1
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
2
|
Thibodeau ML, Bonakdar M, Zhao E, Mungall KL, Reisle C, Zhang W, Bye MH, Thiessen N, Bleile D, Mungall AJ, Ma YP, Jones MR, Renouf DJ, Lim HJ, Yip S, Ng T, Ho C, Laskin J, Marra MA, Schrader KA, Jones SJM. Whole genome and whole transcriptome genomic profiling of a metastatic eccrine porocarcinoma. NPJ Precis Oncol 2018; 2:8. [PMID: 29872726 PMCID: PMC5871832 DOI: 10.1038/s41698-018-0050-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
Eccrine porocarcinomas (EPs) are rare malignant tumours of the intraepidermic sweat gland duct and most often arise from benign eccrine poromas. Some recurrent somatic genomic events have been identified in these malignancies, but very little is known about the complexity of their molecular pathophysiology. We describe the whole genome and whole transcriptome genomic profiling of a metastatic EP in a 66-year-old male patient with a previous history of localized porocarcinoma of the scalp. Whole genome and whole transcriptome genomic profiling was performed on the metastatic EP. Whole genome sequencing was performed on blood-derived DNA in order to allow a comparison between germline and somatic events. We found somatic copy losses of several tumour suppressor genes including APC, PTEN and CDKN2A, CDKN2B and CDKN1A. We identified a somatic hemizygous CDKN2A pathogenic splice site variant. De novo transcriptome assembly revealed abnormal splicing of CDKN2A p14ARF and p16INK4a. Elevated expression of oncogenes EGFR and NOTCH1 was noted and no somatic mutations were found in these genes. Wnt pathway somatic alterations were also observed. In conclusion, our results suggest that the molecular pathophysiology of malignant EP features high complexity and subtle interactions of multiple key genes. Cell cycle dysregulation and CDKN2A loss of function was found to be a new potential driver in EP tumourigenesis. Moreover, the combination of somatic copy number variants and abnormal gene expression perhaps partly related to epigenetic mechanisms, all likely contribute to the development of this rare malignancy in our patient.
Collapse
Affiliation(s)
- My Linh Thibodeau
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Melika Bonakdar
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Eric Zhao
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Karen L. Mungall
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Caralyn Reisle
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Wei Zhang
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Morgan H. Bye
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Nina Thiessen
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Dustin Bleile
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Yussanne P. Ma
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Martin R. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Daniel J. Renouf
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Howard J. Lim
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9 Canada
| | - Tony Ng
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, 910 West 10th Avenue, Vancouver, BC V5Z 1M9 Canada
| | - Cheryl Ho
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Janessa Laskin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
- Department of Medical Oncology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
| | - Marco A. Marra
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| | - Kasmintan A. Schrader
- Hereditary Cancer Program, Department of Medical Genetics, British Columbia Cancer Agency, 614–750 West Broadway, Vancouver, BC V5Z 1H5 Canada
| | - Steven J. M. Jones
- Department of Medical Genetics, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1 Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 100–570 West 7th Avenue, Vancouver, BC V5Z 4S6 Canada
| |
Collapse
|
3
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Wang Y, Shi C, Lu Y, Poulin EJ, Franklin JL, Coffey RJ. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1123-34. [PMID: 25794708 DOI: 10.1016/j.ajpath.2014.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-ErbB negative regulator and intestinal stem cell marker down-regulated in many malignancies. We previously reported that 14 of 16 Lrig1-CreERT2/CreERT2 (Lrig1(-/-)) mice developed duodenal adenomas, providing the first in vivo evidence that Lrig1 acts as a tumor suppressor. We extended this study to a larger cohort and found that 49 of 54 Lrig1(-/-) mice develop duodenal adenomas beginning at 3 months. Most adenomas were histologically low grade and overlaid expanded Brunner glands. There was morphologic and biochemical blurring of the boundary between the epithelium and Brunner glands with glandular coexpression of ErbB2, which is normally restricted to the epithelium, and the Brunner gland marker Mucin6. Some adenomas were high grade with reduced Brunner glands. At age 4 to 5 weeks, before adenoma formation, we observed enhanced proliferation in Brunner glands and, at 2 months, an increase in the size of the Brunner gland compartment. Elevated expression of the epidermal growth factor receptor (Egfr) ligands amphiregulin and β-cellulin, as well as Egfr and phosphorylated Egfr, was detected in adenomas compared with adjacent normal tissue. These adenomas expressed the gastric-specific genes gastrokine1 and mucin5ac, indicating gastric metaplasia. Moreover, we found that a subset of human duodenal tumors exhibited features of LRIG1(-/-) adenomas, including loss of LRIG1, gastric metaplasia (MUCIN5AC and MUCIN6), and increased amphiregulin and Egfr activity.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily J Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffery L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Veterans Affairs Medical Center, Nashville, Tennessee.
| |
Collapse
|
5
|
Xu W, Zhu S, Zhou Y, Jin Y, Dai H, Wang X. Upregulation of mitogen-inducible gene 6 triggers antitumor effect and attenuates progesterone resistance in endometrial carcinoma cells. Cancer Gene Ther 2015; 22:536-41. [PMID: 26450625 DOI: 10.1038/cgt.2015.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 12/30/2022]
Abstract
Researches regarding mitogen-inducible gene 6 (Mig-6) have confirmed its role as a tumor suppressor and progesterone resistance factor in endometrium. In this study, after confirming the downregulation of Mig-6 protein in endometrial carcinoma (EC) tissues, the expression of Mig-6 was upregulated in Ishikawa cells by pCMV6-Mig-6 plasmid. We observed the increased apoptosis, decreased proliferation and invasion potential of Ishikawa cells after upregulation of Mig-6. The proapoptosis ability of P4 significantly enhanced by 39.36%, the antiproliferation ability increased by 37.90% and the anti-invasion ability increased by 48.89%, suggesting the antiprogesterone resistance potential of Mig-6 in endometrium. In addition, the results suggested that Mig-6 may induce Ishikawa cell apoptosis through the mitochondrial pathway, inhibit cell proliferation via the extracellular signal-regulated kinase pathway and the anti-invasion potential may associate with matrix metalloproteinase (MMP)-2 and MMP-9 downexpression. Therefore, upregulation of Mig-6 may add a new strategy to suppress endometrial tumorigenesis and attenuate the progesterone resistance during P4 treatment.
Collapse
Affiliation(s)
- W Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - S Zhu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - Y Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - Y Jin
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - H Dai
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| | - X Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University (also named Jiangsu Province Hospital), Nanjing, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Song Q, Wei C, Qu J. LRIG1 inhibits hypoxia-induced vasculogenic mimicry formation via suppression of the EGFR/PI3K/AKT pathway and epithelial-to-mesenchymal transition in human glioma SHG-44 cells. Cell Stress Chaperones 2015; 20:631-41. [PMID: 25860915 PMCID: PMC4463919 DOI: 10.1007/s12192-015-0587-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-negative regulator of the epidermal growth factor receptor (EGFR) signaling pathway. The aim of this study was to investigate the underlying mechanism of LRIG1 in the regulation of vasculogenic mimicry (VM) formation in glioma cells. We constructed an enhanced green fluorescent protein plasmid (pEGFP) system, pEGFP-C1-LRIG1, for overexpression of LRIG1, and transfected it into human glioma cell line SHG-44. Under hypoxic conditions induced by CoCl2, we investigated the effects of LRIG1 overexpression on VM formation and VM-dependent malignant behaviors including migration, invasion, and proliferation. Additionally, we explored the effects of LRIG1 on the expression levels of major components of the EGFR/PI3K/AKT pathway as well as E-cadherin and vimentin. We found that LRIG1 overexpression is able to inhibit hypoxia-induced VM formation, migration, invasion, and proliferation. Furthermore, LRIG1 overexpression counteracts hypoxia-induced increase in the expression of phosphorylated EGFR (pEGFR), PI3K (pPI3K), and AKT (pAKT) and reverts hypoxia-induced alteration in E-cadherin and vimentin expression levels. In LRIG1 knockdown SHG-44 cells, however, hypoxia-induced VM formation and alteration in E-cadherin and vimentin expression levels were exacerbated. These results suggest that the inhibitory effects of LRIG1 are most likely mediated by suppression of the EGFR/PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) process. Our findings provide compelling evidence implicating LRIG1 in glioma pathophysiology, suggesting that gene therapy using LRIG1 may serve as a treatment for this disease.
Collapse
Affiliation(s)
- Xi Zhang
- />Department of Neurology and Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi Province China
| | - Qian Song
- />Department of Neurology and Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi Province China
| | - Chunyan Wei
- />Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi Province China
| | - Jianqiang Qu
- />Department of Neurology and Neurosurgery, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi’an, 710004 Shaanxi Province China
| |
Collapse
|
7
|
Talbot JJ, Song X, Wang X, Rinschen MM, Doerr N, LaRiviere WB, Schermer B, Pei YP, Torres VE, Weimbs T. The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation. J Am Soc Nephrol 2014; 25:1737-48. [PMID: 24578126 PMCID: PMC4116067 DOI: 10.1681/asn.2013091026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/06/2013] [Indexed: 12/30/2022] Open
Abstract
Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response.
Collapse
Affiliation(s)
- Jeffrey J Talbot
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Xuewen Song
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Wells B LaRiviere
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany; Systems Biology of Aging Cologne (Sybacol), Cologne, Germany; and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - York P Pei
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California;
| |
Collapse
|
8
|
Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol 2013; 5:a009043. [PMID: 23906711 DOI: 10.1101/cshperspect.a009043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities.
Collapse
Affiliation(s)
- Natalia Volinsky
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
9
|
Minegishi Y, Shibagaki Y, Mizutani A, Fujita K, Tezuka T, Kinoshita M, Kuroda M, Hattori S, Gotoh N. Adaptor protein complex of FRS2β and CIN85/CD2AP provides a novel mechanism for ErbB2/HER2 protein downregulation. Cancer Sci 2013; 104:345-52. [PMID: 23279575 DOI: 10.1111/cas.12086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 12/13/2022] Open
Abstract
Overexpression of the ErbB2/HER2 receptor tyrosine kinase contributes to tumorigenesis. However, mechanisms regulating ErbB2 protein levels remain largely unclear. Here, we identified novel mechanisms of ErbB2 downregulation. ErbB2 constitutively binds to an adaptor protein FRS2β. We found that FRS2β bound to CD2AP and CIN85, which induces endosomal trafficking that targets lysosomes. FRS2β colocalized with CIN85 in the cytoplasm. Expression of wild type FRS2β but not its CIN85 non-binding mutant, downregulated the ErbB2 protein and inhibited anchorage-independent cell growth. Moreover, the E3 ubiquitin-protein ligase Cbl was contained within a complex of FRS2β and CIN85. Knockdown of both CIN85 and CD2AP or of Cbl, or treatment with lysosomal degradation inhibitors diminished FRS2β downregulation of ErbB2. In addition, knockdown of endogenous FRS2β caused upregulation of ErbB2 in primary neural cells. Finally, immunohistochemical analysis showed that human breast cancer tissues that overexpress ErbB2 expressed low levels of FRS2β. Thus, an FRS2β-CIN85/CD2AP-Cbl axis for downregulation of ErbB2 may regulate ErbB2 protein levels in physiological and pathological settings. Molecular targeting drugs that can increase or stabilize the ErbB2-FRS2β-CIN85/CD2AP-Cbl axis may have promise for the control of ErbB2-overexpressing tumors.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Division of Systems Biomedical Technology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jin DI, Lee SW, Han ME, Kim HJ, Seo SA, Hur GY, Jung S, Kim BS, Oh SO. Expression and roles of Wilms' tumor 1-associating protein in glioblastoma. Cancer Sci 2012; 103:2102-9. [PMID: 22957919 DOI: 10.1111/cas.12022] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/18/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is a diffusely growing malignant brain tumor and among the most aggressive of all tumors. Wilms' tumor 1-associating protein (WTAP) is a nuclear protein that has been associated with regulation of proliferation and apoptosis. Although its dynamic expression and physiological functions in vascular cells have been reported, those in other cells are largely unknown. Here, we show for the first time that WTAP is overexpressed in glioblastoma. Moreover we found that WTAP regulates migration and invasion of glioblatoma cells. Specific knockdown by siRNA or overexpression by cDNA regulated migration and invasion of cancer cells. In xenograft study, WTAP overexpression made cancer cells more tumorigenic. In the investigation for its underlying mechanism, we found that the activity of epidermal growth factor receptor can be regulated by WTAP. These results reveal a novel function of WTAP and suggest its clinical application.
Collapse
Affiliation(s)
- Du-Il Jin
- Department of Anatomy, Pusan National University, Beomeo-Ri, Mulgeum-Eup, Yangsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Suppressor of cytokine signaling 4 detected as a novel gastric cancer suppressor gene using double combination array analysis. World J Surg 2012; 36:362-72. [PMID: 22127425 DOI: 10.1007/s00268-011-1358-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Molecular mechanisms behind the oncogenesis of gastric cancer (GC) have yet to be identified. METHODS A novel candidate tumor-suppressor gene, which is also associated with inhibition of epidermal growth factor (EGF), was sought by means of double combination array analysis for use as a prognostic marker of GC. This consisted of expression array and single nucleotide polymorphism array analysis, along with a literature search. Cancerous and noncancerous tissues from an 82-year-old man with GC were analyzed simultaneously. RESULTS The expression array and literature search identified that the suppressor of cytokine signaling 4 (SOCS4), a negative feedback regulator of EGF signaling, had significantly attenuated expression in tumor tissue. Although chromosomal deletion was not found at 14q22 where SOCS4 is located, numerous CpG sites were observed in the promoter region of the SOCS4 gene. Several GC cell lines showed reactivation of SOCS4 mRNA expression after treatment with 5-aza-2'-deoxycytidine. Using surgically resected specimens, we found that 40 of 50 (80%) tumor tissues exhibited promoter hypermethylation of the SOCS4 gene. Consequently, SOCS4 expression in tumor tissues was significantly weaker than in noncancerous counterparts (P < 0.0001). In the survival analysis, SOCS4 hypermethylation was associated with a poor prognosis of GC patients (P = 0.0320). CONCLUSIONS Double combination array analysis suggested that SOCS4 could be a novel candidate for further exploration as a tumor-suppressor gene in GC. Hypermethylation was the mechanism by which SOCS4 was silenced and was implicated in the development of GC. SOCS4 methylation might be an informative marker in predicting the prognosis.
Collapse
|
12
|
Negative feedback mechanisms surpass the effect of intrinsic EGFR activation during skin chemical carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1378-85. [PMID: 22306420 DOI: 10.1016/j.ajpath.2011.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
Abstract
The negative feedback regulation of epidermal growth factor receptor (EGFR) and other tyrosine kinase receptors, including receptor dephosphorylation and endocytosis followed by degradation, is becoming recognized as a major determinant of receptor function. To evaluate the significance of the negative regulation of EGFR during carcinogenesis in vivo, we subjected the mutant mouse line Dsk5, in which the intrinsic activation of the receptor due to a point mutation is normally counterbalanced by increased posttranslational receptor down-regulation, to skin chemical carcinogenesis. Dsk5 mice showed reduced tumor numbers and tumor burden compared with control littermates, and Dsk5-derived tumors showed a reduction in the activation and total levels of EGFR. Furthermore, the transcript levels of several molecules known to act as negative regulators of EGFR were significantly increased in Dsk5-derived tumors. Another intriguing observation was the appearance of tumors with sebaceous differentiation in the ears of Dsk5 mice after chemical carcinogenesis. Further studies are necessary to reveal whether these tumors represent a cell type-specific evasion from EGFR negative feedback machinery. In conclusion, this study reveals that several negative feedback regulators contribute to suppression of the intrinsic activation of mutant EGFR during skin carcinogenesis, stressing the potential exploitation of negative regulators as either therapeutic targets or diagnostic tools in cancer and other diseases.
Collapse
|
13
|
Receptor Kinase Interactions: Complexity of Signalling. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23044-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Li Z, Dong Q, Wang Y, Qu L, Qiu X, Wang E. Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with EGFR signaling. Mol Carcinog 2011; 51:522-34. [PMID: 21739478 DOI: 10.1002/mc.20815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/06/2022]
Abstract
Downregulation of Mig-6 expression has been implicated in several human cancers and its loss can lead to prolonged activation of EGFR and carcinogenesis. The present study aimed to investigate the clinical significance of loss of Mig-6 expression in nonsmall-cell lung cancer (NSCLC) and the biological functions of Mig-6 in NSCLC cell lines. Mig-6 expression was downregulated in 47/91 (51.6%) cases of NSCLC that were examined. Mig-6 downregulation significantly correlated with poor differentiation (P = 0.0131), histological type (P = 0.0021), and EGFR expression (P = 0.003). In addition, knockdown of Mig-6 expression in H1299 and BE1 cells promoted EGF-induced tumor cell proliferation and migration. Furthermore, Mig-6 knockdown led to a significant increase in phospho-AKT, phospho-ERK, phospho-EGFR as well as MMP-2 and MMP-9 levels. These results indicate that downregulated Mig-6 in NSCLC tissues may serve as a new marker that can predict the activation of EGFR signaling pathway.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Yee NS, Zhou W, Liang IC. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer. Dis Model Mech 2011; 4:240-254. [PMID: 21183474 PMCID: PMC3046099 DOI: 10.1242/dmm.004564] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 09/16/2010] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg(2+) partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg(2+) rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg(2+)-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
16
|
Reschke M, Ferby I, Stepniak E, Seitzer N, Horst D, Wagner EF, Ullrich A. Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology 2010; 51:1383-90. [PMID: 20044804 DOI: 10.1002/hep.23428] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED The mitogen-inducible gene-6 (mig-6) is a multi-adaptor protein implicated in the regulation of the HER family of receptor tyrosine kinases. We have reported recently that mig-6 is a negative regulator of epidermal growth factor receptor (EGFR)-dependent skin morphogenesis and tumor formation in vivo. In the liver, ablation of mig-6 leads to an increase in EGFR protein levels, suggesting that mig-6 is a negative regulator of EGFR function. In line with this observation, primary hepatocytes isolated from mig-6 knockout and wild-type control mice display sustained mitogenic signaling in response to EGF. In order to explore the role of mig-6 in the liver in vivo, we analyzed liver regeneration in mig-6 knockout and wild-type control mice. Interestingly, mig-6 knockout mice display enhanced hepatocyte proliferation in the initial phases after partial hepatectomy. This phenotype correlates with activation of endogenous EGFR signaling, predominantly through the protein kinase B pathway. In addition, mig-6 is an endogenous inhibitor of EGFR signaling and EGF-induced tumor cell migration in human liver cancer cell lines. Moreover, mig-6 is down-regulated in human hepatocellular carcinoma and this correlates with increased EGFR expression. CONCLUSION Our data implicate mig-6 as a regulator of EGFR activity in hepatocytes and as a suppressor of EGFR signaling in human liver cancer.
Collapse
Affiliation(s)
- Markus Reschke
- Max-Planck Institute of Biochemistry, Department of Molecular Biology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
FRS2beta, a potential prognostic gene for non-small cell lung cancer, encodes a feedback inhibitor of EGF receptor family members by ERK binding. Oncogene 2010; 29:3087-99. [PMID: 20228838 DOI: 10.1038/onc.2010.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An adaptor protein FRS2beta inhibits epidermal growth factor-receptor (EGFR) tyrosine kinase without being phosphorylated at tyrosine residues after EGF stimulation. Although binding to ERK appears to be important for this inhibition, the precise molecular mechanisms and the role of FRS2beta in signal transduction mediated by other EGFR family members, as well as its role in human cancer, remain unclear. In this study, we demonstrate that FRS2beta inhibits anchorage-independent cell growth induced by oncogenic ErbB2, another member of EGFR family, and that it inhibits heterodimer formation between EGFR and ErbB2. We mapped the residues important for the FRS2beta and ERK interaction to two docking (D) domain-like sequences on FRS2beta and two aspartic acid residues in the common docking (CD) domain of ERK. Moreover, in response to EGF, ERK translocated to the plasma membrane in cells expressing FRS2beta but not an FRS2beta mutant in which four arginine residues in the D domains were replaced with alanines, suggesting that FRS2beta serves as a plasma membrane anchor for activated ERK. Finally, a low mRNA expression level of FRS2beta was significantly correlated with poor prognosis in a cohort of 60 non-small cell lung cancer patients. Therefore, we have identified the molecular mechanisms by which FRS2beta acts as a feedback inhibitor of EGFR family members and suggest a role for FRS2beta as a tumor suppressor.
Collapse
|
18
|
Sato T, Gotoh N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin Ther Targets 2009; 13:689-700. [PMID: 19456272 DOI: 10.1517/14728220902942330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There are two members--FRS2alpha and FRS2beta--in the fibroblast growth factor receptor substrate 2 (FRS2) family of docking/scaffolding adaptor proteins. These proteins function downstream of certain kinds of receptor tyrosine kinases (RTKs) that are important for tumorigenesis. FRS2alpha acts as a control centre for fibroblast growth factor receptor signalling and encourages tumorigenesis, while FRS2beta regulates EGFR signalling negatively, and might have a tumour suppressive role. Therefore, both proteins could be good therapeutic targets for the treatment of cancer. OBJECTIVE To examine the physiological and pathological roles of FRS2, especially in cancer, and describe their potential value as therapeutic targets. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Although it is still difficult to develop small compounds to modify functions of FRS2 adaptor proteins, such compounds may be useful as the next generation of molecular targeting drugs. Combination therapy with RTK-targeting drugs and FRS2-targeting drugs may be useful for cancer treatment in the near future.
Collapse
Affiliation(s)
- Takuya Sato
- The University of Tokyo, Institute of Medical Science, Division of Systems Biomedical Technology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
19
|
Minegishi Y, Iwanari H, Mochizuki Y, Horii T, Hoshino T, Kodama T, Hamakubo T, Gotoh N. Prominent expression of FRS2β protein in neural cells and its association with intracellular vesicles. FEBS Lett 2009; 583:807-14. [DOI: 10.1016/j.febslet.2009.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 12/12/2022]
|