397277 DOI: 10.3390/molecules29174040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Glycosaminoglycans (GAGs) play a key role in a variety of biological processes in the extracellular matrix (ECM) via interactions with their protein targets. Due to their high flexibility, periodicity and electrostatics-driven interactions, GAG-containing complexes are very challenging to characterize both experimentally and in silico. In this study, we, for the first time, systematically analyzed the interactions of endostatin, a proteolytic fragment of collagen XVIII known to be anti-angiogenic and anti-tumoral, with heparin (HP) and representative heparan sulfate (HS) oligosaccharides of various lengths, sequences and sulfation patterns. We first used conventional molecular docking and a docking approach based on a repulsive scaling-replica exchange molecular dynamics technique, as well as unbiased molecular dynamic simulations, to obtain dynamically stable GAG binding poses. Then, the corresponding free energies of binding were calculated and the amino acid residues that contribute the most to GAG binding were identified. We also investigated the potential influence of Zn2+ on endostatin-HP complexes using computational approaches. These data provide new atomistic details of the molecular mechanism of HP's binding to endostatin, which will contribute to a better understanding of its interplay with proteoglycans at the cell surface and in the extracellular matrix.
Collapse
Affiliation(s)
- Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (U.U.-K.); (S.A.S.)
| | - Martin Frank
- Biognos AB, P.O. Box 8963, 40274 Göteborg, Sweden;
| | - Sergey A. Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (U.U.-K.); (S.A.S.)
| | - Martyna Maszota-Zieleniak
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (U.U.-K.); (S.A.S.)
| |
Collapse
|
3
|
Garcia IJP, de Oliveira GC, de Moura Valadares JM, Banfi FF, Andrade SN, Freitas TR, Dos Santos Monção Filho E, Lima Santos HD, Júnior GMV, Chaves MH, de Jesus Rodrigues D, Sanchez BAM, Varotti FP, Barbosa LA. New bufadienolides extracted from Rhinella marina inhibit Na,K-ATPase and induce apoptosis by activating caspases 3 and 9 in human breast and ovarian cancer cells. Steroids 2019; 152:108490. [PMID: 31499071 DOI: 10.1016/j.steroids.2019.108490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Bufadienolide compounds have been used for growth inhibition and apoptosis induction in tumor cells. Those families of cardiotonic steroids can bind the Na,K-ATPase, causing its inhibition. The use of bufadienolides is widely described in the literature as an anticancer function. The aim of this study was to evaluate the effects of bufadienolides and alkaloid isolated from venom samples from R. marina on tumor cells. We performed cytotoxicity assay in MDA-MB-231 and TOV-21G cells and evaluated the activity of Caspases (3 and 9), Na, K-ATPase, PMCA and SERCA. Four compounds were extrated from the venom of R. marina. The compound 1 showed higher cytotoxicity in MDA-MB-231cells. Compound 1 also showed activation of Caspase 3 and 9. This compound caused an inhibition of the activity and expression of Na, K-ATPase, and also showed activation of both caspase-9 and caspase-3 in MDA-MB-231 cells. We also observed that Compound 1 had a direct effect on some ATPases, such as Na, K-ATPase, PMCA and SERCA. Compound 1 was able to inhibit the activity of the purified Na, K-ATPase enzyme from the concentration of 5 µM. It also caused inhibition of PMCA at all concentrations tested (1 nM-30 µM). However, the compound 1 led to an increase of the activity of purified SERCA between the concentrations of 7.5-30 µM. Thus, we present a Na, K-ATPase and PMCA inhibitor, which may lead to the activation of caspases 3 and 9, causing the cells to enter into apoptosis. Our study suggests that compound 1 may be an interesting molecule as an anticancer agent.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| | - Gisele Capanema de Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | - Felipe Finger Banfi
- Universidade Federal de Mato Grosso, Instituto de Ciências da Saúde, Sinop, MT, Brazil
| | - Silmara Nunes Andrade
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Túlio Resende Freitas
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | | | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | | | | | | | - Fernando P Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| |
Collapse
|
4
|
|
5
|
Fraqueza G, Ohlin CA, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 2012; 107:82-89. [PMID: 22178669 DOI: 10.1016/j.jinorgbio.2011.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca(2+)-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca(2+)-ATPase, with the following IC(50) values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb(10)), is the strongest P-type enzyme inhibitor, after decavanadate (V(10)). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca(2+)-ATPase stoichiometry. Furthermore, V(10) binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H(2)VO(4)(2-); V(1)) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca(2+)-ATPase, with a dissociation constant, k(d) of 1 μM(-1). The interaction of decavanadate V(10)O(28)(6-) (V(10)) with Ca(2+)-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb(10)O(28)(6-) (Nb(10)), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V(10) binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca(2+)-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.
Collapse
Affiliation(s)
- Gil Fraqueza
- Department of Food Engineering, ISE, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
6
|
Oliveira VH, Nascimento KSO, Freire MM, Moreira OC, Scofano HM, Barrabin H, Mignaco JA. Mechanism of modulation of the plasma membrane Ca(2+)-ATPase by arachidonic acid. Prostaglandins Other Lipid Mediat 2008; 87:47-53. [PMID: 18718873 DOI: 10.1016/j.prostaglandins.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 07/15/2008] [Accepted: 07/22/2008] [Indexed: 10/25/2022]
Abstract
The intracellular level of long chain fatty acids controls the Ca(2+) concentration in the cytoplasm. The molecular mechanisms underlying this Ca(2+) mobilization are not fully understood. We show here that the addition of low micromolar concentrations of fatty acids directly to the purified plasma membrane Ca(2+)-ATPase enhance ATP hydrolysis, while higher concentration decrease activity, exerting a dual effect on the enzyme. The effect of arachidonic acid is similar in the presence or absence of calmodulin, acidic phospholipids or ATP at the regulatory site, thereby precluding these sites as probable acid binding sites. At low arachidonic acid concentrations, neither the affinity for calcium nor the phosphoenzyme levels are significantly modified, while at higher concentrations both are decreased. The action of arachidonic acid is isoenzyme specific. The increase on ATP hydrolysis, however, is uncoupled from calcium transport, because arachidonic acid increases the permeability of erythrocyte membranes to calcium. Oleic acid has no effect on membrane permeability while linoleic acid shows an effect similar to that of arachidonic acid. Such effects might contribute to the entry of extracellular Ca(2+) following to fatty acid release.
Collapse
Affiliation(s)
- Vanessa H Oliveira
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Meneghelli S, Luoni L, De Michelis MI. Heparin Stimulates a Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana. J Biochem 2007; 143:253-9. [DOI: 10.1093/jb/mvm218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|