1
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Walia Y, de Bock CE, Huang Y. The landscape of alterations affecting epigenetic regulators in T-cell acute lymphoblastic leukemia: Roles in leukemogenesis and therapeutic opportunities. Int J Cancer 2024; 154:1522-1536. [PMID: 38155420 DOI: 10.1002/ijc.34819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy accounting for 10%-15% of pediatric and 20%-25% of adult ALL cases. Epigenetic irregularities in T-ALL include alterations in both DNA methylation and the post-translational modifications on histones which together play a critical role in the initiation and development of T-ALL. Characterizing the oncogenic mutations that result in these epigenetic changes combined with the reversibility of epigenetic modifications represents an opportunity for the development of epigenetic therapies. Oncogenic mutations and deregulated expression of DNA methyltransferases (DNMTs), Ten-Eleven Translocation dioxygenases (TETs), Histone acetyltransferases (HATs) and members of Polycomb Repressor Complex 2 (PRC2) have all been identified in T-ALL. This review focuses on the current understanding of how these mutations lead to epigenetic changes in T-ALL, their association with disease pathogenesis and the current efforts to exploit these clinically through the development of epigenetic therapies in T-ALL treatment.
Collapse
Affiliation(s)
- Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
3
|
Zou L, Liu Z, Li X, Liu L, Zhu Y. Knockdown of G1P3 inhibits cell proliferation and enhances the cytotoxicity of dexamethasone in acute lymphoblastic leukemia. Open Life Sci 2022. [DOI: 10.1515/biol-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Drug resistance contributes to treatment failure and relapse in acute lymphoblastic leukemia (ALL). G1P3 (also known as IFI6, interferon, alpha-inducible protein 6) has been regarded as an antiapoptotic protein in myeloma cells and contributes to chemoresistance in breast cancer. However, the role of G1P3 in the proliferation and chemosensitivity of ALL is largely unknown. Data from colony formation and bromo-deoxyuridine (BrdU) incorporation assays showed that siRNA-mediated downregulation of G1P3 repressed cell proliferation of glucocorticoids-resistant human leukemic cells (CEM-C1), while overexpression of G1P3 promoted the cell proliferation. Cell apoptosis of CEM-C1 was suppressed by G1P3 overexpression accompanied by a decrease in cleaved caspase-3 and caspase-9. Knockdown of G1P3 increased protein expression of cleaved caspase-3 and caspase-9 to promote the cell apoptosis of CEM-C1. Moreover, silencing of G1P3 reduced cell viability and promoted cell apoptosis of CEM-C1 exposed to dexamethasone. The proapoptotic protein B-cell lymphoma 2 interacting mediator of cell death (Bim) was enhanced by the interference of G1P3 in CEM-C1. Silencing of Bim attenuated G1P3 interference-induced decrease in cell viability and increase in cell apoptosis in CEM-C1 exposed to dexamethasone. Conclusively, knockdown of G1P3 inhibited cell proliferation of ALL and sensitized glucocorticoid-resistant ALL cells to dexamethasone through upregulation of Bim-mediated cell apoptosis.
Collapse
Affiliation(s)
- Liping Zou
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
| | - Zhirui Liu
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Xueer Li
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Liping Liu
- Department of Hematology, First Affiliated Hospital of Gannan Medical University , Ganzhou , Jiangxi Province, 341000 , China
| | - Ying Zhu
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| |
Collapse
|
4
|
Carraway HE, Sawalha Y, Gojo I, Lee MJ, Lee S, Tomita Y, Yuno A, Greer J, Smith BD, Pratz KW, Levis MJ, Gore SD, Ghosh N, Dezern A, Blackford AL, Baer MR, Gore L, Piekarz R, Trepel JB, Karp JE. Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res 2021; 110:106707. [PMID: 34563945 DOI: 10.1016/j.leukres.2021.106707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Despite advances in immunotherapies, the prognosis for adults with Philadelphia chromosome-negative, newly diagnosed (ND) or relapsed/refractory (R/R) acute lymphoblastic leukemia/acute biphenotypic leukemia (ALL/ABL) remains poor. The benzamide derivative entinostat inhibits histone deacetylase and induces histone hyperacetylation. The purine nucleoside analogue clofarabine is FDA-approved for R/R ALL in children 1-21 years of age. Low doses of clofarabine have been reported to induce DNA hypomethylation. We conducted a phase 1 study of low dose clofarabine with escalating doses of entinostat in adults with ND or R/R ALL/ABL. EXPERIMENTAL DESIGN Adults ≥60 years with ND ALL/ABL or ≥21 years with R/R ALL/ABL received repeated cycles every 3 weeks of entinostat (4 mg, 6 mg or 8 mg orally days 1 and 8) and clofarabine (10 mg/m2/day IV for 5 days, days 3-7) (Arm A). Adults aged 40-59 years with ND ALL/ABL or age ≥21 years in first relapse received entinostat and clofarabine prior to traditional chemotherapy on day 11 (Arm B). Changes in DNA damage, global protein lysine acetylation, myeloid-derived suppressor cells and monocytes were measured in PBMCs before and during therapy. RESULTS Twenty-eight patients were treated at three entinostat dose levels with the maximum administered dose being entinostat 8 mg. The regimen was well tolerated with infectious and metabolic derangements more common in the older population versus the younger cohort. There was no severe hyperglycemia and no peripheral neuropathy in this small study. There were 2 deaths (1 sepsis, 1 intracranial bleed). Overall response rate was 32 %; it was 50 % for ND ALL/ABL. Entinostat increased global protein acetylation and inhibited immunosuppressive monocyte subpopulations, while clofarabine induced DNA damage in all cell subsets examined. CONCLUSION Entinostat plus clofarabine appears to be tolerable and active in older adults with ND ALL/ABL, but less active in R/R patients. Further evaluation of this regimen in ND ALL/ABL appears warranted.
Collapse
Affiliation(s)
- Hetty E Carraway
- Hematology Oncology Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Yazeed Sawalha
- Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ivana Gojo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Jackie Greer
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - B Douglas Smith
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - Keith W Pratz
- The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - Steven D Gore
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute, NIH, Bethesda, MD, United States
| | - Nilanjan Ghosh
- Atrium Health, Carolinas HealthCare System, Charlotte, NC, United States
| | - Amy Dezern
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - Amanda L Blackford
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Lia Gore
- University of Colorado Cancer Center, Aurora, CO, United States
| | - Richard Piekarz
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute, NIH, Bethesda, MD, United States
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Judith E Karp
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
5
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
6
|
Chung C, Ma H. Driving Toward Precision Medicine for Acute Leukemias: Are We There Yet? Pharmacotherapy 2017; 37:1052-1072. [DOI: 10.1002/phar.1977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Hilary Ma
- MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
7
|
Hentati-Kallel M, Le Jan S, Bernard P, Antonicelli F, Trussardi-Régnier A. Histone deacetylases meet microRNA-associated MMP-9 expression regulation in glucocorticoid-sensitive and -resistant cell lines. Int J Oncol 2016; 50:717-726. [DOI: 10.3892/ijo.2016.3830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 11/05/2022] Open
|
8
|
San Jose-Eneriz E, Agirre X, Rodríguez-Otero P, Prosper F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 2016; 5:525-38. [PMID: 24059799 DOI: 10.2217/epi.13.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer that is characterized by rapid and uncontrolled proliferation of immature B- or T-lymphoid precursors. Although ALL has been regarded as a genetic disease for many years, the crucial importance of epigenetic alterations in leukemogenesis has become increasingly evident. Epigenetic mechanisms, which include DNA methylation and histone modifications, are critical for gene regulation during many key biological processes. Here, we review the cell signaling pathways that are regulated by DNA methylation or histone modifications in ALL. Recent studies have highlighted the fundamental role of these modifications in ALL development, and suggested that future investigation into the specific genes and pathways that are altered by epigenetic mechanisms can contribute to the development of novel drug-based therapies for ALL.
Collapse
Affiliation(s)
- Edurne San Jose-Eneriz
- Oncology Division, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
9
|
Results of a phase II study of vorinostat in combination with intravenous fludarabine, mitoxantrone, and dexamethasone in patients with relapsed or refractory mantle cell lymphoma: an interim analysis. Cancer Chemother Pharmacol 2016; 77:865-73. [DOI: 10.1007/s00280-016-3005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/03/2016] [Indexed: 11/26/2022]
|
10
|
Zhang C, Zhong JF, Stucky A, Chen XL, Press MF, Zhang X. Histone acetylation: novel target for the treatment of acute lymphoblastic leukemia. Clin Epigenetics 2015; 7:117. [PMID: 26543507 PMCID: PMC4634719 DOI: 10.1186/s13148-015-0151-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) has been generally considered a genetic disease (disorder) with an aggressive tumor entity of highly proliferative malignant lymphoid cells. However, in recent years, significant advances have been made in the elucidation of the ALL-associated processes. Thus, we understand that histone acetylation is involved in the permanent changes of gene expression controlling ALL developmental outcomes. In this article, we will focus on histone acetylation associated with ALL, their implications as biomarkers for prognostic, and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People's Republic of China
| | - Jiang F Zhong
- Department of Diagnostic Sciences & Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 USA ; Department of Pediatric, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Andres Stucky
- Department of Diagnostic Sciences & Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 USA ; Department of Pediatric, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Xue-Lian Chen
- Department of Diagnostic Sciences & Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033 USA ; Department of Pediatric, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People's Republic of China
| |
Collapse
|
11
|
Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system. Proc Natl Acad Sci U S A 2015; 112:12681-6. [PMID: 26417071 DOI: 10.1073/pnas.1516057112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyclic AMP/protein kinase A (cAMP/PKA) and glucocorticoids promote the death of many cell types, including cells of hematopoietic origin. In wild-type (WT) S49 T-lymphoma cells, signaling by cAMP and glucocorticoids converges on the induction of the proapoptotic B-cell lymphoma-family protein Bim to produce mitochondria-dependent apoptosis. Kin(-), a clonal variant of WT S49 cells, lacks PKA catalytic (PKA-Cα) activity and is resistant to cAMP-mediated apoptosis. Using sorbitol density gradient fractionation, we show here that in kin(-) S49 cells PKA-Cα is not only depleted but the residual PKA-Cα mislocalizes to heavier cell fractions and is not phosphorylated at two conserved residues (Ser(338) or Thr(197)). In WT S49 cells, PKA-regulatory subunit I (RI) and Bim coimmunoprecipitate upon treatment with cAMP analogs and forskolin (which increases endogenous cAMP concentrations). By contrast, in kin(-) cells, expression of PKA-RIα and Bim is prominently decreased, and increases in cAMP do not increase Bim expression. Even so, kin(-) cells undergo apoptosis in response to treatment with the glucocorticoid dexamethasone (Dex). In WT cells, glucorticoid-mediated apoptosis involves an increase in Bim, but in kin(-) cells, Dex-promoted cell death appears to occur by a caspase 3-independent apoptosis-inducing factor pathway. Thus, although cAMP/PKA-Cα and PKA-R1α/Bim mediate apoptotic cell death in WT S49 cells, kin(-) cells resist this response because of lower levels of PKA-Cα and PKA-RIα subunits as well as Bim. The findings for Dex-promoted apoptosis imply that these lymphoma cells have adapted to selective pressure that promotes cell death by altering canonical signaling pathways.
Collapse
|
12
|
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, Van Vlierberghe P. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev 2015; 263:50-67. [PMID: 25510271 DOI: 10.1111/imr.12237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL.
Collapse
Affiliation(s)
- Sofie Peirs
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Venza M, Visalli M, Oteri R, Agliano F, Morabito S, Teti D, Venza I. The overriding of TRAIL resistance by the histone deacetylase inhibitor MS-275 involves c-myc up-regulation in cutaneous, uveal, and mucosal melanoma. Int Immunopharmacol 2015; 28:313-21. [PMID: 26122536 DOI: 10.1016/j.intimp.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
Malignant melanoma is a highly aggressive tumor which may occur in the skin, eye, and mucous membranes. The prognosis of melanoma remains poor in spite of therapeutic advances, emphasizing the importance of innovative treatment modalities. Currently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is showing promising clinical responses, however its use is hampered by intrinsic or acquired melanoma resistance to apoptosis. Recently, we showed that the combination of TRAIL with the class I-specific histone deacetylase inhibitor (HDACi) MS-275 was a privileged way to override TRAIL resistance through down-regulation of cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP). Here, we elucidated the underlying mechanism and provided evidence that a crucial step in the c-FLIP downregulation triggered by MS-275 implies the up-regulation of c-myc, a transcriptional repressor of c-FLIP. Notably, MS-275 caused H3 histone acetylation at the promoter of c-myc and increased its binding to the c-FLIP promoter, that in turn led to reduced c-FLIP gene transcription. Knockdown of c-myc prevented the MS-275-mediated downregulation of c-FLIP and hindered TRAIL-plus MS-275-induced apoptosis. Findings reported here provide additional knowledge tools for a more aware and effective molecular therapy of melanoma.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Agliano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Morabito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Isabella Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Pournazari P, Padmore RF, Kosari F, Scalia P, Shahbani-Rad MT, Shariff S, Demetrick DJ, Bosch M, Mansoor A. B-lymphoblastic leukemia/lymphoma: overexpression of nuclear DNA repair protein PARP-1 correlates with antiapoptotic protein Bcl-2 and complex chromosomal abnormalities. Hum Pathol 2014; 45:1582-7. [DOI: 10.1016/j.humpath.2013.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/25/2013] [Accepted: 11/22/2013] [Indexed: 01/20/2023]
|
15
|
Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp Hematol Oncol 2014; 3:16. [PMID: 24949228 PMCID: PMC4063430 DOI: 10.1186/2162-3619-3-16] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
In the pediatric population, B-acute lymphoblastic leukemia (B-ALL) is the most prevalent childhood hematological malignancy, as well as the leading cause of childhood cancer-related mortality. Advances in cytogenetics utilizing array-based technologies and next-generation sequencing (NGS) techniques have revealed exciting insights into the genetic basis of this disease, with the hopes of developing individualized treatment plans for affected children. In this comprehensive review, we discuss our current understanding of childhood (pediatric) B-ALL and highlight the most recent genetic advances and their therapeutic implications.
Collapse
Affiliation(s)
- Jennifer S Woo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 1010 Veteran Ave, 2nd Floor, room 2212 F, Los Angeles, CA 90024, USA
| | - Michael O Alberti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 1010 Veteran Ave, 2nd Floor, room 2212 F, Los Angeles, CA 90024, USA
| | - Carlos A Tirado
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 1010 Veteran Ave, 2nd Floor, room 2212 F, Los Angeles, CA 90024, USA
| |
Collapse
|
16
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|
17
|
Shao N, Ma D, Wang J, Lu T, Guo Y, Ji C. Notch1 signaling is irresponsible to the anti-leukemic effect of HDACis in B-ALL Nalm-6 cells. Ann Hematol 2012; 92:33-9. [PMID: 22968660 DOI: 10.1007/s00277-012-1561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematologic malignancy with limited treatment strategies. Histone deacetylases inhibitors (HDACis) are promising novel tools for cancer therapy, whose anti-tumor effects and the underlying mechanisms on B-ALL remain to be elucidated. Recently, Notch1 signaling activation has been reported to be involved in the anti-tumor effects of HDACis. This study was conducted to determine: the influence of two HDACis, valproic acid (VPA) and suberic bishydroxamic acid (SBHA), on Notch1 signaling as well as the role of Notch1 signaling in the anti-tumor effects of HDACis in B-ALL cells. To address this issue, we treated Nalm-6 B-ALL cell line with VPA and SBHA (HDACis), then, cell proliferation, cell cycle, apoptosis, and expression of Notch1 related genes were analyzed. We found that VPA and SBHA dramatically inhibited cell growth, induced a G1/S cell cycle block in accompany with an elevated level of P21(WAF1) protein in Nalm-6 cells. The levels of cleaved caspase-9, caspase-3, and PARP were elevated, indicating the activation of apoptosis. However, no change in the expression of Notch1 and its downstream genes were found by quantitative real-time PCR and Western blot. Our result suggested that Notch1 signaling is irresponsible for the anti-leukemic effect of HDACis in B-ALL cells. New hypotheses and future studies are needed to explore the underlying mechanisms of the anti-cancer effect in B-ALL.
Collapse
Affiliation(s)
- Na Shao
- Department of health care, Provincial Hospital, Shandong University, Jinan, 250021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Huang HL, Lee HY, Tsai AC, Peng CY, Lai MJ, Wang JC, Pan SL, Teng CM, Liou JP. Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo. PLoS One 2012; 7:e43645. [PMID: 22928010 PMCID: PMC3425516 DOI: 10.1371/journal.pone.0043645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/24/2012] [Indexed: 02/02/2023] Open
Abstract
Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.
Collapse
Affiliation(s)
- Han-Lin Huang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - An-Chi Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chieh-Yu Peng
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Jung Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Chi Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shiow-Lin Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Licciardi PV, Karagiannis TC. Regulation of immune responses by histone deacetylase inhibitors. ISRN HEMATOLOGY 2012; 2012:690901. [PMID: 22461998 PMCID: PMC3313568 DOI: 10.5402/2012/690901] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
Abstract
Both genetic and epigenetic factors are important regulators of the immune system. There is an increasing body of evidence attesting to epigenetic modifications that influence the development of distinct innate and adaptive immune response cells. Chromatin remodelling via acetylation, methylation, phosphorylation, and ubiquitination of histone proteins as well as DNA, methylation is epigenetic mechanisms by which immune gene expression can be controlled. In this paper, we will discuss the role of epigenetics in the regulation of host immunity, with particular emphasis on histone deacetylase inhibitors. In particular, the role of HDAC inhibitors as a new class of immunomodulatory therapeutics will also be reviewed.
Collapse
Affiliation(s)
- Paul V Licciardi
- Allergy and Immune Disorders Group, Murdoch Childrens Research Institute, Melbourne, VIC 3052, Australia
| | | |
Collapse
|
20
|
Shao N, Zou J, Li J, Chen F, Dai J, Qu X, Sun X, Ma D, Ji C. Hyper-activation of WNT/β-catenin signaling pathway mediates anti-tumor effects of histone deacetylase inhibitors in acute T lymphoblastic leukemia. Leuk Lymphoma 2012; 53:1769-78. [DOI: 10.3109/10428194.2012.663085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, Schininà ME, Maroder M, Frati L, Gulino A, Vacca A, Screpanti I. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 2011; 31:3807-17. [PMID: 22120716 DOI: 10.1038/onc.2011.533] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R(1692-1731) mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R(1692-1731) mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.
Collapse
Affiliation(s)
- R Palermo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin Investig Drugs 2011; 20:1455-67. [DOI: 10.1517/13543784.2011.613822] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Cardoso BA, de Almeida SF, Laranjeira ABA, Carmo-Fonseca M, Yunes JA, Coffer PJ, Barata JT. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25:1578-86. [PMID: 21647153 DOI: 10.1038/leu.2011.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factor T-cell acute lymphocytic leukemia (TAL)-1 is a major T-cell oncogene associated with poor prognosis in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 binds histone deacetylase 1 and incubation with histone deacetylase inhibitors (HDACis) promotes apoptosis of leukemia cells obtained from TAL1 transgenic mice. Here, we show for the first time that TAL1 protein expression is strikingly downregulated upon histone deacetylase inhibition in T-ALL cells. This is due to decreased TAL1 gene transcription in cells with native TAL1 promoter, and due to impaired TAL1 mRNA translation in cells that harbor the TAL1(d) microdeletion and consequently express TAL1 under the control of the SCL/TAL1 interrupting locus (SIL) promoter. Notably, HDACi-triggered apoptosis of T-ALL cells is significantly reversed by TAL1 forced overexpression. Our results indicate that the HDACi-mediated apoptotic program in T-ALL cells is partially dependent on their capacity to downregulate TAL1 and provide support for the therapeutic use of HDACi in T-ALL.
Collapse
Affiliation(s)
- B A Cardoso
- Cancer Biology Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J, Buetow KH, Pui CH, Baker SD, Brindle PK, Downing JR. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471:235-9. [PMID: 21390130 DOI: 10.1038/nature09727] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022]
Abstract
Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP, also known as CBP). The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the histone acetyltransferase domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sung ES, Kim A, Park JS, Chung J, Kwon MH, Kim YS. Histone deacetylase inhibitors synergistically potentiate death receptor 4-mediated apoptotic cell death of human T-cell acute lymphoblastic leukemia cells. Apoptosis 2010; 15:1256-69. [PMID: 20582477 DOI: 10.1007/s10495-010-0521-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell-death signaling through the pro-apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptors, death receptor 4 (DR4) and DR5, has shown tumor-selective apoptotic activity. Here, we examine susceptibility of various leukemia cell lines (HL-60, U937, K562, CCRF-CEM, CEM-CM3, and THP-1) to an anti-DR4 agonistic monoclonal antibody (mAb), AY4, in comparison with TRAIL. While most of the leukemia cell lines were intrinsically resistant to AY4 or TRAIL alone, the two T-cell acute lymphoblastic leukemia (T-ALL) lines, CEM-CM3 and CCRF-CEM cells, underwent synergistic caspase-dependent apoptotic cell death by combination of AY4 or TRAIL with a histone deacetylase inhibitor (HDACI), either suberoylanilide hydroxamic acid (SAHA) or valproic acid (VPA). All of the combined treatments synergistically downregulated several anti-apoptotic proteins (c-FLIP, Bcl-2, Bcl-X(L), XIAP, and survivin) without significant changing the expression levels of pro-apoptotic proteins (Bax and Bak) or the receptors (DR4 and DR5). Downregulation of c-FLIP to activate caspase-8 was a critical step for the synergistic apoptosis through both extrinsic and intrinsic apoptotic pathways. Our results demonstrate that the HDACIs have synergistic effects on DR4-specific mAb AY4-mediated cell death in the T-ALL cells with comparable competence to those exerted by TRAIL, providing a new strategy for the targeted treatment of human T-ALL cells.
Collapse
Affiliation(s)
- Eun-Sil Sung
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Yeongtong-gu, Suwon, 443-749, Korea
| | | | | | | | | | | |
Collapse
|
26
|
The DAC system and associations with acute leukemias and myelodysplastic syndromes. Invest New Drugs 2010; 28 Suppl 1:S36-49. [PMID: 21153858 PMCID: PMC3003828 DOI: 10.1007/s10637-010-9595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/05/2022]
Abstract
Imbalances of histone acetyltransferase (HAT) and deacetylase activity (DAC) that result in deregulated gene expression are commonly observed in leukemias. These alterations provide the basis for novel therapeutic approaches that target the epigenetic mechanisms implicated in leukemogenesis. As the acetylation status of histones has been linked to transcriptional regulation of genes involved particularly in differentiation and apoptosis, DAC inhibitors (DACi) have attracted considerable attention for treatment of hematologic malignancies. DACi encompass a structurally diverse family of compounds that are being explored as single agents as well as in combination with chemotherapeutic drugs, small molecule inhibitors of signaling pathways and hypomethylating agents. While DACi have shown clear evidence of activity in acute myeloid leukemia, myelodysplastic syndromes and lymphoid malignancies, their precise role in treatment of these different entities remain to be elucidated. Successful development of these compounds as elements of novel targeted treatment strategies for leukemia will require that clinical studies be performed in conjunction with translational research including efforts to identify predictive biomarkers.
Collapse
|
27
|
Jazirehi AR. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs 2010; 21:805-13. [PMID: 20679890 DOI: 10.1097/cad.0b013e32833dad91] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Moreno DA, Scrideli CA, Cortez MAA, de Paula Queiroz R, Valera ET, da Silva Silveira V, Yunes JA, Brandalise SR, Tone LG. research paper: Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 2010; 150:665-73. [PMID: 20636436 DOI: 10.1111/j.1365-2141.2010.08301.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Lee-Sherick AB, Linger RMA, Gore L, Keating AK, Graham DK. Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br J Haematol 2010; 151:295-311. [PMID: 20813012 DOI: 10.1111/j.1365-2141.2010.08282.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modifications to the treatment of acute lymphoblastic leukaemia (ALL) in children have led to a dramatic increase in survival in the past 40 years. Despite this success, a significant subset of paediatric leukaemia patients either relapse or fail to ever achieve a complete remission. Additionally, some patients necessitate treatment with intensified chemotherapy regimens due to clinical or laboratory findings which identify them as high risk. These patients are unlikely to respond to further minor adjustments to the dosing or timing of administration of the same chemotherapy medications. Many novel targeted therapies for the treatment of childhood ALL provide potential mechanisms to further improve cure rates, and provide the possibility of minimizing toxicity to non-malignant cells, given their specificity to malignant cell phenotypes. This article explores many of the potential targeted therapies in varying stages of development, from those currently in clinical trials to those still being refined in the research laboratory.
Collapse
Affiliation(s)
- Alisa B Lee-Sherick
- Department of Paediatrics, Section of Haematology, Oncology, and Bone Marrow Transplantation, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
30
|
Induction of myelogenous leukemia cells with histone deacetylase inhibitors through down-regulating the Daxx protein expression. ACTA ACUST UNITED AC 2009; 29:546-50. [DOI: 10.1007/s11596-009-0504-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Indexed: 11/27/2022]
|
31
|
Stamatopoulos B, Meuleman N, De Bruyn C, Mineur P, Martiat P, Bron D, Lagneaux L. Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 2009; 23:2281-9. [PMID: 19710697 DOI: 10.1038/leu.2009.176] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic code modifications by histone deacetylase inhibitors have recently been proposed as potential new therapies for hematological malignancies. Chronic lymphocytic leukemia (CLL) remains incurable despite the introduction of new treatments. CLL B cells are characterized by an apoptosis defect rather than excessive proliferation, but proliferation centers have been found in organs such as the bone marrow and lymph nodes. In this study, we analyzed gene expression modifications in CLL B cells after treatment with valproic acid (VPA), a well-tolerated anti-epileptic drug with HDAC inhibitory activity. CLL B cells obtained from 14 patients were treated in vitro with a concentration of 1 mM VPA for 4 h. VPA effects on gene expression were thereafter studied using Affymetrix technology, and some identified genes were validated by real-time PCR and western blot. We observed that VPA induced apoptosis by downregulating several anti-apoptotic genes and by upregulating pro-apoptotic genes. Furthermore, VPA significantly increased chemosensitivity to fludarabine, flavopiridol, bortezomib, thalidomide and lenalidomide. VPA inhibited the proliferation of CpG/IL2-stimulated CLL B cells and modulated many cell cycle messenger RNAs. In conclusion, exposure of CLL B cells to VPA induced apoptosis, potentiated chemotherapeutic agent effects and inhibited proliferation. These data strongly suggest the use of VPA in CLL treatment, particularly in combination with antileukemia agents.
Collapse
Affiliation(s)
- B Stamatopoulos
- Laboratory of Experimental Hematology, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
32
|
Fulda S. Therapeutic opportunities for counteracting apoptosis resistance in childhood leukaemia. Br J Haematol 2009; 145:441-54. [DOI: 10.1111/j.1365-2141.2009.07603.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Brodska B, Otevrelova P, Kalousek I. Variations in c-Myc and p21WAF1 expression protect normal peripheral blood lymphocytes against BimEL-mediated cell death. Cell Biochem Funct 2009; 27:167-75. [PMID: 19330811 DOI: 10.1002/cbf.1552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Abstract
While cure rates of over 80% are achieved in contemporary pediatric acute lymphoblastic leukemia (ALL) protocols, most adults with ALL succumb to their disease, and little progress has been made in the treatment of refractory and relapsed ALL. Moreover, the burden of therapy is high in a significant number of newly diagnosed patients, and in all those with relapse. Early response to therapy measured by minimal residual disease evaluation has proven the single most important prognostic factor and is increasingly used in risk stratification. However, as the benefit from intensification of frontline therapy becomes limiting, it becomes increasingly challenging to rescue patients who fail on contemporary risk-adapted protocols. New therapeutic strategies are needed, not only in salvage regimens but also in frontline protocols for patients who are at high risk of relapse. Current novel approaches include new formulations of existing chemotherapeutic agents, new antimetabolites and nucleoside analogs, monoclonal antibodies against leukemic-associated antigens, cellular immunotherapy, and molecular therapeutics. Some have already been adopted into standard regimens, while others remain in early stages of development. This review summarizes the current status of these novel therapies as they get integrated into ALL regimens.
Collapse
Affiliation(s)
- Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
35
|
|
36
|
Burkhart BA, Ivey ML, Archer TK. Long-term low level glucocorticoid exposure induces persistent repression in chromatin. Mol Cell Endocrinol 2009; 298:66-75. [PMID: 19007849 PMCID: PMC2657048 DOI: 10.1016/j.mce.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 12/31/2022]
Abstract
Environmental exposure to low concentration hormones can have permanent epigenetic effects in animals and humans. The consequence of long-term low concentration glucocorticoid exposure was investigated in cell culture using glucocorticoid responsive genes organized in alternative chromatin structures. The MMTV promoter is induced by short-term glucocorticoid exposure on either an integrated (normal chromatin) or transient (unstructured chromatin) promoter. Longer hormone treatment causes a transient refractory repression of only the integrated promoter. Exposure to low concentrations of hormone for several passages persistently represses the integrated MMTV and endogenous glucocorticoid responsive promoters. The glucocorticoid receptor cannot bind to persistently repressed promoters. Induction by androgens is also inhibited on the repressed MMTV promoter. Similarly, osmotic stress induction of the endogenous Sgk gene is repressed. Persistent repression by glucocorticoids targets glucocorticoid responsive genes using a chromatin-dependent mechanism that disrupts binding of both GR-dependent and GR-independent transcription complexes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- To whom correspondence should be addressed: Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, Phone (919) 316-4565, FAX (919) 316-4566,
| |
Collapse
|
37
|
|
38
|
Bouzar AB, Boxus M, Defoiche J, Berchem G, Macallan D, Pettengell R, Willis F, Burny A, Lagneaux L, Bron D, Chatelain B, Chatelain C, Willems L. Valproate synergizes with purine nucleoside analogues to induce apoptosis of B-chronic lymphocytic leukaemia cells. Br J Haematol 2008; 144:41-52. [PMID: 19006566 DOI: 10.1111/j.1365-2141.2008.07426.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resistance to chemotherapy and drug toxicity are two major concerns of chronic lymphocytic leukaemia (B-CLL) treatment by purine nucleoside analogues (PNA, i.e. fludarabine and cladribine). We hypothesized that targeting epigenetic changes might address these issues and evaluated the effect of the histone deacetylase inhibitor valproate (VPA) at a clinically relevant concentration. VPA acted in a highly synergistic/additive manner with fludarabine and cladribine to induce apoptosis of B-CLL cells. Importantly, VPA also restored sensitivity to fludarabine in B cells from poor prognosis CLL patients who became resistant to chemotherapy. Mechanism of apoptosis induced by VPA alone or combined with fludarabine or to cladribine was caspase-dependent and involved the extrinsic pathway. VPA, but neither fludarabine nor cladribine, enhanced the production of reactive oxygen species (ROS) and inhibition of ROS with N-acetylcysteine decreases apoptosis of CLL cells. VPA stimulates hyperphosphorylation of p42/p44 ERK, cytochrome c release and overexpression of Bax and Fas. Together, our data indicate that VPA may ameliorate the outcome of PNA-based therapeutic protocols and provide a potential alternative treatment in both the relapsed and front-line resistant patients and in patients with high risk features.
Collapse
Affiliation(s)
- Amel Baya Bouzar
- National Fund for Scientific Research, Molecular and Cellular Biology, FUSAG, Gembloux, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg 2008; 247:1036-40. [PMID: 18520232 DOI: 10.1097/sla.0b013e3181758d0e] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the effects of valproic acid (VPA) on Notch1 expression and cancer cell proliferation in medullary thyroid cancer (MTC) cells. BACKGROUND Other than surgery, there are no effective treatments for MTC, a neuroendocrine malignancy that frequently metastasizes. We have previously shown that over-expression of Notch1 in MTC cells inhibits cell growth and hormone production. VPA, a drug long used for the treatment of epilepsy, has recently been identified as a potential Notch1 activator. We hypothesized that VPA might activate Notch1 signaling in MTC cells, with antiproliferative effects. METHODS Human MTC cells were treated with VPA (0-5 mM) and Western blotting was performed to measure levels of Notch1 pathway proteins and neuroendocrine tumor markers. After confirming that VPA is a Notch1 activator in MTC cells, we performed cell proliferation assay. Finally, to determine the mechanism of growth inhibition, we measured protein levels of various markers of apoptosis. RESULTS Notch1 was absent in MTC cells at baseline. VPA treatment resulted in an increase in both full-length and active Notch1 protein. Notch1 activation with VPA suppressed 2 neuroendocrine tumor markers, ASCL1 and chromogranin A. Importantly, VPA inhibited the growth of MTC cells in a dose-dependent manner. Immunoblot analysis demonstrated caspase activation and poly(ADP-ribose) polymerase cleavage, indicating the induction of apoptosis. CONCLUSIONS VPA activates Notch1 signaling in MTC cells and inhibits their growth by inducing apoptosis. As the safety of VPA in human beings is well established, a clinical trial using this drug to treat patients with advanced MTC could be initiated in the near future.
Collapse
|