1
|
van der Heijden EMDL, Lefevre L, Gossner A, Tzelos T, Connelley TK, Hassan MA. Comparative transcriptional analysis identifies genes associated with the attenuation of Theileria parva infected cells after long-term in vitro culture. Sci Rep 2024; 14:8976. [PMID: 38637584 PMCID: PMC11026401 DOI: 10.1038/s41598-024-59197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Autologous administration of attenuated Theileria parva-infected cells induces immunity to T. parva in cattle. The mechanism of attenuation, however, is largely unknown. Here, we used RNA sequencing of pathogenic and attenuated T. parva-infected T-cells to elucidate the transcriptional changes underpinning attenuation. We observed differential expression of several host genes, including TRAIL, PD-1, TGF-β and granzymes that are known to regulate inflammation and proliferation of infected cells. Importantly, many genes linked with the attenuation of the related T. annulata-infected cells were not dysregulated in this study. Furthermore, known T. parva antigens were not dysregulated in attenuated relative to pathogenic cells, indicating that attenuation is not due to enhanced immunogenicity. Overall this study suggests that attenuation is driven by a decrease in proliferation and restoration of the inflammatory profile of T. parva-infected cells. Additionally, it provides a foundation for future mechanistic studies of the attenuation phenotype in Theileria-infected cells.
Collapse
Affiliation(s)
- Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Lucas Lefevre
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Anton Gossner
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas Tzelos
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Timothy K Connelley
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK
| | - Musa A Hassan
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
2
|
Montinaro A, Walczak H. Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries. Cell Death Differ 2023; 30:237-249. [PMID: 36195672 PMCID: PMC9950482 DOI: 10.1038/s41418-022-01059-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/10/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) can induce apoptosis in a wide variety of cancer cells, both in vitro and in vivo, importantly without killing any essential normal cells. These findings formed the basis for the development of TRAIL-receptor agonists (TRAs) for cancer therapy. However, clinical trials conducted with different types of TRAs have, thus far, afforded only limited therapeutic benefit, as either the respectively chosen agonist showed insufficient anticancer activity or signs of toxicity, or the right TRAIL-comprising combination therapy was not employed. Therefore, in this review we will discuss molecular determinants of TRAIL resistance, the most promising TRAIL-sensitizing agents discovered to date and, importantly, whether any of these could also prove therapeutically efficacious upon cancer relapse following conventional first-line therapies. We will also discuss the more recent progress made with regards to the clinical development of highly active non-immunogenic next generation TRAs. Based thereupon, we next propose how TRAIL resistance might be successfully overcome, leading to the possible future development of highly potent, cancer-selective combination therapies that are based on our current understanding of biology TRAIL-induced cell death. It is possible that such therapies may offer the opportunity to tackle one of the major current obstacles to effective cancer therapy, namely overcoming chemo- and/or targeted-therapy resistance. Even if this were achievable only for certain types of therapy resistance and only for particular types of cancer, this would be a significant and meaningful achievement.
Collapse
Affiliation(s)
- Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
- CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany.
- Center for Biochemistry, Medical Faculty, Joseph-Stelzmann-Str. 52, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Ciaćma K, Więckiewicz J, Kędracka-Krok S, Kurtyka M, Stec M, Siedlar M, Baran J. Secretion of tumoricidal human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by recombinant Lactococcus lactis: optimization of in vitro synthesis conditions. Microb Cell Fact 2018; 17:177. [PMID: 30446013 PMCID: PMC6238363 DOI: 10.1186/s12934-018-1028-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively eliminates tumor cells. However, the short biological half-life of this molecule limits its potential use in the clinic. Our aim was to construct a recombinant strain of nonpathogenic Lactococcus lactis bacteria as a vector for effective and prolonged human TRAIL production. Herein, we examined the expression and secretion conditions leading to the production of biologically active protein in vitro. RESULTS The human soluble TRAIL-cDNA (hsTRAIL-cDNA) with optimized codons was designed to fit the codon usage pattern (codon bias) of the L. lactis host. This cDNA construct was synthesized and cloned in lactococcal plasmid secretion vector pNZ8124 under the control of the nisin-induced PnisA promoter. The pNZ8124-hsTRAIL plasmid vector was transformed into the L. lactis NZ9000 host strain cells by electroporation. Secretion of the protein occurred at the neutral pH during induction, with optimized concentration of the inducer and presence of serine proteases inhibitor. Using Western blotting and amino acid sequencing method we found that TRAIL was secreted in two forms, as visualized by the presence of two distinct molecular size bands, both deprived of the usp45 protein, the bacterial signal peptide. By the use of MTS assay we were able to prove that hsTRAIL present in supernatant from L. lactis (hsTRAIL+) broth culture was cytotoxic to human HCT116 colon cancer cells but not to normal human fibroblasts. Flow cytometry analysis revealed TRAIL-induced apoptosis of cancer cells. CONCLUSIONS We designed recombinant L. lactis bacteria, which efficiently produce biologically active, anti-tumorigenic human TRAIL in vitro. Further studies in tumor-bearing NOD-SCID mice will reveal whether the TRAIL-secreting L. lactis bacteria can be used as a safe carrier of this protein, capable of inducing effective elimination of human colon cancer cells in vivo.
Collapse
Affiliation(s)
- Katarzyna Ciaćma
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka str. 265, 30-663, Kraków, Poland
| | - Jerzy Więckiewicz
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka str. 265, 30-663, Kraków, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Kurtyka
- Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka str. 265, 30-663, Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka str. 265, 30-663, Kraków, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka str. 265, 30-663, Kraków, Poland.
| |
Collapse
|
4
|
Turner KA, Manouchehri JM, Kalafatis M. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin. Melanoma Res 2018; 28:277-285. [PMID: 29596115 PMCID: PMC6039425 DOI: 10.1097/cmr.0000000000000447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.
Collapse
Affiliation(s)
- Katherine A. Turner
- Department of Chemistry, Cleveland State University
- Center for Gene Regulation in Health and Disease (GRHD)
| | - Jasmine M. Manouchehri
- Department of Chemistry, Cleveland State University
- Center for Gene Regulation in Health and Disease (GRHD)
| | - Michael Kalafatis
- Department of Chemistry, Cleveland State University
- Center for Gene Regulation in Health and Disease (GRHD)
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Abstract
Metastasis is one of the most characteristic yet problematic behaviors of cancer cells. Stage IV breast cancer accounts for a large portion of breast cancer-related morbidity and mortality. Despite early detection and improvement in survival owing to advancements in biomedical research and overall improvement of the health system, 6-10% of patients present with stage IV disease in the developed world, with a higher incidence noted elsewhere. Despite advances in biomedical research into cancer, up to 70-80% of patients with stage IV breast cancer die of cancer in 5 years, a disproportionally higher mortality compared with non-metastatic breast cancer. In this article, we review the incidence, survival, heterogeneity, current practice, and challenges in stage IV breast cancer, and we finish by noting new research initiatives to improve poor survival and suggesting future directions. By doing so, we hope to set the basis of future directions for both treating physicians and translational researchers to relieve the suffering of patients with stage IV breast cancer and improve the survival of patients with this dismal disease.
Collapse
Affiliation(s)
- Bora Lim
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gabriel N Hortobagyi
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
DATS sensitizes glioma cells to TRAIL-mediated apoptosis by up-regulation of death receptor 5 via ROS. Food Chem Toxicol 2017; 106:514-521. [DOI: 10.1016/j.fct.2017.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
|
7
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
8
|
Low serum TNF-related apoptosis-inducing ligand (TRAIL) levels are associated with acute ischemic stroke severity. Atherosclerosis 2015; 240:228-33. [DOI: 10.1016/j.atherosclerosis.2015.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022]
|
9
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
10
|
Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol Appl Pharmacol 2014; 279:253-265. [PMID: 25034532 DOI: 10.1016/j.taap.2014.06.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 02/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy.
Collapse
|
11
|
Koehler BC, Jäger D, Schulze-Bergkamen H. Targeting cell death signaling in colorectal cancer: Current strategies and future perspectives. World J Gastroenterol 2014; 20:1923-1934. [PMID: 24587670 PMCID: PMC3934462 DOI: 10.3748/wjg.v20.i8.1923] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
The evasion from controlled cell death induction has been considered as one of the hallmarks of cancer cells. Defects in cell death signaling are a fundamental phenomenon in colorectal cancer. Nearly any non-invasive cancer treatment finally aims to induce cell death. However, apoptosis resistance is the major cause for insufficient therapeutic success and disease relapse in gastrointestinal oncology. Various compounds have been developed and evaluated with the aim to meet with this obstacle by triggering cell death in cancer cells. The aim of this review is to illustrate current approaches and future directions in targeting cell death signaling in colorectal cancer. The complex signaling network of apoptosis will be demonstrated and the “druggability” of targets will be identified. In detail, proteins regulating mitochondrial cell death in colorectal cancer, such as Bcl-2 and survivin, will be discussed with respect to potential therapeutic exploitation. Death receptor signaling and targeting in colorectal cancer will be outlined. Encouraging clinical trials including cell death based targeted therapies for colorectal cancer are under way and will be demonstrated. Our conceptual understanding of cell death in cancer is rapidly emerging and new types of controlled cellular death have been identified. To meet this progress in cell death research, the implication of autophagy and necroptosis for colorectal carcinogenesis and therapeutic approaches will also be depicted. The main focus of this topic highlight will be on the revelation of the complex cell death concepts in colorectal cancer and the bridging from basic research to clinical use.
Collapse
|
12
|
van Dijk M, Halpin-McCormick A, Sessler T, Samali A, Szegezdi E. Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis 2013; 4:e702. [PMID: 23828565 PMCID: PMC3730397 DOI: 10.1038/cddis.2013.214] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine and a selective inducer of apoptosis in a range of tumour cells, but not in normal, untransformed cells. A large number of chemotherapeutics as well as biological agents are being tested for their potential to sensitise resistant tumour cells to TRAIL as a means to broaden the range of tumours treatable with TRAIL. However, because of the incomplete understanding of the mechanism(s) underlying TRAIL resistance in non-malignant cells, it is unpredictable whether the effect of these sensitisers will be restricted to tumour cells or they would also sensitise non-transformed cells causing unwanted toxicity. In this study, we carried out a systematic analysis of the mechanisms driving TRAIL resistance in non-transformed cells. We found that cellular FLICE-like inhibitory protein, anti-apoptotic B-cell lymphoma 2 proteins, and X-linked inhibitor of apoptosis protein were independently able to provide resistance to TRAIL. Deficiency of only one of these proteins was not sufficient to elicit TRAIL sensitivity, demonstrating that in non-transformed cells multiple pathways control TRAIL resistance and they act in a redundant manner. This is contrary to the resistance mechanisms found in tumour cell types, many of them tend to rely on a single mechanism of resistance. Supporting this notion we found that 76% of TRAIL-resistant cell lines (13 out of 17) expressed only one of the above-identified anti-apoptotic proteins at a high level (≥1.2-fold higher than the mean expression across all cell lines). Furthermore, inhibition or knockdown of the single overexpressed protein in these tumour cells was sufficient to trigger TRAIL sensitivity. Therefore, the redundancy in resistance pathways in non-transformed cells may offer a safe therapeutic window for TRAIL-based combination therapies where selective sensitisation of the tumour to TRAIL can be achieved by targeting the single non-redundant resistance pathway.
Collapse
Affiliation(s)
- M van Dijk
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
13
|
Abstract
We determined the effects of severe hypoxia (∼0.1% O2) on acute myeloid leukemia cells expressing the AML1/ETO oncogene. Incubation of Kasumi-1 cells in hypoxia induced growth arrest, apoptosis and reduction of AML1/ETO protein expression. The conditional expression of AML1/ETO in U937-A/E cells showed that hypoxia induces marked apoptosis in AML1/ETO-expressing cells only, pointing to AML1/ETO as a factor predisposing cells to hypoxia-induced apoptosis. In AML1/ETO-expressing cells, hypoxia enhanced TRAIL expression and its proapoptotic effects. AML1/ETO was found to bind TRAIL promoter and induce TRAIL transcription, although TRAIL expression was restrained by a concomitant relative transcription block. In hypoxia, such a TRAIL repression was removed and an increase of TRAIL expression was induced. Finally, blocking anti-TRAIL antibodies markedly reduced (Kasumi-1 cells) or completely inhibited (U937-A/E cells) hypoxia-induced apoptosis. Taken together, these results indicated that hypoxia induces apoptosis in AML1/ETO-expressing cells via a TRAIL/caspase 8-dependent autocrine loop and that TRAIL is a key regulator of hypoxia-induced apoptosis in these cells.
Collapse
|
14
|
Franci G, Miceli M, Altucci L. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics 2012; 2:731-42. [PMID: 22122079 DOI: 10.2217/epi.10.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The term 'epigenetic' fuses old and new concepts that refer to the modulation of gene expression in cellular heritability, fate, development and programming-reprogramming other than the DNA sequence itself. Epigenetic control of transcription is regulated by enzymes that mediate covalent modifications at gene-regulatory regions and histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate chromatin epigenetic reactions are deregulated in diseases such as cancer. Thus, small-molecule inhibitors that target chromatin-modifying enzymes represent a novel option for treatment, and DNA methyltransferase and histone deacetylase inhibitors have been approved for cancer treatment. Moreover, other classes of epi-enzymes (MS-275, SAHA) have been demonstrated to have strong disease association, and are currently being targeted for modulation. An epigenetic poly-pharmacological approach targeting multiple chromatin-modifying enzymes may represent a 'smart' option to treat cancer versus the current view on the selective and single pharmacological targeting of epigenetic enzymes.
Collapse
|
15
|
The calcineurin B subunit induces TNF-related apoptosis-inducing ligand (TRAIL) expression via CD11b–NF-κB pathway in RAW264.7 macrophages. Biochem Biophys Res Commun 2012; 417:777-83. [DOI: 10.1016/j.bbrc.2011.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 11/19/2022]
|
16
|
Liu L, Su Z, Xin S, Cheng J, Li J, Xu L, Wei Q. The Calcineurin B Subunit (CnB) Is a New Ligand of Integrin αM That Mediates CnB-Induced Apo2L/TRAIL Expression in Macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 188:238-47. [DOI: 10.4049/jimmunol.1102029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Zauli G, Bosco R, Secchiero P. Molecular targets for selective killing of TRAIL-resistant leukemic cells. Expert Opin Ther Targets 2011; 15:931-42. [DOI: 10.1517/14728222.2011.580278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Jin A, Ozawa T, Tajiri K, Lin Z, Obata T, Ishida I, Kishi H, Muraguchi A. Generation of TRAIL-receptor 1-specific human monoclonal Ab by a combination of immunospot array assay on a chip and human Ab-producing mice. Eur J Immunol 2010; 40:3591-3593. [PMID: 21072874 DOI: 10.1002/eji.201040551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Aishun Jin
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The Tumor Necrosis Factor-A (TNF-A) Gene -308 G/A Polymorphism and the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (Trail) Gene Polymorphisms in Behcet'S Disease. BIOTECHNOL BIOTEC EQ 2010. [DOI: 10.2478/v10133-010-0055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|