1
|
Kariyazono R, Oda A, Yamada T, Ohta K. Conserved HORMA domain-containing protein Hop1 stabilizes interaction between proteins of meiotic DNA break hotspots and chromosome axis. Nucleic Acids Res 2019; 47:10166-10180. [PMID: 31665745 PMCID: PMC6821256 DOI: 10.1093/nar/gkz754] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 11/14/2022] Open
Abstract
HORMA domain-containing proteins such as Hop1 play crucial regulatory roles in various chromosomal functions. Here, we investigated roles of the fission yeast Hop1 in the formation of recombination-initiating meiotic DNA double strand breaks (DSBs). Meiotic DSB formation in fission yeast relies on multiple protein-protein interactions such as the one between the chromosome axial protein Rec10 and the DSB-forming complex subunit Rec15. Chromatin immunoprecipitation sequencing demonstrated that Hop1 is colocalized with both Rec10 and Rec15, and we observed physical interactions of Hop1 to Rec15 and Rec10. These results suggest that Hop1 promotes DSB formation by interacting with both axis components and the DSB-forming complex. We also show that Hop1 binding to DSB hotspots requires Rec15 and Rec10, while Hop1 axis binding requires Rec10 only, suggesting that Hop1 is recruited to the axis via Rec10, and to hotspots by hotspot-bound Rec15. Furthermore, we introduced separation-of-function Rec10 mutations, deficient for interaction with either Rec15 or Hop1. These single mutations and hop1Δ conferred only partial defects in meiotic recombination, while the combining the Rec15-binding-deficient rec10 mutation with hop1Δ synergistically reduced meiotic recombination, at least at a model hotspot. Taken together, Hop1 likely functions as a stabilizer for Rec15–Rec10 interaction to promote DSB formation.
Collapse
Affiliation(s)
- Ryo Kariyazono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Arisa Oda
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takatomi Yamada
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kunihiro Ohta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
2
|
Lu Y, Zhou X, Zeng Q, Liu D, Yue C. Differential expression profile analysis of DNA damage repair genes in CD133 +/CD133 - colorectal cancer cells. Oncol Lett 2017; 14:2359-2368. [PMID: 28789452 DOI: 10.3892/ol.2017.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The present study examined differential expression levels of DNA damage repair genes in COLO 205 colorectal cancer cells, with the aim of identifying novel biomarkers for the molecular diagnosis and treatment of colorectal cancer. COLO 205-derived cell spheres were cultured in serum-free medium supplemented with cell factors, and CD133+/CD133- cells were subsequently sorted using an indirect CD133 microbead kit. In vitro differentiation and tumorigenicity assays in BABA/c nude mice were performed to determine whether the CD133+ cells also possessed stem cell characteristics, in addition to the COLO 205 and CD133- cells. RNA sequencing was employed for the analysis of differential gene expression levels at the mRNA level, which was determined using reverse transcription-quantitative polymerase chain reaction. The mRNA expression levels of 43 genes varied in all three types of colon cancer cells (false discovery rate ≤0.05; fold change ≥2). Of these 43 genes, 30 were differentially expressed (8 upregulated and 22 downregulated) in the COLO 205 cells, as compared with the CD133- cells, and 6 genes (all downregulated) were differentially expressed in the COLO 205 cells, as compared with CD133+ cells. A total of 18 genes (10 upregulated and 8 downregulated) were differentially expressed in the CD133- cells, as compared with the CD133+ cells. By contrast, 6 genes were downregulated and none were upregulated in the CD133+ cells compared with the COLO 205 cells. These findings suggest that CD133+ cells may possess the same DNA repair capacity as COLO 205 cells. Heterogeneity in the expression profile of DNA damage repair genes was observed in COLO 205 cells, and COLO 205-derived CD133- cells and CD133+ cells may therefore provide a reference for molecular diagnosis, therapeutic target selection and determination of the treatment and prognosis for colorectal cancer.
Collapse
Affiliation(s)
- Yuhong Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Zhou
- Deparment of Gastroenterological Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qingliang Zeng
- Deparment of Gastroenterological Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Daishun Liu
- Zunyi Key Laboratory of Genetic Diagnosis and Targeted Drug Therapy, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Changwu Yue
- Zunyi Key Laboratory of Genetic Diagnosis and Targeted Drug Therapy, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
3
|
Šamanić I, Cvitanić R, Simunić J, Puizina J. Arabidopsis thalianaMRE11 is essential for activation of cell cycle arrest, transcriptional regulation and DNA repair upon the induction of double-stranded DNA breaks. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:681-694. [PMID: 27007017 DOI: 10.1111/plb.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Given the fundamental role of MRE11 in many aspects of DNA metabolism and signalling in eukaryotes, we analysed the impact of several MRE11 mutations on DNA damage response (DDR) and DNA repair in Arabidopsis thaliana. Three different atmre11 and an atatm-2 mutant lines, together with the wild type (WT), were compared using a new Arabidopsis genotoxic assay for in situ evaluation of genome integrity and DNA damage repair efficiency after double strand break (DSB) induction. The results showed that, despite the phenotypic differences and different lengths of the putative truncated AtMRE11 proteins, all three atmre11 and the atatm-2 mutant lines exhibited common hypersensitivity to bleomycin treatment, where they only slightly reduced mitotic activity, indicating a G2/M checkpoint abrogation. In contrast to the WT, which reduced the frequency of chromosomal aberrations throughout the recovery period after treatment, none of the three atmre11 and atatm-2 mutants recovered. Moreover, atmre11-3 mutants, similarly to atatm-2 mutants, failed to transcriptionally induce several DDR genes and had altered expression of the CYCB1;1::GUS protein. Nevertheless, numerous chromosomal fusions in the atmre11 mutants, observed after DNA damage induction, suggest intensive DNA repair activity. These results indicate that functional and full-length AtMRE11 is essential for activation of the cell cycle arrest, transcriptional regulation and DNA repair upon induction of DSB.
Collapse
Affiliation(s)
- I Šamanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - R Cvitanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - J Simunić
- Ruđer Bošković Institute, Zagreb, Croatia
| | - J Puizina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| |
Collapse
|
4
|
Sanjiv K, Chen CW, Kakadiya R, Tala S, Suman S, Wu MH, Chen YH, Su TL, Lee TC. PI3K Inhibition Augments the Therapeutic Efficacy of a 3a-aza-Cyclopenta[α]indene Derivative in Lung Cancer Cells. Transl Oncol 2014; 7:256-266.e5. [PMID: 24913674 PMCID: PMC4101349 DOI: 10.1016/j.tranon.2014.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/03/2014] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
The synergistic targeting of DNA damage and DNA repair is a promising strategy for the development of new chemotherapeutic agents for human lung cancer. The DNA interstrand cross-linking agent BO-1509, a derivative of 3a-aza-cyclopenta[α]indene, was synthesized and combined with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 to treat human lung cancer cells. Our results showed that the BO-1509 and LY294002 combination synergistically killed lung cancer cells in culture and also suppressed the growth of lung cancer xenografts in mice, including those derived from gefitinib-resistant cells. We also found that LY294002 suppressed the induction of several DNA repair proteins by BO-1509 and inhibited the nuclear translocation of Rad51. On the basis of the results of the γH2AX foci formation assays, LY294002 apparently inhibited the repair of DNA damage that was induced by BO-1509. According to the complete blood profile, biochemical enzyme analysis, and histopathologic analysis of major organs, no apparent toxicity was observed in mice treated with BO-1509 alone or in combination with LY294002. Our results suggest that the combination of a DNA cross-linking agent with a PI3K inhibitor is a feasible strategy for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wei Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rajesh Kakadiya
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Satishkumar Tala
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sharda Suman
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan.
| | - Te-Chang Lee
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Evidence for distinct functions of MRE11 in Arabidopsis meiosis. PLoS One 2013; 8:e78760. [PMID: 24205310 PMCID: PMC3804616 DOI: 10.1371/journal.pone.0078760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/22/2013] [Indexed: 01/09/2023] Open
Abstract
The evolutionary conserved Mre11/Rad50/Nbs1 complex functions as one of the guardians of genome integrity in eukaryotes; it is required for the double-strand break repair, meiosis, DNA checkpoint, and telomere maintenance. To better understand the role of the MRE11 gene in Arabidopsis, we performed comparative analysis of several mre11 alleles with respect to genome stability and meiosis. The mre11-4 and mre11-2 alleles presumably produce truncated MRE11 proteins composed of the first 499 and 529 amino acids, respectively. Although the putative MRE11 truncated proteins differ only by 30 amino acids, the mutants exhibited strikingly different phenotypes in regards to growth morphology, genome stability and meiosis. While the mre11-2 mutants are fully fertile and undergo normal meiosis, the mre11-4 plants are sterile due to aberrant repair of meiotic DNA breaks. Structural homology analysis suggests that the T-DNA insertion in the mre11-4 allele probably disrupted the putative RAD50 interaction and/or homodimerization domain, which is assumed to be preserved in mre11-2 allele. Intriguingly, introgression of the atm-2 mutant plant into the mre11-2 background renders the double mutant infertile, a phenotype not observed in either parent line. This data indicate that MRE11 partially compensates for ATM deficiency in meiosis of Arabidopsis.
Collapse
|
6
|
Ghodke I, Muniyappa K. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. J Biol Chem 2013; 288:11273-86. [PMID: 23443654 DOI: 10.1074/jbc.m112.439315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.
Collapse
Affiliation(s)
- Indrajeet Ghodke
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
7
|
Non-homologous end-joining pathway associated with occurrence of myocardial infarction: gene set analysis of genome-wide association study data. PLoS One 2013; 8:e56262. [PMID: 23457540 PMCID: PMC3574159 DOI: 10.1371/journal.pone.0056262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
PURPOSE DNA repair deficiencies have been postulated to play a role in the development and progression of cardiovascular disease (CVD). The hypothesis is that DNA damage accumulating with age may induce cell death, which promotes formation of unstable plaques. Defects in DNA repair mechanisms may therefore increase the risk of CVD events. We examined whether the joints effect of common genetic variants in 5 DNA repair pathways may influence the risk of CVD events. METHODS The PLINK set-based test was used to examine the association to myocardial infarction (MI) of the DNA repair pathway in GWAS data of 866 subjects of the GENetic DEterminants of Restenosis (GENDER) study and 5,244 subjects of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study. We included the main DNA repair pathways (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining (NHEJ)) in the analysis. RESULTS The NHEJ pathway was associated with the occurrence of MI in both GENDER (P = 0.0083) and PROSPER (P = 0.014). This association was mainly driven by genetic variation in the MRE11A gene (PGENDER = 0.0001 and PPROSPER = 0.002). The homologous recombination pathway was associated with MI in GENDER only (P = 0.011), for the other pathways no associations were observed. CONCLUSION This is the first study analyzing the joint effect of common genetic variation in DNA repair pathways and the risk of CVD events, demonstrating an association between the NHEJ pathway and MI in 2 different cohorts.
Collapse
|
8
|
Abstract
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
Collapse
|
9
|
Dmitrieva NI, Malide D, Burg MB. Mre11 is expressed in mammalian mitochondria where it binds to mitochondrial DNA. Am J Physiol Regul Integr Comp Physiol 2011; 301:R632-40. [PMID: 21677273 DOI: 10.1152/ajpregu.00853.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mre11 is a critical participant in upkeep of nuclear DNA, its repair, replication, meiosis, and maintenance of telomeres. The upkeep of mitochondrial DNA (mtDNA) is less well characterized, and whether Mre11 participates has been unknown. We previously found that high NaCl causes some of the Mre11 to leave the nucleus, but we did not then attempt to localize it within the cytoplasm. In the present studies, we find Mre11 in mitochondria isolated from primary renal cells and show that the amount of Mre11 in mitochondria increases with elevation of extracellular NaCl. We confirm the presence of Mre11 in the mitochondria of cells by confocal microscopy and show that some of the Mre11 colocalizes with mtDNA. Furthermore, crosslinking of Mre11 to DNA followed by Mre11 immunoprecipitation directly demonstrates that some Mre11 binds to mtDNA. Abundant Mre11 is also present in tissue sections from normal mouse kidneys, colocalized with mitochondria of proximal tubule and thick ascending limb cells. To explore whether distribution of Mre11 changes with cell differentiation, we used an experimental model of tubule formation by culturing primary kidney cells in Matrigel matrix. In nondifferentiated cells, Mre11 is mostly in the nucleus, but it becomes mostly cytoplasmic upon cell differentiation. We conclude that Mre11 is present in mitochondria where it binds to mtDNA and that the amount in mitochondria varies depending on cellular stress and differentiation. Our results suggest a role for Mre11 in the maintenance of genome integrity in mitochondria in addition to its previously known role in maintenance of nuclear DNA.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
10
|
Marrakchi R, Chouchani C, Cherif M, Boudabbous A, Ramotar D. The isomerase Rrd1 mediates rapid loss of the Sgs1 helicase in response to rapamycin. Biochem Cell Biol 2011; 89:332-40. [DOI: 10.1139/o11-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae , rapamycin exposure inhibits the target of rapamycin (TOR) signaling pathway, causing a profound alteration in the transcription pattern of many genes, including those involved in ribosome biogenesis and nutritional changes. Deletion of the RRD1 gene encoding a peptidyl prolyl isomerase resulted in mutants that are resistant to rapamycin. These rrd1Δ mutants are unable to efficiently downregulate genes such as ribosomal protein genes, or to upregulate genes involved in diauxic shift. It is believed that the isomerase function of Rrd1 plays a role in changing the transcriptional profile upon rapamycin exposure. Herein, we set out to search for genes that when deleted in the rrd1Δ mutant would suppress the rapamycin-resistant phenotype. The analysis revealed that deletion of the SGS1 gene in the rrd1Δ mutant partially suppresses the rapamycin-resistant phenotype of the single rrd1Δ mutant. SGS1 encodes a helicase that functions in many biological processes, including transcriptional regulation. We further show, and for the first time, that Sgs1 is rapidly lost in the parent cells in response to rapamycin, but not by other agents. Interestingly, Sgs1 reduction was completely blocked in the rrd1Δ mutant, suggesting that Rrd1 is required to mediate this process. Genes such as PUT4 and HSP42, known to be upregulated in the parent in response to rapamycin, were not induced in the rrd1Δ mutant if the SGS1 gene was deleted. Since Sgs1 plays a role in transcriptional regulation, we propose that it acts as a repressor of a subset of rapamycin responsive genes. Thus, the observed Rrd1-dependent reduction in Sgs1 level may promote expression of specific classes of genes in response to rapamycin.
Collapse
Affiliation(s)
- Rim Marrakchi
- University 7-November, Carthage, High Institute of Environmental Sciences and technologies, Borj-Cedria Science and Technology Park, PB-1003, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, BSB Street, 2092 El-ManarII, Tunisia
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, 5415 de l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Chedly Chouchani
- University 7-November, Carthage, High Institute of Environmental Sciences and technologies, Borj-Cedria Science and Technology Park, PB-1003, Hammam-Lif 2050, Tunisia
| | - Mohamed Cherif
- National Institute of Agronomy, 43 Charles Nicolle Street, 1082 Tunis- Mahrajène, Tunisia
| | | | - Dindial Ramotar
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, 5415 de l'Assomption, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
11
|
Pérez R, Cuadrado A, Chen IP, Puchta H, Jouve N, De Bustos A. The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:251-262. [PMID: 20827456 DOI: 10.1007/s00122-010-1440-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
The MRN complex plays a central role in the DNA repair pathways of eukaryotic cells and takes part in many other processes, including cell cycle checkpoint signalling, meiosis, DNA replication and telomere maintenance. This complex is formed by the interaction of the products of the Mre11, Rad50 and Nbs1 genes. This paper reports the molecular characterization, expression and interactions of the Rad50 gene in several wheat species with different levels of ploidy. The homoeologous Rad50 wheat genes were found to show a high level of conservation. Most of the RAD50 domains and motifs previously described in other species were also present in wheat RAD50; these proteins are therefore likely to have similar functions. Interactions between the RAD50 wheat proteins and their MRE11 counterparts in the MRN complex were observed. The level of expression of Rad50 in each of the species examined was determined and compared with those previously reported for the Mre11 genes. In some cases similar levels of expression were seen, as expected. The expression of the RAD50 homoeologous genes was assessed in two polyploid wheat species using quantitative PCR. In both cases, an overexpression of the Rad50B gene was detected. Although the results indicate the maintenance of function of these species' three homoeologous Rad50 genes, the biased expression of Rad50B might indicate ongoing silencing of one or both other homoeologues in polyploid wheat. To assess the consequences of such silencing on the formation of the MRN complex, the interactions between individual homoeologues of Rad50 and their genomic counterpart Mre11 genes were examined. The results indicate the inexistence of genomic specificity in the interactions between these genes. This would guarantee the formation of an MRN complex in wheat.
Collapse
Affiliation(s)
- R Pérez
- Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Affinity purification of an archaeal DNA replication protein network. mBio 2010; 1. [PMID: 20978540 PMCID: PMC2962436 DOI: 10.1128/mbio.00221-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022] Open
Abstract
Nineteen Thermococcus kodakarensis strains have been constructed, each of which synthesizes a different His(6)-tagged protein known or predicted to be a component of the archaeal DNA replication machinery. Using the His(6)-tagged proteins, stable complexes assembled in vivo have been isolated directly from clarified cell lysates and the T. kodakarensis proteins present have been identified by mass spectrometry. Based on the results obtained, a network of interactions among the archaeal replication proteins has been established that confirms previously documented and predicted interactions, provides experimental evidence for previously unrecognized interactions between proteins with known functions and with unknown functions, and establishes a firm experimental foundation for archaeal replication research. The proteins identified and their participation in archaeal DNA replication are discussed and related to their bacterial and eukaryotic counterparts.
Collapse
|
13
|
PKB/Akt promotes DSB repair in cancer cells through upregulating Mre11 expression following ionizing radiation. Oncogene 2010; 30:944-55. [PMID: 20956948 DOI: 10.1038/onc.2010.467] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An elevated DNA-repair capacity in cancer cells leads to radiation resistance and severely limits the efficacy of radiation therapy. Activation of Akt is tightly associated with resistance to radiotherapy, and Mre11 protein has important role during the repair of DNA double-strand breaks (DSBs). In this report, our results showed that inhibition of Akt activity impaired the repair of DSBs in CNE2 cells, whereas activated Akt promoted the repair of DSBs in HeLa cells. Knockdown of Mre11 also impaired the process of DSB repair in both these two cell lines. More importantly, we found that Akt could regulate Mre11 expression. Inhibition of Akt activity by small interfering RNA or LY294002 efficiently downregulated the Mre11 expression in CNE2 cells, and transfection with myr-Akt plasmid in HeLa cells upregulated the Mre11 expression. In addition, luciferase reporter analysis revealed that Mre11 reporter activity increased after transfection with myr-Akt1 plasmids, and this myr-Akt1-induced transcriptional activity was blocked in the presence of LY294002. Further study showed GSK3β/β-catenin/LEF-1 pathway was involved in this regulation. Knockdown of β-catenin or LEF-1 led to the downregulation of Mre11, whereas overexpression of β-catenin led to upregulation of Mre11. The chromatin immunoprecipitation assay assay showed β-catenin/LEF-1 heterodimer could directly bind to the promoter of Mre11 in vivo. And the luciferase activity of the pGL3-Mre11 and pGL3-Lef increased in HeLa cells following β-catenin plasmid co-transfected, but was abolished when the LEF-1-binding conserved sequences of Mre11 promoter were mutated. These results together support Akt can upregulate the expression of Mre11 through GSK3β/ β-catenin/LEF pathway to elevate DSB-repair capacity in cancer cells.
Collapse
|
14
|
Lukaszewicz A, Howard-Till RA, Novatchkova M, Mochizuki K, Loidl J. MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma 2010; 119:505-18. [PMID: 20422424 DOI: 10.1007/s00412-010-0274-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Programmed DNA double-strand breaks (DSBs) are generated during meiosis to initiate homologous recombination. Various aspects of DSB formation, signaling, and repair are accomplished or governed by Mre11, a component of the MRN/MRX complex, partially in cooperation with Com1/Sae2/CtIP. We used Tetrahymena to study evolutionarily conserved and changed functions of Mre11 and Com1. There is a difference between organisms with respect to the dependency of meiotic DSB formation on Mre11. By cytology and an electrophoresis-based assay for DSBs, we found that in Tetrahymena Mre11p is not required for the formation and ATR-dependent signaling of DSBs. Its dispensability is also reflected by wild-type-like DSB-dependent reorganization of the meiotic nucleus and by the phosphorylation of H2A.X in mre11∆ mutant. However, mre11∆ and com1∆ mutants are unable to repair DSBs, and chromosome pairing is reduced. It is concluded that, while MRE11 has no universal role in DNA damage signaling, its requirement for DSB repair is conserved between evolutionarily distant organisms. Moreover, reduced chromosome pairing in repair-deficient mutants reveals the existence of two complementing pairing processes, one by the rough parallel arrangement of chromosomes imposed by the tubular shape of the meiotic nucleus and the other by repair-dependent precise sequence matching.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Dr. Bohr Gasse 1, Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 2010; 584:3682-95. [PMID: 20655309 PMCID: PMC2946096 DOI: 10.1016/j.febslet.2010.07.029] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/25/2022]
Abstract
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Henson JD, Reddel RR. Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers. FEBS Lett 2010; 584:3800-11. [PMID: 20542034 DOI: 10.1016/j.febslet.2010.06.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 12/14/2022]
Abstract
Alternative Lengthening of Telomeres (ALT) activity can be deduced from the presence of telomere length maintenance in the absence of telomerase activity. More convenient assays for ALT utilize phenotypic markers of ALT activity, but only a few of these assays are potentially definitive. Here we assess each of the current ALT assays and their implications for understanding the ALT mechanism. We also review the clinical situations where availability of an ALT activity assay would be advantageous. The prevalence of ALT ranges from 25% to 60% in sarcomas and 5% to 15% in carcinomas. Patients with many of these types of ALT[+] tumors have a poor prognosis.
Collapse
Affiliation(s)
- Jeremy D Henson
- Children's Medical Research Institute, Sydney, NSW, Australia
| | | |
Collapse
|
17
|
Rupnik A, Lowndes NF, Grenon M. MRN and the race to the break. Chromosoma 2010; 119:115-35. [PMID: 19862546 DOI: 10.1007/s00412-009-0242-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/12/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
In all living cells, DNA is constantly threatened by both endogenous and exogenous agents. In order to protect genetic information, all cells have developed a sophisticated network of proteins, which constantly monitor genomic integrity. This network, termed the DNA damage response, senses and signals the presence of DNA damage to effect numerous biological responses, including DNA repair, transient cell cycle arrests ("checkpoints") and apoptosis. The MRN complex (MRX in yeast), composed of Mre11, Rad50 and Nbs1 (Xrs2), is a key component of the immediate early response to DNA damage, involved in a cross-talk between the repair and checkpoint machinery. Using its ability to bind DNA ends, it is ideally placed to sense and signal the presence of double strand breaks and plays an important role in DNA repair and cellular survival. Here, we summarise recent observation on MRN structure, function, regulation and emerging mechanisms by which the MRN nano-machinery protects genomic integrity. Finally, we discuss the biological significance of the unique MRN structure and summarise the emerging sequence of early events of the response to double strand breaks orchestrated by the MRN complex.
Collapse
Affiliation(s)
- Agnieszka Rupnik
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | |
Collapse
|
18
|
Székvölgyi L, Nicolas A. From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS J 2009; 277:571-89. [PMID: 20015080 DOI: 10.1111/j.1742-4658.2009.07502.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Recombination and Genome Instability Unit, Institut Curie, Centre de Recherche, UMR 3244 CNRS, Universite Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
19
|
Rothenberg M, Kohli J, Ludin K. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet 2009; 5:e1000722. [PMID: 19911044 PMCID: PMC2768786 DOI: 10.1371/journal.pgen.1000722] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.
Collapse
Affiliation(s)
| | - Jürg Kohli
- Institute of Cell Biology, University of Bern, Switzerland
| | - Katja Ludin
- Institute of Cell Biology, University of Bern, Switzerland
- * E-mail:
| |
Collapse
|