1
|
Kim YJ, Lee SG, Park SY, Jeon SM, Kim SI, Kim KT, Roh T, Lee SH, Lee MJ, Lee J, Kim HJ, Lee SE, Kim JK, Heo JY, Kim IS, Park C, Paik S, Jo EK. Ubiquitin regulatory X (UBX) domain-containing protein 6 is essential for autophagy induction and inflammation control in macrophages. Cell Mol Immunol 2024; 21:1441-1458. [PMID: 39438692 PMCID: PMC11606977 DOI: 10.1038/s41423-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Ubiquitin regulatory X (UBX) domain-containing protein 6 (UBXN6) is an essential cofactor for the activity of the valosin-containing protein p97, an adenosine triphosphatase associated with diverse cellular activities. Nonetheless, its role in cells of the innate immune system remains largely unexplored. In this study, we report that UBXN6 is upregulated in humans with sepsis and may serve as a pivotal regulator of inflammatory responses via the activation of autophagy. Notably, the upregulation of UBXN6 in sepsis patients was negatively correlated with inflammatory gene profiles but positively correlated with the expression of Forkhead box O3, an autophagy-driving transcription factor. Compared with those of control mice, the macrophages of mice subjected to myeloid cell-specific UBXN6 depletion exhibited exacerbated inflammation, increased mitochondrial oxidative stress, and greater impairment of autophagy and endoplasmic reticulum-associated degradation pathways. UBXN6-deficient macrophages also exhibited immunometabolic remodeling, characterized by a shift to aerobic glycolysis and elevated levels of branched-chain amino acids. These metabolic shifts amplify mammalian target of rapamycin pathway signaling, in turn reducing the nuclear translocation of the transcription factor EB and impairing lysosomal biogenesis. Together, these data reveal that UBXN6 serves as an activator of autophagy and regulates inflammation to maintain immune system suppression during human sepsis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym Medical Center, Seoul, 05355, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo In Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, 28199, Republic of Korea
| | - Min Joung Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jinyoung Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - So Eui Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
2
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adaptor UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. Nat Struct Mol Biol 2023; 30:2009-2019. [PMID: 37945741 PMCID: PMC10716044 DOI: 10.1038/s41594-023-01126-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
p97, also known as valosin-containing protein, is an essential cytosolic AAA+ (ATPases associated with diverse cellular activities) hexamer that unfolds substrate polypeptides to support protein homeostasis and macromolecular disassembly. Distinct sets of p97 adaptors guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adaptor localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. Here we identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact human p97-UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second (D2) AAA+ domain. Together, these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis and comparisons to other adaptors further reveal how adaptors containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chad R Altobelli
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Maxwell R Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Graduate Program in Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adapter UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540864. [PMID: 37292947 PMCID: PMC10245715 DOI: 10.1101/2023.05.15.540864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
p97/VCP is an essential cytosolic AAA+ ATPase hexamer that extracts and unfolds substrate polypeptides during protein homeostasis and degradation. Distinct sets of p97 adapters guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adapter localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. We identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact p97:UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX, and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second AAA+ domain. Together these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis, and comparisons to other adapters further reveal how adapters containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R. Braxton
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Chad R. Altobelli
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Maxwell R. Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Graduate Program in Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Aye C. Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Ketkar H, Harrison AG, Graziano VR, Geng T, Yang L, Vella AT, Wang P. UBX Domain Protein 6 Positively Regulates JAK-STAT1/2 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 206:2682-2691. [PMID: 34021047 DOI: 10.4049/jimmunol.1901337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2021] [Indexed: 01/03/2023]
Abstract
Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs-induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-β-induced degradation of both TYK2 and type I IFNR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.
Collapse
Affiliation(s)
- Harshada Ketkar
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT.,Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY; and
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Vincent R Graziano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT; .,Department of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY; and
| |
Collapse
|
6
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Biomolecules 2019; 9:biom9120876. [PMID: 31847414 PMCID: PMC6995525 DOI: 10.3390/biom9120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing
Collapse
|
8
|
Mojumder S, Sawamura R, Murayama Y, Ogura T, Yamanaka K. Functional characterization of UBXN-6, a C-terminal cofactor of CDC-48, in C. elegans. Biochem Biophys Res Commun 2019; 509:462-468. [PMID: 30595383 DOI: 10.1016/j.bbrc.2018.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
CDC-48 is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities. Its functional diversity is determined by differential binding of a variety of cofactors. In this study, we analyzed the physiological role of a CDC-48 cofactor UBXN-6 in Caenorhabditis elegans. The amount of UBXN-6 was markedly increased upon starvation, but not with the treatment of tunicamycin and rapamycin. The induction upon starvation is a unique characteristic for UBXN-6 among C-terminal cofactors of CDC-48. During starvation, lysosomal activity is triggered for rapid clearance of cellular materials. We observed the lysosomal activity by monitoring GLO-1::GFP, a marker for lysosome-related organelles. We found that more puncta of GLO-1::GFP were observed in the ubxn-6 deletion mutant after 12 h starvation compared with the wild-type strain. Taken together, we propose that UBXN-6 is involved in clearance of cellular materials upon starvation in C. elegans.
Collapse
Affiliation(s)
- Suman Mojumder
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Rie Sawamura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Yuki Murayama
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
9
|
Abstract
p97 is an essential hexameric AAA+ ATPase involved in a wide range of cellular processes. Mutations in the enzyme are implicated in the etiology of an autosomal dominant neurological disease in which patients are heterozygous with respect to p97 alleles, containing one copy each of WT and disease-causing mutant genes, so that, in vivo, p97 molecules can be heterogeneous in subunit composition. Studies of p97 have, however, focused on homohexameric constructs, where protomers are either entirely WT or contain a disease-causing mutation, showing that for WT p97, the N-terminal domain (NTD) of each subunit can exist in either a down (ADP) or up (ATP) conformation. NMR studies establish that, in the ADP-bound state, the up/down NTD equilibrium shifts progressively toward the up conformation as a function of disease mutant severity. To understand NTD functional dynamics in biologically relevant p97 heterohexamers comprising both WT and disease-causing mutant subunits, we performed a methyl-transverse relaxation optimized spectroscopy (TROSY) NMR study on a series of constructs in which only one of the protomer types is NMR-labeled. Our results show positive cooperativity of NTD up/down equilibria between neighboring protomers, allowing us to define interprotomer pathways that mediate the allosteric communication between subunits. Notably, the perturbed up/down NTD equilibrium in mutant subunits is partially restored by neighboring WT protomers, as is the two-pronged binding of the UBXD1 adaptor that is affected in disease. This work highlights the plasticity of p97 and how subtle perturbations to its free-energy landscape lead to significant changes in NTD conformation and adaptor binding.
Collapse
|
10
|
UBXD1 is a mitochondrial recruitment factor for p97/VCP and promotes mitophagy. Sci Rep 2018; 8:12415. [PMID: 30120381 PMCID: PMC6098094 DOI: 10.1038/s41598-018-30963-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Clearance of damaged mitochondria through mitophagy is critical for maintaining mitochondrial fidelity and the prevention of neurodegeneration. Here, we report on the UBX domain-containing, p97/VCP cofactor UBXD1/UBXN6/UBXDC2 and its role in mitophagy. Recognizing depolarized mitochondria via its C-terminal UBX domain, UBXD1 translocates to mitochondria in a Parkin-dependent manner. During Parkin-independent mitophagy, UBXD1 shows no mitochondrial translocation. Once translocated, UBXD1 recruits p97 to mitochondria via a bipartite binding motif consisting of its N-terminal VIM and PUB domains. Recruitment of p97 by UBXD1 only depends on the presence of UBXD1 on mitochondria without the need for further mitochondrial signals. Following translocation of UBXD1 to CCCP-depolarized mitochondria and p97 recruitment, formation of LC3-positive autolysosomes is strongly enhanced and autophagic degradation of mitochondria is significantly accelerated. Diminished levels of UBXD1 negatively impact mitophagic flux in Parkin-expressing cells after CCCP treatment. Thus, our data supports a model, whereby the p97 cofactor UBXD1 promotes Parkin-dependent mitophagy by specifically recognizing damaged mitochondria undergoing autophagic clearance.
Collapse
|
11
|
Yi L, Kaler SG. Interaction between the AAA ATPase p97/VCP and a concealed UBX domain in the copper transporter ATP7A is associated with motor neuron degeneration. J Biol Chem 2018; 293:7606-7617. [PMID: 29599289 DOI: 10.1074/jbc.ra117.000686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/09/2018] [Indexed: 11/06/2022] Open
Abstract
The copper-transporting ATPase ATP7A contains eight transmembrane domains and is required for normal human copper homeostasis. Mutations in the ATP7A gene may lead to infantile-onset cerebral degeneration (Menkes disease); occipital horn syndrome (OHS), a related but much milder illness; or an adult-onset isolated distal motor neuropathy. The ATP7A missense mutation T994I is located in the sixth transmembrane domain of ATP7A, represents one of the variants associated with the latter phenotype, and is associated with an abnormal interaction with p97/valosin-containing protein (VCP), a hexameric AAA ATPase (ATPase associated with diverse cellular activities) with multiple biological functions. In this study, we further characterized this interaction and discovered a concealed UBX domain in the third lumenal loop of ATP7A, between its fifth and sixth transmembrane domains. We show that the T994I substitution results in conformational exposure of the UBX domain, which then binds the N-terminal domain of p97/VCP. We also show that this abnormal interaction occurs at or near the cell plasma membrane. The UBX domain has a conserved hydrophobic FP (Phe-Pro) motif, and substitution with di-alanine abrogated the interaction and restored the proper intracellular localization of ATP7A in the trans-Golgi network. Using protein MS, we identified potential coordinating components of the ATP7AT994I-p97 complex, including NSFL1 cofactor (NSF1C or p47) that may be relevant to the pathophysiology and clinical effects associated with ATP7AT994I Our study represents the first report of p97/VCP binding to a UBX domain that is not normally exposed, resulting in an aberrant protein-protein interaction leading to motor neuron degeneration.
Collapse
Affiliation(s)
- Ling Yi
- From the Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-3754
| | - Stephen G Kaler
- From the Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-3754
| |
Collapse
|
12
|
Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:552-559. [PMID: 27913212 DOI: 10.1016/j.bbadis.2016.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
Proteasome-dependent turnover of mitochondrial outer membrane (OMM)-associated proteins is one of the mechanisms for maintaining proper mitochondrial quality and function. However, the underlying pathways and their implications in human disease are poorly understood. Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by expanded CAG repeats in the N terminal of the huntingtin gene (mutant Huntingtin, mtHtt). In this study, we show an extensive degradation of the OMM protein MCL1 (Myeloid cell leukemia sequence 1) in both HD mouse striatal cells and HD patient fibroblasts. The decrease in MCL1 level is associated with mitochondrial and cellular damage. Valosin-containing-protein (VCP) is an AAA-ATPase central to protein turnover via the ubiquitin proteasome system (UPS). We found that VCP translocates to mitochondria and promotes MCL1 degradation in HD cell cultures. Either down-regulation of VCP by RNA interference or inhibition of VCP by a dominant negative mutant abolishes MCL1 degradation in HD cell cultures. We further show that UBX-domain containing protein 1 (UBXD1), a known co-factor of VCP assisting in the recognition of substrates for protein degradation, selectively binds to MCL1 and interacts with VCP to mediate MCL1 extraction from the mitochondria. These results indicate that the OMM protein MCL1 is degraded by the VCP-UBXD1 complex and that the process is promoted by the presence of mtHtt. Therefore, our finding provides a new insight into the mechanism of mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Schuetz AK, Kay LE. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. eLife 2016; 5. [PMID: 27828775 PMCID: PMC5102582 DOI: 10.7554/elife.20143] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/25/2016] [Indexed: 12/04/2022] Open
Abstract
p97/VCP is an essential, abundant AAA+ ATPase that is conserved throughout eukaryotes, with central functions in diverse processes ranging from protein degradation to DNA damage repair and membrane fusion. p97 has been implicated in the etiology of degenerative diseases and in cancer. Using Nuclear Magnetic Resonance spectroscopy we reveal how disease-causing mutations in p97 deregulate dynamics of the N-terminal domain that binds adaptor proteins involved in controlling p97 function. Our results provide a molecular basis for understanding how malfunction occurs whereby mutations shift the ADP-bound form of the enzyme towards an ATP-like state in a manner that correlates with disease severity. This deregulation interferes with the two-pronged binding of an adaptor that affects p97 function in lysosomal degradation of substrates. Subtle structural changes propagate from mutation sites to regions distal in space, defining allosteric networks that facilitate inter-domain communication, with potential implications for modulation of enzyme activity by drug molecules. DOI:http://dx.doi.org/10.7554/eLife.20143.001
Collapse
Affiliation(s)
- Anne K Schuetz
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Cananda.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Cananda.,Department of Chemistry, University of Toronto, Toronto, Canada.,Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
14
|
Trusch F, Matena A, Vuk M, Koerver L, Knævelsrud H, Freemont PS, Meyer H, Bayer P. The N-terminal Region of the Ubiquitin Regulatory X (UBX) Domain-containing Protein 1 (UBXD1) Modulates Interdomain Communication within the Valosin-containing Protein p97. J Biol Chem 2015; 290:29414-27. [PMID: 26475856 DOI: 10.1074/jbc.m115.680686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
Valosin-containing protein/p97 is an ATP-driven protein segregase that cooperates with distinct protein cofactors to control various aspects of cellular homeostasis. Mutations at the interface between the regulatory N-domain and the first of two ATPase domains (D1 and D2) deregulate the ATPase activity and cause a multisystem degenerative disorder, inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia/amyotrophic lateral sclerosis. Intriguingly, the mutations affect only a subset of p97-mediated pathways correlating with unbalanced cofactor interactions and most prominently compromised binding of the ubiquitin regulatory X domain-containing protein 1 (UBXD1) cofactor during endolysosomal sorting of caveolin-1. However, how the mutations impinge on the p97-cofactor interplay is unclear so far. In cell-based endosomal localization studies, we identified a critical role of the N-terminal region of UBXD1 (UBXD1-N). Biophysical studies using NMR and CD spectroscopy revealed that UBXD1-N can be classified as intrinsically disordered. NMR titration experiments confirmed a valosin-containing protein/p97 interaction motif and identified a second binding site at helices 1 and 2 of UBXD1-N as binding interfaces for p97. In reverse titration experiments, we identified two distant epitopes on the p97 N-domain that include disease-associated residues and an additional interaction between UBXD1-N and the D1D2 barrel of p97 that was confirmed by fluorescence anisotropy. Functionally, binding of UBXD1-N to p97 led to a reduction of ATPase activity and partial protection from proteolysis. These findings indicate that UBXD1-N intercalates into the p97-ND1 interface, thereby modulating interdomain communication of p97 domains and its activity with relevance for disease pathogenesis. We propose that the polyvalent binding mode characterized for UBXD1-N is a more general principle that defines a subset of p97 cofactors.
Collapse
Affiliation(s)
| | - Anja Matena
- From Structural and Medicinal Biochemistry and
| | - Maja Vuk
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Lisa Koerver
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Helene Knævelsrud
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Paul S Freemont
- Department of Medicine, Section of Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hemmo Meyer
- Molecular Biology I, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany and
| | - Peter Bayer
- From Structural and Medicinal Biochemistry and
| |
Collapse
|
15
|
Abdullah A, Sane S, Freeling JL, Wang H, Zhang D, Rezvani K. Nucleocytoplasmic Translocation of UBXN2A Is Required for Apoptosis during DNA Damage Stresses in Colon Cancer Cells. J Cancer 2015; 6:1066-78. [PMID: 26516353 PMCID: PMC4615341 DOI: 10.7150/jca.12134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022] Open
Abstract
The subcellular localization, expression level, and activity of anti-cancer proteins alter in response to intrinsic and extrinsic cellular stresses to reverse tumor progression. The purpose of this study is to determine whether UBXN2A, an activator of the p53 tumor suppressor protein, has different subcellular compartmentalization in response to the stress of DNA damage. We measured trafficking of the UBXN2A protein in response to two different DNA damage stresses, UVB irradiation and the genotoxic agent Etoposide, in colon cancer cell lines. Using a cytosol-nuclear fractionation technique followed by western blot and immunofluorescence staining, we monitored and quantitated UBXN2A and p53 proteins as well as p53's downstream apoptotic pathway. We showed that the anti-cancer protein UBXN2A acts in the early phase of cell response to two different DNA damage stresses, being induced to translocate into the cytoplasm in a dose- and time-dependent manner. UVB-induced cytoplasmic UBXN2A binds to mortalin-2 (mot-2), a known oncoprotein in colon tumors. UVB-dependent upregulation of UBXN2A in the cytoplasm decreases p53 binding to mot-2 and activates apoptotic events in colon cancer cells. In contrast, the shRNA-mediated depletion of UBXN2A leads to significant reduction in apoptosis in colon cancer cells exposed to UVB and Etoposide. Leptomycin B (LMB), which was able to block UBXN2A nuclear export following Etoposide treatment, sustained p53-mot-2 interaction and had partially antagonistic effects with Etoposide on cell apoptosis. The present study shows that nucleocytoplasmic translocation of UBXN2A in response to stresses is necessary for its anti-cancer function in the cytoplasm. In addition, LMB-dependent suppression of UBXN2A's translocation to the cytoplasm upon stress allows the presence of an active mot-2 oncoprotein in the cytoplasm, resulting in p53 sequestration as well as activation of other mot-2-dependent growth promoting pathways.
Collapse
Affiliation(s)
- Ammara Abdullah
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Sanam Sane
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Jessica L Freeling
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Hongmin Wang
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Dong Zhang
- 2. Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd., P.O. Box 8000, Old Westbury, NY 11568-8000, USA
| | - Khosrow Rezvani
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
16
|
Control of p97 function by cofactor binding. FEBS Lett 2015; 589:2578-89. [PMID: 26320413 DOI: 10.1016/j.febslet.2015.08.028] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease-associated p97 mutations on cofactor binding.
Collapse
|
17
|
Protection of armadillo/β-Catenin by armless, a novel positive regulator of wingless signaling. PLoS Biol 2014; 12:e1001988. [PMID: 25369031 PMCID: PMC4219662 DOI: 10.1371/journal.pbio.1001988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
This study uses an RNAi screen in Drosophila to identify a UBX protein, Armless, as a novel positive regulator of the important Wingless/Wnt signaling pathway, acting to stabilize Armadillo/?-Catenin by antagonizing its turnover. The Wingless (Wg/Wnt) signaling pathway is essential for metazoan development, where it is central to tissue growth and cellular differentiation. Deregulated Wg pathway activation underlies severe developmental abnormalities, as well as carcinogenesis. Armadillo/β-Catenin plays a key role in the Wg transduction cascade; its cytoplasmic and nuclear levels directly determine the output activity of Wg signaling and are thus tightly controlled. In all current models, once Arm is targeted for degradation by the Arm/β-Catenin destruction complex, its fate is viewed as set. We identified a novel Wg/Wnt pathway component, Armless (Als), which is required for Wg target gene expression in a cell-autonomous manner. We found by genetic and biochemical analyses that Als functions downstream of the destruction complex, at the level of the SCF/Slimb/βTRCP E3 Ub ligase. In the absence of Als, Arm levels are severely reduced. We show by biochemical and in vivo studies that Als interacts directly with Ter94, an AAA ATPase known to associate with E3 ligases and to drive protein turnover. We suggest that Als antagonizes Ter94's positive effect on E3 ligase function and propose that Als promotes Wg signaling by rescuing Arm from proteolytic degradation, spotlighting an unexpected step where the Wg pathway signal is modulated. The Wg/Wnt signaling pathway, found in most animals, is essential for regulating tissue growth and the formation of different cell types during development. Defects in the Wg/Wnt signaling relay can have serious consequences, ranging from aberrant organ patterning to malignant tumor formation. A pivotal step in the transmission of the Wg/Wnt signal is the stabilization of the protein Armadillo/β-Catenin, a key component of the pathway. However, the means by which the levels of this protein are regulated remain unclear. Here, we describe a novel control point of Armadillo/β-Catenin levels. Using RNA interference, we performed a screen in the fruit fly Drosophila melanogaster and identified Armless, a protein whose biological function was previously unknown, as a novel regulator of Wg/Wnt signaling, essential for the Wg/Wnt-dependent expression of downstream target genes. Our experiments suggest that Armless interferes with the tagging of Armadillo/β-Catenin with ubiquitin, thereby sparing it from proteasomal degradation. We also show that Armless directly interacts in vivo with Ter94, a ubiquitous ATPase involved in protein turnover. Our results suggest that Armless antagonizes Ter94's function in protein turnover, thereby acting as a positive regulator of Wg/Wnt signaling by promoting the stabilization of Armadillo/β-Catenin.
Collapse
|
18
|
Human ASPL/TUG interacts with p97 and complements the proteasome mislocalization of a yeast ubx4 mutant, but not the ER-associated degradation defect. BMC Cell Biol 2014; 15:31. [PMID: 25078495 PMCID: PMC4124494 DOI: 10.1186/1471-2121-15-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background In mammalian cells, ASPL is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus. Its putative yeast orthologue, Ubx4, is important for proteasome localization, endoplasmic reticulum-associated protein degradation (ERAD), and UV-induced degradation of RNA polymerase. Results Here, we show that ASPL is a cofactor of the hexameric ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast. In addition, ASPL interacts in vitro with NSF, another hexameric ATPase complex. ASPL localizes to the ER membrane. The central area in ASPL, containing both a SHP box and a UBX domain, is required for binding to the p97 N-domain. Knock-down of ASPL does not impair degradation of misfolded secretory proteins via the ERAD pathway. Deletion of UBX4 in yeast causes cycloheximide sensitivity, while ubx4 cdc48-3 double mutations cause proteasome mislocalization. ASPL alleviates these defects, but not the impaired ERAD. Conclusions In conclusion, ASPL and Ubx4 are homologous proteins with only partially overlapping functions. Both interact with p97/Cdc48, but while Ubx4 is important for ERAD, ASPL appears not to share this function.
Collapse
|
19
|
Baron Y, Pedrioli PG, Tyagi K, Johnson C, Wood NT, Fountaine D, Wightman M, Alexandru G. VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase. BMC Biol 2014; 12:39. [PMID: 24885147 PMCID: PMC4068158 DOI: 10.1186/1741-7007-12-39] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background FAF1 is a ubiquitin-binding adaptor for the p97 ATPase and belongs to the UBA-UBX family of p97 cofactors. p97 converts the energy derived from ATP hydrolysis into conformational changes of the p97 hexamer, which allows the dissociation of its targets from cellular structures or from larger protein complexes to facilitate their ubiquitin-dependent degradation. VAPB and the related protein VAPA form homo- and heterodimers that are anchored in the endoplasmic reticulum membrane and can interact with protein partners carrying a FFAT motif. Mutations in either VAPB or p97 can cause amyotrophic lateral sclerosis, a neurodegenerative disorder that affects upper and lower motor neurons. Results We show that FAF1 contains a non-canonical FFAT motif that allows it to interact directly with the MSP domain of VAPB and, thereby, to mediate VAPB interaction with p97. This finding establishes a link between two proteins that can cause amyotrophic lateral sclerosis when mutated, VAPB/ALS8 and p97/ALS14. Subsequently, we identified a similar FFAT-like motif in the ASNA1 subunit of the transmembrane-domain recognition complex (TRC), which in turn mediates ASNA1 interaction with the MSP domain of VAPB. Proteasome inhibition leads to the accumulation of ubiquitinated species in VAPB immunoprecipitates and this correlates with an increase in FAF1 and p97 binding. We found that VAPB interaction with ubiquitinated proteins is strongly reduced in cells treated with FAF1 siRNA. Our efforts to determine the identity of the ubiquitinated targets common to VAPB and FAF1 led to the identification of RPN2, a subunit of an oligosaccharyl-transferase located at the endoplasmic reticulum, which may be regulated by ubiquitin-mediated degradation. Conclusions The FFAT-like motifs we identified in FAF1 and ASNA1 demonstrate that sequences containing a single phenylalanine residue with the consensus (D/E)(D/E)FEDAx(D/E) are also proficient to mediate interaction with VAPB. Our findings indicate that the repertoire of VAPB interactors is more diverse than previously anticipated and link VAPB to the function of ATPase complexes such as p97/FAF1 and ASNA1/TRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Alexandru
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), College of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
He ZB, Xie Y, Si FL, Chen B. Identification and characterization of a gene encoding a UBX domain-containing protein in the migratory locust, Locusta migratoria manilensis. INSECT SCIENCE 2013; 20:497-504. [PMID: 23955945 DOI: 10.1111/j.1744-7917.2012.01548.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 06/02/2023]
Abstract
Ubiquitin regulatory X (UBX) domain-containing proteins are believed to function as cofactors for p97/CDC48, an adenosine triphosphatase shown to be involved in multiple cellular processes. In the present study, a full-length complementary DNA (cDNA) of UBX domain-containing gene, termed LmUBX1, was cloned from Locusta migratoria manilensis and characterized, using random amplification of cDNA ends polymerase chain reaction (RACE PCR), sequence analysis and quantitative real-time PCR. LmUBX1, 1 600 bp in length, is predicted to encode a 446-amino acid protein with a predicted molecular weight of 51.18 kDa that contains a central PUB domain and a carboxy-terminal UBX domain. Homology analysis revealed that LmUBX1 has higher similarity to the known UBX domain-containing proteins from insects than from other species. Moreover, based on sequence characteristics and phylogenetic relationships, it is suggested that LmUBX1 can be classified into the UBXD1 subfamily. Expression analysis founded that LmUBX1 exhibited significant expression variations at different developmental stages and in different tissues, suggesting that the expression of LmUBX1 was highly regulated. Interestingly, its messenger RNA transcript was more abundant in ovary and testis than in other tissues examined, suggesting that it may have more important roles in the reproductive system. In addition, LmUBX1 was differentially expressed in gregarious and solitary locusts and was significantly up-regulated in third and fifth instars of gregarious locusts, implying that LmUBX1 was also likely involved in the phase polyphenisms in L. migratoria manilensis. To our knowledge, this is the first report of cloning of a full-length cDNA of UBX domain-containing gene from L. migratoria manilensis.
Collapse
Affiliation(s)
- Zheng-Bo He
- Institute of Entomology and Molecular Biology, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | | | | | | |
Collapse
|
21
|
Tang WK, Xia D. Structural and functional deviations in disease-associated p97 mutants. J Struct Biol 2012; 179:83-92. [PMID: 22579784 DOI: 10.1016/j.jsb.2012.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/23/2012] [Accepted: 04/28/2012] [Indexed: 11/28/2022]
Abstract
Missense mutations that occur at the interface between two functional domains in the AAA protein p97 lead to suboptimal performance in its enzymatic activity and impaired intracellular functions, causing human disorders such as inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Much progress has been made in characterizing these mutants at cellular, sub-cellular and molecular levels, gaining a substantial understanding of the involvement of p97 in various cellular pathways. At the tissue level, patient biopsies revealed co-localization of p97 with pathologic proteineous inclusions and rimmed vacuoles, which can be reproduced in various cellular and animal models of IBMPFD. At the subcellular level, alterations in p97's ability to bind various adaptor proteins have been demonstrated for some but not all binding partners. Biochemical and biophysical characterizations of pathogenic p97 revealed altered nucleotide binding properties in the D1-domains compared to the wild type. Structural studies showed that mutant p97 are capable of undergoing a uniform transition in the N-domain from a Down- to an Up-conformation in the presence of ATPγS, while in the wild-type p97, this conformational change can only be demonstrated in solutions but not in crystals. These structural and biochemical analyses of IBMPFD mutants shed new light into the mechanism of p97 function.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
22
|
Kamiya Y, Uekusa Y, Sumiyoshi A, Sasakawa H, Hirao T, Suzuki T, Kato K. NMR characterization of the interaction between the PUB domain of peptide:N-glycanase and ubiquitin-like domain of HR23. FEBS Lett 2012; 586:1141-6. [PMID: 22575648 DOI: 10.1016/j.febslet.2012.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/09/2012] [Indexed: 01/09/2023]
Abstract
PUB domains are identified in several proteins functioning in the ubiquitin (Ub)-proteasome system and considered as p97-binding modules. To address the further functional roles of these domains, we herein characterized the interactions of the PUB domain of peptide:N-glycanase (PNGase) with Ub and Ub-like domain (UBL) of the proteasome shuttle factor HR23. NMR data indicated that PNGase-PUB exerts an acceptor preferentially for HR23-UBL, electrostatically interacting with the UBL surface employed for binding to other Ub/UBL motifs. Our findings imply that PNGase-PUB serves not only as p97-binding module but also as a possible activator of HR23 in endoplasmic reticulum-associated degradation mechanisms.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Orme CM, Bogan JS. The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment. J Biol Chem 2012; 287:6679-92. [PMID: 22207755 PMCID: PMC3307297 DOI: 10.1074/jbc.m111.284232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/19/2011] [Indexed: 01/12/2023] Open
Abstract
p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types.
Collapse
Affiliation(s)
- Charisse M. Orme
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan S. Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| |
Collapse
|
24
|
Haines DS, Lee JE, Beauparlant SL, Kyle DB, den Besten W, Sweredoski MJ, Graham RLJ, Hess S, Deshaies RJ. Protein interaction profiling of the p97 adaptor UBXD1 points to a role for the complex in modulating ERGIC-53 trafficking. Mol Cell Proteomics 2012; 11:M111.016444. [PMID: 22337587 DOI: 10.1074/mcp.m111.016444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, 19104 Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kloppsteck P, Ewens CA, Förster A, Zhang X, Freemont PS. Regulation of p97 in the ubiquitin–proteasome system by the UBX protein-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:125-9. [DOI: 10.1016/j.bbamcr.2011.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 01/27/2023]
|
26
|
Madsen L, Kriegenburg F, Vala A, Best D, Prag S, Hofmann K, Seeger M, Adams IR, Hartmann-Petersen R. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins. PLoS One 2011; 6:e25061. [PMID: 21949850 PMCID: PMC3174242 DOI: 10.1371/journal.pone.0025061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.
Collapse
Affiliation(s)
- Louise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Vala
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Diana Best
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland
| | - Søren Prag
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Kay Hofmann
- Bioinformatics Department, Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany
| | - Michael Seeger
- Institut für Biochemie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ian R. Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland
| | | |
Collapse
|
27
|
Hänzelmann P, Schindelin H. The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J Biol Chem 2011; 286:38679-38690. [PMID: 21914798 DOI: 10.1074/jbc.m111.274506] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA (ATPase associated with various cellular activities) ATPase p97, also referred to as valosin-containing protein (VCP), mediates essential cellular processes, including ubiquitin-dependent protein degradation, and has been linked to several human proteinopathies. p97 interacts with multiple cofactors via its N-terminal (p97N) domain, a subset of which contain the VCP-interacting motif (VIM). We have determined the crystal structure of the p97N domain in complex with the VIM of the ubiquitin E3 ligase gp78 at 1.8 Å resolution. The α-helical VIM peptide binds into a groove located in between the two subdomains of the p97N domain. Interaction studies of several VIM proteins reveal that these cofactors display dramatically different affinities, ranging from high affinity interactions characterized by dissociation constants of ∼20 nm for gp78 and ANKZF1 to only weak binding in our assays. The contribution of individual p97 residues to VIM binding was analyzed, revealing that identical substitutions do not affect all cofactors in the same way. Taken together, the biochemical and structural studies define the framework for recognition of VIM-containing cofactors by p97. Of particular interest to the regulation of p97 by its cofactors, our structure reveals that the bound α-helical peptides of VIM-containing cofactors overlap with the binding site for cofactors containing the ubiquitin regulatory X (UBX) domain present in the UBX protein family or the ubiquitin-like domain of NPL4 as further corroborated by biochemical data. These results extend the concept that competitive binding is a crucial determinant in p97-cofactor interactions.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
28
|
Stapf C, Cartwright E, Bycroft M, Hofmann K, Buchberger A. The general definition of the p97/valosin-containing protein (VCP)-interacting motif (VIM) delineates a new family of p97 cofactors. J Biol Chem 2011; 286:38670-38678. [PMID: 21896481 DOI: 10.1074/jbc.m111.274472] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX(5)AAX(2)R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors.
Collapse
Affiliation(s)
- Christopher Stapf
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Edward Cartwright
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | - Mark Bycroft
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | - Kay Hofmann
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch-Gladbach, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
29
|
Ritz D, Vuk M, Kirchner P, Bug M, Schütz S, Hayer A, Bremer S, Lusk C, Baloh RH, Lee H, Glatter T, Gstaiger M, Aebersold R, Weihl CC, Meyer H. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 2011; 13:1116-23. [PMID: 21822278 DOI: 10.1038/ncb2301] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP-UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.
Collapse
Affiliation(s)
- Danilo Ritz
- Centre for Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dargemont C, Ossareh-Nazari B. Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:138-44. [PMID: 21807033 DOI: 10.1016/j.bbamcr.2011.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 01/12/2023]
Abstract
The AAA-ATPase Cdc48/p97 controls a large array of cellular functions including protein degradation, cell division, membrane fusion through its ability to interact with and control the fate of ubiquitylated proteins. More recently, Cdc48/p97 also appeared to be involved in autophagy, a catabolic cell response that has long been viewed as completely distinct from the Ubiquitine/Proteasome System. In particular, conjugation by ubiquitin or ubiquitin-like proteins as well as ubiquitin binding proteins such as Cdc48/p97 and its cofactors can target degradation by both catabolic pathways. This review will focus on the recently described functions of Cdc48/p97 in autophagosome biogenesis as well as selective autophagy.
Collapse
Affiliation(s)
- Catherine Dargemont
- CNRS, UMR7592, Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | | |
Collapse
|
31
|
Hänzelmann P, Buchberger A, Schindelin H. Hierarchical Binding of Cofactors to the AAA ATPase p97. Structure 2011; 19:833-43. [DOI: 10.1016/j.str.2011.03.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
32
|
Crystal structure of human FAF1 UBX domain reveals a novel FcisP touch-turn motif in p97/VCP-binding region. Biochem Biophys Res Commun 2011; 407:531-4. [PMID: 21414298 DOI: 10.1016/j.bbrc.2011.03.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
Abstract
UBX domain is a general p97/VCP-binding module found in an increasing number of proteins including FAF1, p47, SAKS1 and UBXD7. FAF1, a multi-functional tumor suppressor protein, binds to the N domain of p97/VCP through its C-terminal UBX domain and thereby inhibits the proteasomal protein degradation in which p97/VCP acts as a co-chaperone. Here we report the crystal structure of human FAF1 UBX domain at 2.9Å resolution. It reveals that the conserved FP sequence in the p97/VCP-binding region adopts a rarely observed cis-Pro touch-turn structure. We call it an FcisP touch-turn motif and suggest that it is the conserved structural element of the UBX domain. Four FAF1 UBX molecules in an asymmetric unit of the crystal show two different conformations of the FcisP touch-turn motif. The phenyl ring of F(619) in the motif stacks partly over cis-Pro(620) in one conformation, whereas it is swung out from cis-P(620), in the other conformation, and forms hydrophobic contacts with the residues of the neighboring molecule. In addition, the entire FcisP touch-turn motif is pulled out in the second conformation by about 2Å in comparison to the first conformation. Those conformational differences observed in the p97/VCP-binding motif caused by the interaction with neighboring molecules presumably represent the conformational change of the UBX domain on its binding to the N domain of p97/VCP.
Collapse
|
33
|
Sasagawa Y, Yamanaka K, Saito-Sasagawa Y, Ogura T. Caenorhabditis elegans UBX cofactors for CDC-48/p97 control spermatogenesis. Genes Cells 2010; 15:1201-15. [PMID: 20977550 DOI: 10.1111/j.1365-2443.2010.01454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UBX (ubiquitin regulatory X) domain-containing proteins act as cofactors for CDC-48/p97. CDC-48/p97 is essential for various cellular processes including retro-translocation in endoplasmic reticulum-associated degradation, homotypic membrane fusion, nuclear envelope assembly, degradation of ubiquitylated proteins, and cell cycle progression. CDC-48/p97-dependent processes are determined by differential binding of cofactors including UBX proteins, but the cellular functions of UBX proteins have not yet been elucidated, especially in multicellular organisms. Therefore, we investigated the functions of UBX family members using Caenorhabditis elegans, which expresses six UBX proteins, UBXN-1 to UBXN-6. All six UBXN proteins directly interacted with CDC-48.1 and CDC-48.2, and simultaneous knockdown of the expression of three genes, ubxn-1, ubxn-2 and ubxn-3, induced embryonic lethal and sterile phenotypes, but knockdown of either one or two did not. The sterile worms had a feminized germ-line phenotype, producing oocytes but no sperm. UBXN-1, UBXN-2 and UBXN-3 colocalized with CDC-48 in spermatocytes but not mature sperm. TRA-1A, which is a key factor in the sex determination pathway and inhibits spermatogenesis, accumulated in worms in which UBXN-1, UBXN-2 and UBXN-3 had been simultaneously knocked down. Taken together, these results suggest that UBXN-1, UBXN-2 and UBXN-3 are redundant cofactors for CDC-48/p97 and control spermatogenesis via the degradation of TRA-1A.
Collapse
Affiliation(s)
- Yohei Sasagawa
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
34
|
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010; 1:753-763. [PMID: 21103003 DOI: 10.1177/1947601910381381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p97 (also called VCP in metazoans and CDC48 in yeast) is a highly conserved, abundant and essential type II ATPase that functions in numerous ubiquitin signaling dependent processes. p97/Cd48 activities require a growing number of adaptor or accessory proteins that promote interactions with ubiquitinated proteins. p97 has human disease relevance as it is mutated in familial cases of inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). There is also increasing evidence suggesting that p97 and/or some of its adaptors play a role in cancer. This review will summarize our existing knowledge of the biochemical, molecular and cellular activities of p97-containing complexes, with an ending focus on their potential role in malignancy.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
35
|
Ramkumar P, Smith BA, Akinbamidele AC, Kapcia J, Beauparlant SL, Haines DS. Generation and characterization of novel monoclonal antibodies recognizing UBXD1. Hybridoma (Larchmt) 2010; 28:459-62. [PMID: 20025508 DOI: 10.1089/hyb.2009.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UBXD1 is a recently identified adaptor for p97, a highly abundant and conserved member of the AAA family of ATPase that plays pivotal roles in a multitude of cellular processes involving the ubiquitin-proteasome pathway. Very little is known about the biochemical, cellular, and molecular functions of UBXD1. Here we report the generation of two mouse monoclonal antibodies, 5C3-1 and 2F8-24, that recognize UBXD1 using Western blotting, immunoprecipitation, and immunofluorescence.
Collapse
Affiliation(s)
- Poornima Ramkumar
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
36
|
An Armadillo motif in Ufd3 interacts with Cdc48 and is involved in ubiquitin homeostasis and protein degradation. Proc Natl Acad Sci U S A 2009; 106:16197-202. [PMID: 19805280 DOI: 10.1073/pnas.0908321106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast AAA-ATPase Cdc48 and the ubiquitin fusion degradation (UFD) proteins play important, evolutionarily conserved roles in ubiquitin dependent protein degradation. The N-terminal domain of Cdc48 interacts with substrate-recruiting cofactors, whereas the C terminus of Cdc48 binds to proteins such as Ufd3 that process substrates. Ufd3 is essential for efficient protein degradation and for maintaining cellular ubiquitin levels. This protein contains an N-terminal WD40 domain, a central ubiquitin-binding domain, and a C-terminal Cdc48-binding PUL domain. The crystal structure of the PUL domain reveals an Armadillo repeat with high structural similarity to importin-alpha, and the Cdc48-binding site could be mapped to the concave surface of the PUL domain by biochemical studies. Alterations of the Cdc48 binding site of Ufd3 by site-directed mutagenesis resulted in a depletion of cellular ubiquitin pools and reduced activity of the ubiquitin fusion degradation pathway. Therefore, our data provide direct evidence that the functions of Ufd3 in ubiquitin homeostasis and protein degradation depend on its interaction with the C terminus of Cdc48.
Collapse
|
37
|
New ATPase regulators--p97 goes to the PUB. Int J Biochem Cell Biol 2009; 41:2380-8. [PMID: 19497384 DOI: 10.1016/j.biocel.2009.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/10/2023]
Abstract
The conserved eukaryotic AAA-type ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast, is involved in a number of cellular pathways, including fusion of homotypic membranes, protein degradation, and activation of membrane-bound transcription factors. Most likely, p97 is directed to this broad spectrum of cellular functions through its binding to specific cofactors. More than 20 different p97 cofactors have been described to date and our understanding of their cellular functions is rapidly expanding. Common to these proteins is their intimate connection with the ubiquitin system. Recently, a small, conserved family of proteins, containing PUB domains, was found to function as p97 adaptors. Intriguingly, their association with p97 is regulated by tyrosine phosphorylation, suggesting that they act as a relay between signalling pathways and p97 functions. Here we give an overview of the currently known PUB-domain proteins and other p97-interacting proteins.
Collapse
|
38
|
Andersen KM, Madsen L, Prag S, Johnsen AH, Semple CA, Hendil KB, Hartmann-Petersen R. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. J Biol Chem 2009; 284:15246-54. [PMID: 19349277 PMCID: PMC2685705 DOI: 10.1074/jbc.m900016200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/30/2009] [Indexed: 01/18/2023] Open
Abstract
The 26 S proteasome is a large proteolytic machine, which degrades most intracellular proteins. We found that thioredoxin, Txnl1/TRP32, binds to Rpn11, a subunit of the regulatory complex of the human 26 S proteasome. Txnl1 is abundant, metabolically stable, and widely expressed and is present in the cytoplasm and nucleus. Txnl1 has thioredoxin activity with a redox potential of about -250 mV. Mutant Txnl1 with one active site cysteine replaced by serine formed disulfide bonds to eEF1A1, a substrate-recruiting factor of the 26 S proteasome. eEF1A1 is therefore a likely physiological substrate. In response to knockdown of Txnl1, ubiquitin-protein conjugates were moderately stabilized. Hence, Txnl1 is the first example of a direct connection between protein reduction and proteolysis, two major intracellular protein quality control mechanisms.
Collapse
Affiliation(s)
- Katrine M Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Humphreys D, Hume PJ, Koronakis V. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 2009; 5:225-33. [PMID: 19286132 PMCID: PMC2724103 DOI: 10.1016/j.chom.2009.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
Abstract
Virulence effectors delivered into intestinal epithelial cells by Salmonella trigger actin remodeling to direct pathogen internalization and intracellular replication in Salmonella-containing vacuoles (SCVs). One such effector, SptP, functions early during pathogen entry to deactivate Rho GTPases and reverse pathogen-induced cytoskeletal changes following uptake. SptP also harbors a C-terminal protein tyrosine phosphatase (PTPase) domain with no clear host substrates. Investigating SptP's longevity in infected cells, we uncover a late function of SptP, showing that it associates with SCVs, and its PTPase activity increases pathogen replication. Direct SptP binding and specific dephosphorylation of the AAA+ ATPase valosin-containing protein (VCP/p97), a facilitator of cellular membrane fusion and protein degradation, enhanced pathogen replication in SCVs. VCP and its adaptors p47 and Ufd1 were necessary for generating Salmonella-induced filaments on SCVs, a membrane fusion event characteristic of the pathogen replicative phase. Thus, Salmonella regulates the biogenesis of an intracellular niche through SptP-mediated dephosphorylation of VCP.
Collapse
Affiliation(s)
- Daniel Humphreys
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Peter J. Hume
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Vassilis Koronakis
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
40
|
Nagahama M, Ohnishi M, Kawate Y, Matsui T, Miyake H, Yuasa K, Tani K, Tagaya M, Tsuji A. UBXD1 is a VCP-interacting protein that is involved in ER-associated degradation. Biochem Biophys Res Commun 2009; 382:303-8. [PMID: 19275885 DOI: 10.1016/j.bbrc.2009.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 11/16/2022]
Abstract
AAA ATPase VCP and its yeast ortholog Cdc48, in a complex with the Ufd1-Npl4 heterodimer as an adaptor, play an essential role in endoplasmic reticulum-associated degradation (ERAD). Several UBX domain-containing proteins function to recruit ubiquitylated substrates to VCP/Cdc48 by binding both VCP/Cdc48 and other ERAD components such as ubiquitin ligases. Here we show that mammalian UBXD1 is an additional UBX domain-containing protein involved in the ERAD process. UBXD1 is a cytosolic protein that interacts with VCP and Derlin-1. Overexpression of UBXD1 in cells causes selective dissociation of Ufd1 from VCP, resulting in inhibition of mutant cystic fibrosis transmembrane conductance regulator (CFTR) degradation by ERAD. Additionally, depletion of endogenous UBXD1 protein by RNA interference also results in a defect in CFTR degradation. Collectively, these findings suggest that UBXD1 is a regulatory component of ERAD that may modulate the adaptor binding to VCP.
Collapse
Affiliation(s)
- Masami Nagahama
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
UBXD1 binds p97 through two independent binding sites. Biochem Biophys Res Commun 2009; 380:303-7. [PMID: 19174149 DOI: 10.1016/j.bbrc.2009.01.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 11/24/2022]
Abstract
The chaperone-related p97 protein plays a central role in various cellular processes involving the ubiquitin-proteasome system. The diverse functions of p97 are controlled by a large number of cofactors that recruit specific substrates or influence their ubiquitylation state. Many cofactors bind through a UBX or PUB domain, two major p97 binding modules. However, the recently identified UBXD1 cofactor possesses both domains. To elucidate the molecular basis underlying the interaction between UBXD1 and p97, we analyzed the contribution of both domains to p97 binding biochemically and in living cells. The PUB domain mediated robust binding to the carboxy-terminus of p97, while the UBX domain did not contribute to p97 binding. Importantly, we identified an additional p97 binding site in UBXD1 that competed with the p47 cofactor for binding to the N domain of p97. This novel, bipartite binding mode suggests that UBXD1 could be an efficient regulator of p97 cofactor interactions.
Collapse
|