1
|
Shi Y, Zheng W, Yang G, Liu H, Xing L. A causal inference study exploring the impact of iron status on the risk of thyroid cancer based on two-sample mendelian randomization. Discov Oncol 2025; 16:485. [PMID: 40192984 PMCID: PMC11977069 DOI: 10.1007/s12672-025-02270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND & AIMS Thyroid cancer is prone to early lymph node metastasis.This study investigated the influence of iron status on thyroid cancer risk and its mediating role in the relationship between thyroid cancer incidence and thyroid cancer-related exposure factors. METHOD Utilizing iron status-related Single Nucleotide Polymorphisms as instrumental variables, the research analyzed summary data on iron status and thyroid cancer from Genome-Wide Association Studies following the Two-sample Mendelian randomization guidelines, primarily using the Inverse-variance weighted method, with Mendelian randomization-Egger method, weighted median method, simple mode, and weighted mode as supplementary analyses. The reliability and robustness of the results were assessed using the Leave-one-out analysis and Cochran's Q Test. RESULTS The findings indicate that the iron status has a vital causal relationship with the occurrence of thyroid cancer. The Inverse-variance weighted model results revealed Iron || id:ieu-a-1049: OR = 1.409, 95%CI = (1.043, 1.904), P < 0.05; Ferritin || id:ieu-a-1050: OR = 2.029, 95% CI = (1.081, 3.808), P < 0.05; Transferrin Saturation || id:ieu-a-1051: OR = 1.337, 95%CI = (1.058, 1.690), P < 0.05. The reliability and robustness of these results were further supported by the Leave-one-out analysis and Cochran's Q Test (P > 0.05). CONCLUSION The study establishes a certain causal link between iron status and thyroid cancer, indicating that transferrin saturation, serum ferritin and serum iron are associated with thyroid cancer incidence.
Collapse
Affiliation(s)
- Yihan Shi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenlian Zheng
- Department of Burn and Wound Repair, Shaoguan First People's Hospital, Shaoguan, 512023, Guangdong, China
| | - Guanglun Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lei Xing
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y, Li Y. Important molecular mechanisms in ferroptosis. Mol Cell Biochem 2025; 480:639-658. [PMID: 38668809 DOI: 10.1007/s11010-024-05009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/07/2024] [Indexed: 02/19/2025]
Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Collapse
Affiliation(s)
- Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lulu Tao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanru Zhai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Scicchitano S, Montalcini Y, Lucchino V, Melocchi V, Gigantino V, Chiarella E, Bianchi F, Weisz A, Mesuraca M. Enhanced ZNF521 expression induces an aggressive phenotype in human ovarian carcinoma cell lines. PLoS One 2022; 17:e0274785. [PMID: 36191006 PMCID: PMC9529122 DOI: 10.1371/journal.pone.0274785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most lethal gynecological tumor, that almost inevitably relapses and develops chemo-resistance. A better understanding of molecular events underlying the biological behavior of this tumor, as well as identification of new biomarkers and therapeutic targets are the prerequisite to improve its clinical management. ZNF521 gene amplifications are present in >6% of OCs and its overexpression is associated with poor prognosis, suggesting that it may play an important role in OC. Increased ZNF521 expression resulted in an enhancement of OC HeyA8 and ES-2 cell growth and motility. Analysis of RNA isolated from transduced cells by RNA-Seq and qRT-PCR revealed that several genes involved in growth, proliferation, migration and tumor invasiveness are differentially expressed following increased ZNF521 expression. The data illustrate a novel biological role of ZNF521 in OC that, thanks to the early and easy detection by RNA-Seq, can be used as biomarker for identification and treatment of OC patients.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
- * E-mail: (SS); (MM)
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Stem Cell Biology Department of Experimental and Clinical Medicine University Magna Graecia, Catanzaro, Italy
| | - Valentina Melocchi
- Unit of Cancer Biomarkers, Fondazione IRCCS–Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS–Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy
- Genome Research Center for Health, University of Salerno Campus, Baronissi (SA), Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
- * E-mail: (SS); (MM)
| |
Collapse
|
6
|
Park JM, Mau CZ, Chen YC, Su YH, Chen HA, Huang SY, Chang JS, Chiu CF. A case-control study in Taiwanese cohort and meta-analysis of serum ferritin in pancreatic cancer. Sci Rep 2021; 11:21242. [PMID: 34711879 PMCID: PMC8553768 DOI: 10.1038/s41598-021-00650-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal diseases which lack an early diagnostic marker. We investigated whether serum ferritin (SF) reflects risk for pancreatic cancer and potential genes that may contribute ferritin and pancreatic cancer risks. We performed a meta-analysis of relevant studies on SF and pancreatic cancer risk by searching articles in PUBMED and EMBASE published up to 1 March 2020. We also collected serum samples from Taipei Medical University Joint Biobank and compared SF levels in 34 healthy controls and 34 pancreatic cancer patients. An Oncomine database was applied as a platform to explore a series of genes that exhibited strong associations between ferritin and pancreatic cancer. Herein, we show that high levels of SF can indicate risk of pancreatic cancer, suggesting SF as the new tumor marker that may be used to help pancreatic cancer diagnosis. We also found that expressions of iron homeostasis genes (MYC, FXN) and ferroptosis genes (ALOX15, CBS, FDFT1, LPCAT3, RPL8, TP53, TTC35) are significantly altered with pancreatic tumor grades, which may contribute to differential expression of ferritin related to pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Ji Min Park
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Biamonte F, Battaglia AM, Zolea F, Oliveira DM, Aversa I, Santamaria G, Giovannone ED, Rocco G, Viglietto G, Costanzo F. Ferritin heavy subunit enhances apoptosis of non-small cell lung cancer cells through modulation of miR-125b/p53 axis. Cell Death Dis 2018; 9:1174. [PMID: 30518922 PMCID: PMC6281584 DOI: 10.1038/s41419-018-1216-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/03/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
Ferritin is a nanocage protein composed by the variable assembly of 24 heavy and light subunits. As major intracellular iron storage protein, ferritin has been studied for many years in the context of iron metabolism. However, recent evidences have highlighted its role, in particular that of the heavy subunit (FHC), in pathways related to cancer development and progression, such as cell proliferation, growth suppressor evasion, cell death inhibition, and angiogenesis. At least partly, the involvement in these pathways is due to the ability of FHC to control the expression of a repertoire of oncogenes and oncomiRNAs. Moreover, the existence of a feedback loop between FHC and the tumor suppressor p53 has been demonstrated in different cell types. Here, we show that ectopic over-expression of FHC induces the promoter hypermethylation and the down-regulation of miR-125b that, in turn, enhances p53 protein expression in non-small cell lung cancer (NSCLC) cell lines. Notably, analysis by absolute quantitative RT-PCR of FHC, miR-125b, and p53 strongly suggests that this axis might be active in human NSCLC tissue specimens. In vitro, FHC over-expression attenuates survival of NSCLC cells by inducing p53-mediated intrinsic apoptosis that is partially abrogated upon miR-125b re-expression. Overall, our findings demonstrate that FHC acts as a tumor suppressor gene, thus providing a potential molecular strategy for induction of NSCLC apoptotic cell death.
Collapse
Affiliation(s)
- Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy.
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Emilia Dora Giovannone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Gaetano Rocco
- Department of Thoracic Surgical and Medical Oncology, Division of Thoracic Surgery, Istituto Nazionale Tumori, IRCCS, Pascale Foundation, Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
9
|
Zhang J, Chen X. p53 tumor suppressor and iron homeostasis. FEBS J 2018; 286:620-629. [PMID: 30133149 DOI: 10.1111/febs.14638] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Iron is an essential nutrient for all living organisms and plays a vital role in many fundamental biochemical processes, such as oxygen transport, energy metabolism, and DNA synthesis. Due to its capability to produce free radicals, iron has deleterious effects and thus, its level needs to be tightly controlled in the body. Deregulation of iron metabolism is known to cause diseases, including anemia by iron deficiency and hereditary hemochromatosis by iron overload. Interestingly, dysregulated iron metabolism occurs frequently in tumor cells and contributes to tumorigenesis. In this review, we will discuss the role of p53 tumor suppressor in iron homeostasis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, School of Veterinary Medicine and Medicine, University of California at Davis, CA, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, School of Veterinary Medicine and Medicine, University of California at Davis, CA, USA
| |
Collapse
|
10
|
Lobello N, Biamonte F, Pisanu ME, Faniello MC, Jakopin Ž, Chiarella E, Giovannone ED, Mancini R, Ciliberto G, Cuda G, Costanzo F. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition. Oncotarget 2018; 7:62019-62033. [PMID: 27566559 PMCID: PMC5308708 DOI: 10.18632/oncotarget.11495] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Objectives Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells. Results FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs. Methods FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR. Conclusions In this paper we uncover a new function of FHC in the control of cancer stem cells.
Collapse
Affiliation(s)
- Nadia Lobello
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Flavia Biamonte
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Maria Elena Pisanu
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy.,Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Italy
| | - Maria Concetta Faniello
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Emanuela Chiarella
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Emilia Dora Giovannone
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy.,Centro Interdipartimentale di Servizi e Ricerca, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Rita Mancini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy.,Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Italy
| | - Gennaro Ciliberto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Giovanni Cuda
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Francesco Costanzo
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
11
|
Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1445-1454. [DOI: 10.1016/j.bbapap.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
|
12
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
13
|
Di Sanzo M, Aversa I, Santamaria G, Gagliardi M, Panebianco M, Biamonte F, Zolea F, Faniello MC, Cuda G, Costanzo F. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation. PLoS One 2016; 11:e0151359. [PMID: 26982978 PMCID: PMC4794146 DOI: 10.1371/journal.pone.0151359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/27/2016] [Indexed: 11/18/2022] Open
Abstract
Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | | | - Mariafranca Panebianco
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
14
|
Scumaci D, Tammè L, Fiumara CV, Pappaianni G, Concolino A, Leone E, Faniello MC, Quaresima B, Ricevuto E, Costanzo FS, Cuda G. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications. PLoS One 2015; 10:e0129762. [PMID: 26061043 PMCID: PMC4465499 DOI: 10.1371/journal.pone.0129762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. Methods To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. Results The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Conclusions Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer.
Collapse
Affiliation(s)
- Domenica Scumaci
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
- * E-mail:
| | - Laura Tammè
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Giusi Pappaianni
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Antonio Concolino
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Emanuela Leone
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Maria Concetta Faniello
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Barbara Quaresima
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Enrico Ricevuto
- Medical Oncology, S. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Francesco Saverio Costanzo
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Dpt. of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
15
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
16
|
H-ferritin-regulated microRNAs modulate gene expression in K562 cells. PLoS One 2015; 10:e0122105. [PMID: 25815883 PMCID: PMC4376865 DOI: 10.1371/journal.pone.0122105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.
Collapse
|
17
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
18
|
Misaggi R, Di Sanzo M, Cosentino C, Bond HM, Scumaci D, Romeo F, Stellato C, Giurato G, Weisz A, Quaresima B, Barni T, Amato F, Viglietto G, Morrone G, Cuda G, Faniello MC, Costanzo F. Identification of H ferritin-dependent and independent genes in K562 differentiating cells by targeted gene silencing and expression profiling. Gene 2013; 535:327-35. [PMID: 24239552 DOI: 10.1016/j.gene.2013.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023]
Abstract
Ferritin is best known as the key molecule in intracellular iron storage, and is involved in several metabolic processes such as cell proliferation, differentiation and neoplastic transformation. We have recently demonstrated that the shRNA silencing of the ferritin heavy subunit (FHC) in a melanoma cell line is accompanied by a consistent modification of gene expression pattern leading to a reduced potential in terms of proliferation, invasiveness, and adhesion ability of the silenced cells. In this study we sought to define the repertoire of genes whose expression might be affected by FHC during the hemin-induced differentiation of the erythromyeloid cell line K562. To this aim, gene expression profiling was performed in four different sets of cells: i) wild type K562; ii) sh-RNA FHC-silenced K562; iii) hemin-treated wild-type K562; and iv) hemin-treated FHC-silenced K562. Statistical analysis of the gene expression data, performed by two-factor ANOVA, identified three distinct classes of transcripts: a) Class 1, including 657 mRNAs whose expression is modified exclusively during hemin-induced differentiation of K562 cells, independently from the FHC relative amounts; b) Class 2, containing a set of 70 mRNAs which are consistently modified by hemin and FHC-silencing; and c) Class 3, including 128 transcripts modified by FHC-silencing but not by hemin. Our data indicate that FHC may function as a modulator of gene expression during erythroid differentiation and add new findings to the knowledge of the complex gene network modulated during erythroid differentiation.
Collapse
Affiliation(s)
- Roberta Misaggi
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Heather M Bond
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 84081 Baronissi, Salerno, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Amato
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Morrone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
19
|
Amato R, Scumaci D, D'Antona L, Iuliano R, Menniti M, Di Sanzo M, Faniello MC, Colao E, Malatesta P, Zingone A, Agosti V, Costanzo FS, Mileo AM, Paggi MG, Lang F, Cuda G, Lavia P, Perrotti N. Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene 2012; 32:4572-8. [PMID: 23108393 DOI: 10.1038/onc.2012.470] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/01/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Abstract
The serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of epithelial sodium channel-mediated sodium transport and is involved in the transduction of growth factor-dependent cell survival and proliferation signals. Growing evidence now points to Sgk1 as a key element in the development and/or progression of human cancer. To gain insight into the mechanisms through which Sgk1 regulates cell proliferation, we adopted a proteomic approach to identify up- or downregulated proteins after Sgk1-specific RNA silencing. Among several proteins, the abundance of which was found to be up- or downregulated upon Sgk1 silencing, we focused our attention of RAN-binding protein 1 (RANBP1), a major effector of the GTPase RAN. We report that Sgk1-dependent regulation of RANBP1 has functional consequences on both mitotic microtubule activity and taxol sensitivity of cancer cells.
Collapse
Affiliation(s)
- R Amato
- Department of Human Health, University Magna Graecia at Catanzaro, Campus S Venuta, Località Germaneto Viale Europa, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
21
|
Di Sanzo M, Gaspari M, Misaggi R, Romeo F, Falbo L, De Marco C, Agosti V, Quaresima B, Barni T, Viglietto G, Larsen MR, Cuda G, Costanzo F, Faniello MC. H Ferritin Gene Silencing in a Human Metastatic Melanoma Cell Line: A Proteomic Analysis. J Proteome Res 2011; 10:5444-53. [DOI: 10.1021/pr200705z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maddalena Di Sanzo
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Roberta Misaggi
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Francesco Romeo
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Lucia Falbo
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Carmela De Marco
- Laboratorio di Oncologia Molecolare, BioGem s.c. a r.l., Ariano Irpino (AV), Italy
| | - Valter Agosti
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Barbara Quaresima
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Tullio Barni
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Francesco Costanzo
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Dipartimento di Medicina Sperimentale e Clinica “G. Salvatore”, Università degli Studi di Catanzaro “Magna Græcia”, viale Europa, Campus Universitario, “S. Venuta” - 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Romeo F, Falbo L, Di Sanzo M, Misaggi R, Faniello MC, Barni T, Cuda G, Viglietto G, Santoro C, Quaresima B, Costanzo F. Negative transcriptional regulation of the human periostin gene by YingYang-1 transcription factor. Gene 2011; 487:129-34. [PMID: 21839814 DOI: 10.1016/j.gene.2011.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Periostin (POSTN), an osteoblast-specific secreted protein known to be associated with cell adhesion activity for bone formation and development by the epithelial cell-derived tumors, leads to a significant enhancement in angiogenesis and tumorigenesis. At present, little is known about the mechanisms underlying its transcriptional control either in physiological or neoplastic conditions. In this study we demonstrate that the ability of the human POSTN promoter to drive transcription mostly depends on the activity of YingYang-1 (YY1) zinc finger transcription factor. YY1, whose regulatory role in biology includes, besides transcriptional control, also chromatin remodeling, DNA damage repair and tumorigenesis, acts as a strong negative modulator of the POSTN expression. We retain that the identification of the functional role of YY1 in the transcriptional control of the human POSTN gene adds new insights in the studies focused on gene expression in normal and transformed cells.
Collapse
Affiliation(s)
- F Romeo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Regulation of neuronal ferritin heavy chain, a new player in opiate-induced chemokine dysfunction. J Neuroimmune Pharmacol 2011; 6:466-76. [PMID: 21465240 DOI: 10.1007/s11481-011-9278-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/21/2011] [Indexed: 12/19/2022]
Abstract
The heavy chain subunit of ferritin (FHC), a ubiquitous protein best known for its iron-sequestering activity as part of the ferritin complex, has recently been described as a novel inhibitor of signaling through the chemokine receptor CXCR4. Levels of FHC as well as its effects on CXCR4 activation increase in cortical neurons exposed to mu-opioid receptor agonists such as morphine, an effect likely specific to neurons. Major actions of CXCR4 signaling in the mature brain include a promotion of neurogenesis, activation of pro-survival signals, and modulation of excitotoxic pathways; thus, FHC up-regulation may contribute to the neuronal dysfunction often associated with opiate drug abuse. This review summarizes our knowledge of neuronal CXCR4 function, its regulation by opiates and the role of FHC in this process, and known mechanisms controlling FHC production. We speculate on the mechanism involved in FHC regulation by opiates and offer FHC as a new target in opioid-induced neuropathology.
Collapse
|
24
|
Zauli G, Voltan R, di Iasio MG, Bosco R, Melloni E, Sana ME, Secchiero P. miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells. Clin Cancer Res 2011; 17:2712-24. [PMID: 21367750 DOI: 10.1158/1078-0432.ccr-10-3244] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To elucidate new molecular mechanisms able to downregulate the mRNA levels of key oncogenes, such as B-Myb and E2F1, in a therapeutic perspective. EXPERIMENTAL DESIGN B-Myb and E2F1 mRNA levels were evaluated in primary B chronic lymphocytic leukemia (B-CLL, n = 10) and acute myeloid leukemia (AML, n = 5) patient cells, in a variety of p53(wild-type) and p53(mutated/deleted) leukemic cell lines, as well as in primary endothelial cells and fibroblasts. Knockdown experiments with siRNA for p53 and E2F1 and overexpression experiments with miR34a were conducted to elucidate the role of these pathways in promoting B-Myb downregulation. RESULTS In vitro exposure to Nutlin-3, a nongenotoxic activator of p53, variably downregulated the expression of B-Myb in primary leukemic cells and in p53(wild-type) myeloid (OCI, MOLM) and lymphoblastoid (SKW6.4, EHEB) but not in p53(mutated) (NB4, BJAB, MAVER) or p53(deleted) (HL-60) leukemic cell lines. The transcriptional repression of B-Myb was also observed in primary normal endothelial cells and fibroblasts. B-Myb downregulation played a critical role in the cell-cycle block in G(1) phase induced by Nutlin-3, as shown by transfection experiments with specific siRNA. Moreover, we have provided experimental evidence suggesting that miR-34a is a central mediator in the repression of B-Myb both directly and through E2F1. CONCLUSIONS Owing to the role of B-Myb and E2F1 transcription factors in controlling cell-cycle progression of leukemic cells, the downregulation of these oncogenes by miR-34a suggests the usefulness of therapeutic approaches aimed to modulate the levels of miR-34a.
Collapse
Affiliation(s)
- Giorgio Zauli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis 2010; 210:392-9. [DOI: 10.1016/j.atherosclerosis.2009.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/09/2009] [Accepted: 11/27/2009] [Indexed: 02/07/2023]
|
26
|
Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta Gen Subj 2010; 1800:783-92. [PMID: 20176086 DOI: 10.1016/j.bbagen.2010.02.005] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ferritin structure is designed to maintain large amounts of iron in a compact and bioavailable form in solution. All ferritins induce fast Fe(II) oxidation in a reaction catalyzed by a ferroxidase center that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction, and thus have anti-oxidant effects. Cytosolic ferritins are composed of the H- and L-chains, whose expression are regulated by iron at a post-transcriptional level and by oxidative stress at a transcriptional level. The regulation of mitochondrial ferritin expression is presently unclear. SCOPE OF REVIEW The scope of the review is to update recent progress regarding the role of ferritins in the regulation of cellular iron and in the response to oxidative stress with particular attention paid to the new roles described for cytosolic ferritins, to genetic disorders caused by mutations of the ferritin L-chain, and new findings on mitochondrial ferritin. MAJOR CONCLUSIONS The new data on the adult conditional knockout (KO) mice for the H-chain and on the hereditary ferritinopathies with mutations that reduce ferritin functionality strongly indicate that the major role of ferritins is to protect from the oxidative damage caused by iron deregulation. In addition, the study of mitochondrial ferritin, which is not iron-regulated, indicates that it participates in the protection against oxidative damage, particularly in cells with high oxidative activity. GENERAL SIGNIFICANCE Ferritins have a central role in the protection against oxidative damage, but they are also involved in non-iron-dependent processes.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Chemistry, Faculty of Medicine, University of Brescia, Viale Europa 11, 25125 Brescia, Italy.
| | | |
Collapse
|
27
|
Zhao W, Gao BL, Yi GF, Jin CZ, Yang HY, Shen LJ, Tian M, Yu YZ, Li H, Song DP. Apoptotic study in Graves disease treated with thyroid arterial embolization. Endocr J 2009; 56:201-11. [PMID: 19008632 DOI: 10.1507/endocrj.k08e-232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate apoptosis in the thyroid of Graves disease (GD) induced by thyroid arterial embolization. MATERIALS AND METHODS Forty one patients with clinically and laboratorily ascertained GD were treated with thyroid arterial embolization and followed up for 3-54 months following embolization. Prior to embolization and at 1, 3, 6, 12 and 36 months following embolization, thyroid autoimmunue antibodies were tested respectively, including thyroid stimulating antibody (TSAb), thyroglobulin antibody (TGAb) and thyroid microsomal antibody (TMAb). Thyroid biopsy was performed under the guidance of computed tomography for immunohistochemistry examination using semi-quantity analysis. RESULTS The positive staining of Fas and FasL was mostly in the cytoplasma and cell membrane, the positive expression of Bax was mainly in the cytoplasma, and no positive expression of P53 was detected in the thyroid cells before embolization. After arterial embolziation, the positive cell number and staining degree of these genes were both greater than before embolization. CONCLUSION The treatment method of thyroid arterial embolization can effectively enhance the positive expression of pro-apoptotic genes of Fas, FasL, Bax, Bcl-2 and P53 in GD thyroid, thus promoting apoptosis of GD thyroid and helping restore the thyroid size and function to normal conditions.
Collapse
Affiliation(s)
- Wei Zhao
- Medical Imaging Center, First Affiliated Hospital, Kunming Medical College, Kunmin, Yunnan Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang F, Wang W, Tsuji Y, Torti SV, Torti FM. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J Biol Chem 2008; 283:33911-8. [PMID: 18819919 DOI: 10.1074/jbc.m806432200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Iron plays an essential role in cell proliferation and is a required cofactor for a number of critical cellular enzymes. In this report we investigate changes in proteins of iron metabolism during p53-mediated replicative arrest. Following the induction of p53 in H1299 lung cancer cells containing a doxycycline-inducible p53, an increase in both H and L subunits of ferritin protein was observed. To determine the mechanism of this effect, we investigated the ability of p53 to regulate ferritin. Real time reverse transcription-PCR demonstrated no difference in levels of ferritin H mRNA in the presence and absence of p53. Because these results suggested that transcriptional mechanisms were not responsible for the p53-dependent increase in ferritin, we tested whether a post-transcriptional mechanism was involved. RNA bandshift assays revealed that induction of p53 decreased iron regulatory protein binding. Consistent with this observation, Western blot analysis revealed a decline in transferrin receptor 1 protein levels following induction of p53. Collectively, these results suggest that p53 may induce cell cycle arrest not only by well described mechanisms involving the induction of cyclin-dependent kinase inhibitors but also by the recruitment of pathways that reduce the availability of intracellular iron.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|