1
|
Mazaira GI, Erlejman AG, Zgajnar NR, Piwien-Pilipuk G, Galigniana MD. The transportosome system as a model for the retrotransport of soluble proteins. Mol Cell Endocrinol 2023; 577:112047. [PMID: 37604241 DOI: 10.1016/j.mce.2023.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina.
| |
Collapse
|
2
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Galigniana MD. Molecular Pharmacology of the Youngest Member of the Nuclear Receptor Family: The Mineralocorticoid Receptor. NUCLEAR RECEPTORS 2021:1-21. [DOI: 10.1007/978-3-030-78315-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Green MR, Marcolin ML, McCormick CM. The effects of ovarian hormones on stressor-induced hormonal responses, glucocorticoid receptor expression and translocation, and genes related to receptor signaling in adult female rats. Stress 2018; 21:90-100. [PMID: 29189098 DOI: 10.1080/10253890.2017.1409719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Estradiol potentiates hypothalamic-pituitary-adrenal activity and delays the return of glucocorticoid secretion to baseline after a stressor exposure in female rats; we investigated whether estradiol effects involve actions on glucocorticoid receptor (GR) translocation and expression of receptor co-chaperones. In Experiment 1 intact females and ovariectomized (OVX) females were treated for four days with vehicle (VEH), 17β-estradiol benzoate (EB), or EB and progesterone (EB + P). Samples were taken from rats in the home cage (baseline) or after 30 min of restraint stress in a plastic restrainer (post-restraint) (n = 10/group). OVX-VEH treatment reduced baseline and post-restraint plasma concentrations of corticosterone versus all other treatments. Western blots indicated that OVX-VEH treated rats had greater hippocampal cytosolic GR expression than other treatments. Stress increased hippocampal nuclear GR expression, but without treatment differences. In Experiment 2 OVX rats were treated daily with VEH, EB, or EB + P (n = 8/group). OVX-VEH rats showed a lower stimulation of corticosterone secretion by restraint stress than other treatments and OVX-EB + P treated rats had lower concentrations than the OVX-EB group, suggesting progesterone mitigated estradiol effects. Quantitative polymerase chain reaction experiments indicated that stress increased Fkbp5 mRNA in the ventral hippocampus, with no effect of stress or treatment on Nr3c1 (GR), Nr3c2 (MR), Fkbp4, Bag1, or Ncoa1 (SRC-1) expression. Thus, the hypothesis is that estradiol effects on negative feedback are mediated by altered expression of receptor co-chaperones or co-modulators in the hippocampus was not supported. Estradiol may blunt feedback by limiting the availability of cytosolic GR protein.
Collapse
Affiliation(s)
- Matthew R Green
- a Psychology Department , Brock University , St Catharines , Canada
| | - Marina L Marcolin
- b Biological Sciences Department , Brock University , St Catharines , Canada
| | - Cheryl M McCormick
- a Psychology Department , Brock University , St Catharines , Canada
- b Biological Sciences Department , Brock University , St Catharines , Canada
- c Centre for Neuroscience , Brock University , St Catharines , Canada
| |
Collapse
|
5
|
Blackburn EA, Wear MA, Landré V, Narayan V, Ning J, Erman B, Ball KL, Walkinshaw MD. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90. Biosci Rep 2015; 35:e00258. [PMID: 26330616 PMCID: PMC4721547 DOI: 10.1042/bsr20150124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress.
Collapse
Affiliation(s)
- Elizabeth A Blackburn
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Martin A Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Vivian Landré
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Vikram Narayan
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Jia Ning
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Burak Erman
- Chemical and Biological Engineering Department, Koc University, Istanbul 34415, Turkey
| | - Kathryn L Ball
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K.
| |
Collapse
|
6
|
Takeuchi H, Iwamoto H, Nakamura Y, Hirano T, Konno O, Kihara Y, Chiba N, Yokoyama T, Takano K, Toraishi T, Okuyama K, Ikeda C, Tanaka S, Onda K, Soga A, Kikuchi Y, Kawaguchi T, Kawachi S, Unezaki S, Shimazu M. Synergistic Effects of Calcineurin Inhibitors and Steroids on Steroid Sensitivity of Peripheral Blood Mononuclear Cells. CELL MEDICINE 2014; 7:51-7. [PMID: 26858893 DOI: 10.3727/215517914x681802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The steroid receptor (SR) complex contains FKBP51 and FKBP52, which bind to tacrolimus (TAC) and cyclophilin 40, which, in turn, bind to cyclosporine (CYA); these influence the intranuclear mobility of steroid-SR complexes. Pharmacodynamic interactions are thought to exist between steroids and calcineurin inhibitors (CNIs) on the SR complex. We examined the effect of CNIs on steroid sensitivity. Methylprednisolone (MPSL) sensitivity was estimated as the concentration inhibiting mitosis in 50% (IC50) of peripheral blood mononuclear cells and as the area under the MPSL concentration-proliferation suppressive rate curves (CPS-AUC) in 30 healthy subjects. MPSL sensitivity was compared between the additive group (AG) as the MPSL sensitivity that was a result of addition of the proliferation suppressive rate of CNIs to that of MPSL and the mixed culture group (MCG) as MPSL sensitivity of mixed culture with both MPSL and CNIs in identical patients. IC50 values of MPSL and cortisol sensitivity were examined before and 2 months after CNI administration in 23 renal transplant recipients. IC50 and CPS-AUC values of MPSL were lower in the MCG than in the AG with administration of TAC and CYA. The CPS-AUC ratio of MCG and AG was lower in the TAC group. IC50 values of MPSL and cortisol tended to be lower after administration of TAC and CYA, and a significant difference was observed in the IC50 of cortisol after TAC administration. Steroid sensitivity increased with both TAC and CYA. Furthermore, TAC had a greater effect on increasing sensitivity. Thus, concomitant administration of CNIs and steroids can increase steroid sensitivity.
Collapse
Affiliation(s)
- Hironori Takeuchi
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Hitoshi Iwamoto
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Yuki Nakamura
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Toshihiko Hirano
- ‡ Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Osamu Konno
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Yu Kihara
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Naokazu Chiba
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Takayoshi Yokoyama
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Kiminori Takano
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Tatsunori Toraishi
- § Department of Pharmaceutics,Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Kiyoshi Okuyama
- § Department of Pharmaceutics,Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Chie Ikeda
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Sachiko Tanaka
- ‡ Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Kenji Onda
- ‡ Department of Clinical Pharmacology, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Akiko Soga
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Yukiko Kikuchi
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Takashi Kawaguchi
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Shigeyuki Kawachi
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| | - Sakae Unezaki
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo , Japan
| | - Motohide Shimazu
- † The Fifth Department of Surgery, Hachioji Medical Center, Tokyo Medical University , Hachioji, Tokyo , Japan
| |
Collapse
|
7
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
8
|
Chen HY, Li OY, Pang LH, Xu H, Fan XJ, Liang HF, Chen XF, Qing JZ, Huang RD, Deng BY. Expression of FK506-binding protein 52 (FKBP52) in chorionic villi with early recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2014; 28:1165-9. [PMID: 25053194 DOI: 10.3109/14767058.2014.947572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the mRNA and protein expression of FK506-binding protein 52 (FKBP52) in the chorionic villi of patients with recurrent spontaneous abortion (RSA) and normal women during early pregnancy. METHODS Fresh chorionic villus tissues were collected from 60 subjects. A total of 30 patients with a history of RSA were enrolled into the RSA group and 30 normal pregnant women were enrolled into the control group. The FKBP52 mRNA expression levels in chorionic villi of the RSA patients and healthy controls were measured via semiquantitative RT-PCR. The protein distribution and expression levels of FKBP52 in chorionic villi were analyzed through immunohistochemistry (IHC). The correlation between FKBP52 expression and RSA was analyzed. RESULTS We demonstrated that FKBP52 mRNA is expressed in chorionic villi samples of normal pregnancy and RSA. RSA patients exhibited significantly lower FKBP52 gene expression levels compared with those in normal pregnancies (p < 0.05). FKBP52 immunoreactivity in chorionic villi was mainly observed in trophoblast cell cytoplasm. The FKBP52 protein expression levels in the chorionic villi of RSA patients was significantly lower than in normal women during pregnancy (p < 0.05). CONCLUSIONS FKBP52 protein levels were decreased in the chorionic villi of RSA patients, which indicate that the decrease in FKBP52 may be associated with RSA. The low FKBP52 mRNA expression level, which is consistent with the IHC result, may affect embryonic development and even lead to abortion. FKBP52 may be involved in the pathogenesis of RSA and new therapies that increase the FKBP52 expression may help treat RSA.
Collapse
Affiliation(s)
- Hong-Yan Chen
- a Division of Maternal-Fetal Medicine , Prenatal Diagnosis Center, the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi , China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yau WL, Pescher P, MacDonald A, Hem S, Zander D, Retzlaff S, Blisnick T, Rotureau B, Rosenqvist H, Wiese M, Bastin P, Clos J, Späth GF. The Leishmania donovani chaperone cyclophilin 40 is essential for intracellular infection independent of its stage-specific phosphorylation status. Mol Microbiol 2014; 93:80-97. [PMID: 24811325 DOI: 10.1111/mmi.12639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
Abstract
During its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the L. donovani chaperone cyclophilin 40 (LdCyP40) for infection. Targeted replacement of LdCyP40 had no effect on parasite viability, axenic amastigote differentiation, and resistance to various forms of environmental stress in culture, suggesting important functional redundancy to other parasite chaperones. However, ultrastructural analyses and video microscopy of cyp40-/- promastigotes uncovered important defects in cell shape, organization of the subpellicular tubulin network and motility at stationary growth phase. More importantly, cyp40-/- parasites were unable to establish intracellular infection in murine macrophages and were eliminated during the first 24 h post infection. Surprisingly, cyp40-/- infectivity was restored in complemented parasites expressing a CyP40 mutant of the unique S274 phosphorylation site. Together our data reveal non-redundant CyP40 functions in parasite cytoskeletal remodelling relevant for the development of infectious parasites in vitro independent of its phosphorylation status, and provide a framework for the genetic analysis of Leishmania-specific phosphorylation sites and their role in regulating parasite protein function.
Collapse
Affiliation(s)
- Wai-Lok Yau
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, 25 rue du Dr Roux, F-75015, Paris, France; Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Str. 74, D-20359, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Co-chaperones of Hsp90 in Plasmodium falciparum and their concerted roles in cellular regulation. Parasitology 2014; 141:1177-91. [PMID: 24560171 DOI: 10.1017/s0031182013002084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Co-chaperones are well-known regulators of heat shock protein 90 (Hsp90). Hsp90 is a molecular chaperone that is essential in the eukaryotes for the folding and activation of numerous proteins involved in important cellular processes such as signal transduction, growth and developmental regulation. Co-chaperones assist Hsp90 in the protein folding process by modulating conformational changes to promote client protein interaction and functional maturation. With the recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a potential antimalarial drug target, there is obvious interest in the study of its co-chaperones in their partnership in regulating cellular processes in malaria parasite. Previous studies on PfHsp90 have identified more than 10 co-chaperones in P. falciparum genome. However, many of them remained annotated as putative proteins as their functionality has not been validated experimentally. So far, only five co-chaperones, PfHop, Pfp23, PfAha1, PfPP5 and PfFKBP35 have been characterized and shown to interact with PfHsp90. This review will summarize current knowledge on the co-chaperones in P. falciparum and discuss their regulatory roles on PfHsp90. As certain eukaryotic co-chaperones have also been implicated in altering the affinity of Hsp90 for its inhibitor, this review will also examine plasmodial co-chaperones' potential influence on approaches towards designing antimalarials targeting PfHsp90.
Collapse
|
11
|
Pearson JD, Mohammed Z, Bacani JTC, Lai R, Ingham RJ. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein. BMC Cancer 2012; 12:229. [PMID: 22681779 PMCID: PMC3407532 DOI: 10.1186/1471-2407-12-229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. METHODS NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. RESULTS We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this oncoprotein to signal. CONCLUSIONS This is the first study demonstrating that the expression of immunophilin family co-chaperones is promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in lymphoma.
Collapse
Affiliation(s)
- Joel D Pearson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Zubair Mohammed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Julinor T C Bacani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
12
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
13
|
Earley KW, Poethig RS. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 2011; 286:38184-38189. [PMID: 21908611 PMCID: PMC3207435 DOI: 10.1074/jbc.m111.290130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
SQN (SQUINT) is the Arabidopsis ortholog of the immunophilin CyP40 (cyclophilin 40) and promotes microRNA activity by promoting the activity of AGO1. In animals and Saccharomyces cerevisiae, CyP40 promotes protein activity in association with the protein chaperone Hsp90. To determine whether CyP40 also acts in association with Hsp90 in plants, we examined the interaction between SQN and Hsp90 in vitro and tested the importance of this interaction for the function of SQN in planta. We found that SQN interacts with cytoplasmic Hsp90 proteins but not with Hsp90 proteins localized to chloroplasts, mitochondria, or the endoplasmic reticulum. The interaction between SQN and Hsp90 in vitro requires the MEEVD domain of Hsp90, as well as several conserved amino acids within the tetratricopeptide repeat domain of SQN. Amino acid substitutions that disrupt the interaction between SQN and Hsp90 in vitro also impair the activity of SQN in planta. Our results indicate that the interaction between CyP40 and Hsp90 is conserved in plants and that this interaction is essential for the function of CyP40.
Collapse
Affiliation(s)
- Keith W Earley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
14
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
15
|
Koren J, Jinwal UK, Davey Z, Kiray J, Arulselvam K, Dickey CA. Bending tau into shape: the emerging role of peptidyl-prolyl isomerases in tauopathies. Mol Neurobiol 2011; 44:65-70. [PMID: 21523562 PMCID: PMC3260650 DOI: 10.1007/s12035-011-8182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/12/2011] [Indexed: 01/21/2023]
Abstract
The Hsp90-associated cis-trans peptidyl-prolyl isomerase--FK506 binding protein 51 (FKBP51)--was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer's disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.
Collapse
Affiliation(s)
- John Koren
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
16
|
Holownia A, Mroz RM, Kielek A, Chyczewska E, Braszko JJ. Nuclear HSP90 and HSP70 in COPD patients treated with formoterol or formoterol and corticosteroids. Eur J Med Res 2010; 14 Suppl 4:104-7. [PMID: 20156737 PMCID: PMC3521358 DOI: 10.1186/2047-783x-14-s4-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective Heat shock proteins assist cellular protein folding and are required for the normal activity of steroid receptors. In this study we assessed nuclear HSP90 and HSP70 proteins and mRNA levels in cells isolated from induced sputum of chronic obstructive pulmonary disease patients treated for 4 weeks with formoterol (F) or formoterol+budesonide (F/ICS). Methods Nuclear heat shock protein levels were assessed by Western blot and specific mRNAs were quantified in cell lysates using qRT-PCR. Results Both HSP90 and HSP70 protein levels were higher in the F/ICS-treated patients in comparison with the F-treated group (by 31%, P < 0.05 and 28%, P < 0.05, respectively), while specific mRNAs were lowered. HSP86/HSP89 and D6S182/HSP90-BETA were repressed by about 40% (P < 0.05)whileHSP70-1/HSP70-1A, HSP70-1B/HSP70-2, and HSP70-HSC54/HSC70 were repressed by 47% (P < 0.01), 57% (P < 0.01) and 65% (P < 0.01), respectively. Conclusions It is possible that increased nuclear heat shock proteins may play a role in the attenuation of the response to glucocorticoids in COPD patients.
Collapse
Affiliation(s)
- A Holownia
- Department of Clinical Pharmacology, Medical University of Bialystok, Poland.
| | | | | | | | | |
Collapse
|