1
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
2
|
Maxim C, Ene CD, Nicolau I, Ruta LL, Farcasanu IC. Enantiomeric pairs of copper(II) complexes with tridentate Schiff bases derived from R- and S-methionine: the role of decorating organic groups of the ligand in crystal packing and biological activity. Dalton Trans 2022; 51:18383-18399. [PMID: 36250294 DOI: 10.1039/d2dt02620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three enantiomeric pairs consisting of copper(II) complexes with tridentate Schiff bases have been synthesized for employing in biological assessments: 1∞[Cu2(R/S-salmet)2(H2O)] (1-R/S·H2O), 1∞[Cu(R/S-3-HOMe-5-Me-salmet)] (2-R/S), and 1∞[Cu(R/S-3-MeO-salmet)] (3-R/S) (where R/S-salmetH2, R/S-3-HOMe-5-Me-salmetH2, and R/S-3-MeO-salmetH2 result from the condensation of R/S-methionine with salicylaldehyde, 2-hydroxy-3-(hydroxymethyl)-5-methylbenzaldehyde, and 3-methoxy-salicylaldehyde, respectively, in a 1 : 1 molar ratio). The crystal structures of 1-R·H2O and 2-R/S are reported. Moreover, the 1-R/S·H2O enantiomers have been subjected to a single-crystal-to-single-crystal (SC-SC) transformation by heating at 160 °C to afford their dehydrated forms, 1∞[Cu2(R/S-salmet)2] (1-R/S), whose structures have also been crystallographically determined. The coordination polyhedra of the metal centers, the binding modes of the ligands, and the 1-D double chain assemblies generated by the chiral mononuclear units are comparatively described. The diffuse reflectance UV-Vis and circular dichroism (CD) spectra of compounds 1-R/S·H2O, 1-R/S, and 2-R/S are analysed with respect to their structural peculiarities and compared to those of 3-R/S. The UV-Vis and CD spectra of solutions of 1-R/S, 2-R/S, and 3-R/S point to the collapse of the double chains via dissolution. Biological tests performed on the model eukaryote Saccharomyces cerevisiae indicated low toxicity for 1-R/S, 2-R/S, and 3-R, and moderate toxicity for 3-S. The S-type complexes were accumulated by cells in higher quantity compared to their R-type counterparts due to selective transport via the high-affinity S-methionine transporter, Mup1. A chemogenomic analysis of 3-S toxicity performed on a collection of yeast knockout mutants revealed that most of the deleted genes identified in the screen were involved in the cell response to oxidative stress, calcium-mediated response, or metal homeostasis. Altogether, it was concluded that 3-S accumulation may perturb the redox state of the cell, also interfering with the calcium-mediated response to oxidative stress or metal-related oxidative stress.
Collapse
Affiliation(s)
- Catalin Maxim
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie 23, 020464-Bucharest, Romania
| | - Cristian D Ene
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie 23, 020464-Bucharest, Romania.,"Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, Coordination and Supramolecular Chemistry Laboratory, Splaiul Independentei 202, 060021-Bucharest, Romania.
| | - Ioana Nicolau
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| |
Collapse
|
3
|
Vallejo B, Peltier E, Garrigós V, Matallana E, Marullo P, Aranda A. Role of Saccharomyces cerevisiae Nutrient Signaling Pathways During Winemaking: A Phenomics Approach. Front Bioeng Biotechnol 2020; 8:853. [PMID: 32793580 PMCID: PMC7387434 DOI: 10.3389/fbioe.2020.00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyzed. The results indicate that the cAMP-dependent PKA pathway is the most relevant regardless of fermentation conditions, while mutations on TOR pathways display an effect that depends on nitrogen availability. The production of metabolites of interest, such as glycerol, acetic acid and pyruvate, is controlled in a coordinated manner by the contribution of several components of different pathways. Ras GTPase Ras2, a stimulator of cAMP production, is a key factor for achieving fermentation, and is also relevant for sensing nitrogen availability. Increasing cAMP concentrations by deleting an enzyme used for its degradation, phosphodiesterase Pde2, proved a good way to increase fermentation kinetics, and offered keys for biotechnological improvement. Surprisingly glucose repression protein kinase Snf1 and Nitrogen Catabolite Repression transcription factor Gln3 are relevant in fermentation, even in the absence of starvation. Gln3 proved essential for respiration in several genetic backgrounds, and its presence is required to achieve full glucose de-repression. Therefore, most pathways sense different types of nutrients and only their coordinated action can ensure successful wine fermentation.
Collapse
Affiliation(s)
- Beatriz Vallejo
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilien Peltier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Strasbourg, France.,ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Victor Garrigós
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Philippe Marullo
- ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| |
Collapse
|
4
|
Development of a Rapid Method for Determination of Main Higher Alcohols in Fermented Alcoholic Beverages Based on Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01668-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
6
|
Abstract
The role of nitrogenous components in malt and wort during the production of beer has long been recognized. The concentration and range of wort amino acids impact on ethanolic fermentation by yeast and on the production of a range of flavour and aroma compounds in the final beer. This review summarizes research on Free Amino Nitrogen (FAN) within brewing, including various methods of analysis.
Collapse
|
7
|
Zhu J, Lu K, Xu X, Wang X, Shi J. Purification and characterization of a novel glutamate dehydrogenase from Geotrichum candidum with higher alcohol and amino acid activity. AMB Express 2017; 7:9. [PMID: 28050850 PMCID: PMC5209314 DOI: 10.1186/s13568-016-0307-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/14/2016] [Indexed: 11/10/2022] Open
Abstract
Crude enzyme from Geotrichum candidum S12 exhibited high activity towards hexanol at pH 4.0, distinguishing it from currently known enzymes. To identify the dominant enzyme contributing to this activity, the crude enzyme extract was separated into different fractions by ammonium sulfate precipitation, MonoQ anion-exchange chromatography, and Sephacryl S-200 gel filtration chromatography. Afraction with high activity towards hexanol at pH 4.0 was obtained, exhibiting 38-fold improved purity and a specific activity of 3802.7 U/mg. After electrophoretic analysis, the fraction showed a molecular weight of 223 kDa by Native-PAGE and 51.4 kDa by SDS-PAGE. The purified fraction was identified as a glutamate dehydrogenase (GDH) by peptide mass fingerprinting data. This fraction showed high activity towards glutamate, α-ketoglutarate, hexanol, and isoamyl alcohol with a Km value of 41.74, 4.01, 20.37, and 19.37 mM, respectively, but with no activity towards methanol, ethanol, 1-propanol, and isobutanol. As a comparison, the GDH from yeast had no activity towards hexanol and other alcohols. Kinetic analysis revealed that glutamate and hexanol served as competitive inhibitors to each other for the purified GDH. The GDH showed the highest activity towards hexanol at pH 4.0 and 30 °C, and was the most stable at pH 2.2-7.0 and ≤40 °C. The presence of ADP, Fe2+, K+, and Zn2+ increased the enzymatic activity towards hexanol and EDTA, Pb2+, Mn2+, ATP, and DTT decreased the activity. These novel characteristics expand the reported properties of GDH and suggest the newly characterized GDH has unique potential for practical application.
Collapse
|
8
|
Zhu K, He Q, Li L, Zhao Y, Zhao J. Silencing thioredoxin1 exacerbates damage of astrocytes exposed to OGD/R by aggravating apoptosis through the Actin-Ras2-cAMP-PKA pathway. Int J Neurosci 2017; 128:512-519. [PMID: 29073813 DOI: 10.1080/00207454.2017.1398159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF THE STUDY Induction of endogenous antioxidants is one of the key molecular mechanisms of cell resistance to hypoxia/ischemia. Thioredoxin1 (Trx1) is a small multifunctional ubiquitous antioxidant with redox-active dithiol and plays an important role in cell apoptosis through mitochondrial apoptosis pathways. The specific role of Trx1 in ischemia-reperfusion induced astrocyte apoptosis, however, remains unclear. MATERIALS AND METHODS In this study, we investigated the effect of Trx1 on apoptosis of astrocyte using an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model which mimics ischemic/reperfusion conditions in vivo. The astrocytes prepared from newborn Sprague-Dawley rats were exposed to OGD for 4 h followed by reoxygenation for 24 h. Next, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to assess cell viability while cell damage was assessed by lactate dehydrogenase (LDH). RESULTS We found that OGD/R increased cell death as well as the expression of Trx1 and that the interference of Trx1 further aggravated astrocyte damage under OGD/R condition. Furthermore, we detected an increase in the intracellular expressions of Ras2, cAMP, and PKA under OGD/R condition, which paralleled cell injury. CONCLUSIONS Notably, the deletion of Trx1 exacerbated astrocyte apoptosis via the Ras2-cAMP-PKA signaling pathway. We concluded that Trx1 protects astrocytes against apoptotic injury induced by OGD/R, and this protective effect may be partly related to the Ras2-cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- Kunting Zhu
- a Department of Pathology , The First People's Hospital of Yibin , Yibin , Sichuan , People's Republic of China
| | - Qi He
- b Department of Pathophysiology , Chongqing Medical University , Chongqing , People's Republic of China.,c Institute of Neuroscience , Chongqing Medical University , Chongqing , PR China
| | - Lingyu Li
- c Institute of Neuroscience , Chongqing Medical University , Chongqing , PR China.,d Department of Pathology , Chongqing Medical University , Chongqing , People's Republic of China
| | - Yong Zhao
- c Institute of Neuroscience , Chongqing Medical University , Chongqing , PR China.,d Department of Pathology , Chongqing Medical University , Chongqing , People's Republic of China
| | - Jing Zhao
- b Department of Pathophysiology , Chongqing Medical University , Chongqing , People's Republic of China.,c Institute of Neuroscience , Chongqing Medical University , Chongqing , PR China
| |
Collapse
|
9
|
Zhu J, Shi J, Lu Y, Liu L, Liu Y. Application of strains ofGeotrichumspp. to decrease higher alcohols and to increase esters. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; 127 Youyi West Road Xi'an Shaanxi Province 710072 China
- Department of Food Science; Xinyang College of Agriculture and Forestry; New 24 street of yangshan new district Xinyang Henan Province 464000 China
| | - JunLing Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; 127 Youyi West Road Xi'an Shaanxi Province 710072 China
| | - Yao Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; 127 Youyi West Road Xi'an Shaanxi Province 710072 China
| | - LaPing Liu
- Department of Food Science; Xinyang College of Agriculture and Forestry; New 24 street of yangshan new district Xinyang Henan Province 464000 China
| | - YanLin Liu
- College of Enology; Northwest A&F University; 23 Xinong Road Yangling Shaanxi Province 712100 China
| |
Collapse
|
10
|
Dueñas-Sánchez R, Pérez AG, Codón AC, Benítez T, Rincón AM. Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers' products. Int J Food Microbiol 2014; 180:7-12. [DOI: 10.1016/j.ijfoodmicro.2014.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/10/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
|
11
|
Kang BS, Lee JE, Park HJ. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model. J Food Sci 2014; 79:C1106-16. [PMID: 24888253 DOI: 10.1111/1750-3841.12489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. PRACTICAL APPLICATION The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least-squares regression. Our approach for predicting the quantities of volatile compounds in the finished product from initial condition of fermentation will give an insight to food researchers to modify and optimize the qualities of the corresponding products.
Collapse
Affiliation(s)
- Bo-Sik Kang
- School of Life Science and Biotechnology, Korea Univ, 5-1, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
12
|
Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2236-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Mirisola MG, Taormina G, Fabrizio P, Wei M, Hu J, Longo VD. Serine- and threonine/valine-dependent activation of PDK and Tor orthologs converge on Sch9 to promote aging. PLoS Genet 2014; 10:e1004113. [PMID: 24516402 PMCID: PMC3916422 DOI: 10.1371/journal.pgen.1004113] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/02/2013] [Indexed: 01/19/2023] Open
Abstract
Dietary restriction extends longevity in organisms ranging from bacteria to mice and protects primates from a variety of diseases, but the contribution of each dietary component to aging is poorly understood. Here we demonstrate that glucose and specific amino acids promote stress sensitization and aging through the differential activation of the Ras/cAMP/PKA, PKH1/2 and Tor/S6K pathways. Whereas glucose sensitized cells through a Ras-dependent mechanism, threonine and valine promoted cellular sensitization and aging primarily by activating the Tor/S6K pathway and serine promoted sensitization via PDK1 orthologs Pkh1/2. Serine, threonine and valine activated a signaling network in which Sch9 integrates TORC1 and Pkh signaling via phosphorylation of threonines 570 and 737 and promoted intracellular relocalization and transcriptional inhibition of the stress resistance protein kinase Rim15. Because of the conserved pro-aging role of nutrient and growth signaling pathways in higher eukaryotes, these results raise the possibility that similar mechanisms contribute to aging in mammals. Calorie restriction (CR), but also the restriction of specific components of the diet, has been known for decades to affect longevity. However, the understanding of how each component of the macronutrients affects longevity and stress resistance is poorly understood, in part because of the complexity of many of the model organisms studied. Here we studied how each amino acid and glucose cooperate to activate cell sensitizing pathways and promote aging. We identified specific amino acids in the diet that affect cellular protection and aging, describe how different pathways mediate these pro-aging effects, describe the effect of glucose and specific amino acids on the levels/activity of stress resistance kinases and transcription factors, and identify specific nutrient depletions capable of increasing longevity and stress resistance. Because of the conserved pro-aging role of orthologs of many of the genes in the signaling network described in this paper, these results are likely to serve as a foundation for the elucidation of similar nutrient-dependent pro-aging mechanisms in mammals.
Collapse
Affiliation(s)
- Mario G. Mirisola
- Dipartimento di Biotecnologie Mediche e Forensi (DiBiMeF) Università di Palermo, Palermo, Italy
| | - Giusi Taormina
- Dipartimento di Biotecnologie Mediche e Forensi (DiBiMeF) Università di Palermo, Palermo, Italy
| | - Paola Fabrizio
- Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Min Wei
- Longevity Institute and Dept. of Biological Sciences School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Jia Hu
- Longevity Institute and Dept. of Biological Sciences School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Valter D. Longo
- Longevity Institute and Dept. of Biological Sciences School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Procopio S, Krause D, Hofmann T, Becker T. Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.11.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Impact of an acid fungal protease in high gravity fermentation for ethanol production using indian sorghum as a feedstock. Biotechnol Prog 2013; 29:329-36. [DOI: 10.1002/btpr.1679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/14/2012] [Indexed: 11/07/2022]
|
16
|
Abstract
Since the study of yeast RAS and adenylate cyclase in the early 1980s, yeasts including budding and fission yeasts contributed significantly to the study of Ras signaling. First, yeast studies provided insights into how Ras activates downstream signaling pathways. Second, yeast studies contributed to the identification and characterization of GAP and GEF proteins, key regulators of Ras. Finally, the study of yeast provided many important insights into the understanding of C-terminal processing and membrane association of Ras proteins.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays 2011; 33:870-9. [PMID: 21913212 PMCID: PMC3258547 DOI: 10.1002/bies.201100100] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When cells are starved of their substrate, many nutrient transporters are induced. These undergo rapid endocytosis and redirection of their intracellular trafficking when their substrate becomes available again. The discovery that some of these transporters also act as receptors, or transceptors, suggests that at least part of the sophisticated controls governing the trafficking of these proteins has to do with their signaling function rather than with control of transport. In yeast, the general amino acid permease Gap1 mediates signaling to the protein kinase A pathway. Its endocytic internalization and intracellular trafficking are subject to amino acid control. Other nutrient transceptors controlling this signal transduction pathway appear to be subject to similar trafficking regulation. Transporters with complex regulatory control have also been suggested to function as transceptors in other organisms. Hence, precise regulation of intracellular trafficking in nutrient transporters may be related to the need for tight control of nutrient-induced signaling.
Collapse
Affiliation(s)
- Johan Kriel
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, K. U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1567-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 2010; 21:1439-48. [PMID: 20237159 PMCID: PMC2861604 DOI: 10.1091/mbc.e09-09-0779] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Hsp110 family of protein chaperones was known to promote maturation of Hsp90 client proteins. The yeast Hsp110 ortholog Sse1 is now shown to influence the decision to fold or degrade substrates of the Hsp70–Hsp90 chaperone system when maturation is compromised. Heat shock protein 70 (Hsp70) plays a central role in protein homeostasis and quality control in conjunction with other chaperone machines, including Hsp90. The Hsp110 chaperone Sse1 promotes Hsp90 activity in yeast, and functions as a nucleotide exchange factor (NEF) for cytosolic Hsp70, but the precise roles Sse1 plays in client maturation through the Hsp70–Hsp90 chaperone system are not fully understood. We find that upon pharmacological inhibition of Hsp90, a model protein kinase, Ste11ΔN, is rapidly degraded, whereas heterologously expressed glucocorticoid receptor (GR) remains stable. Hsp70 binding and nucleotide exchange by Sse1 was required for GR maturation and signaling through endogenous Ste11, as well as to promote Ste11ΔN degradation. Overexpression of another functional NEF partially compensated for loss of Sse1, whereas the paralog Sse2 fully restored GR maturation and Ste11ΔN degradation. Sse1 was required for ubiquitinylation of Ste11ΔN upon Hsp90 inhibition, providing a mechanistic explanation for its role in substrate degradation. Sse1/2 copurified with Hsp70 and other proteins comprising the “early-stage” Hsp90 complex, and was absent from “late-stage” Hsp90 complexes characterized by the presence of Sba1/p23. These findings support a model in which Hsp110 chaperones contribute significantly to the decision made by Hsp70 to fold or degrade a client protein.
Collapse
Affiliation(s)
- Atin K Mandal
- Department of Biology, The City College of New York, New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 2010; 10:134-49. [DOI: 10.1111/j.1567-1364.2009.00587.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|