1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Yang R, Viswanatham T, Huang S, Li Y, Yu Y, Zhang J, Chen J, Herzberg M, Feng R, Rosen BP, Rensing C. A Sb(III)-specific efflux transporter from Ensifer adhaerens E-60. Microbiol Res 2024; 286:127830. [PMID: 39004025 DOI: 10.1016/j.micres.2024.127830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Antimony is pervasive environmental toxic substance, and numerous genes encoding mechanisms to resist, transform and extrude the toxic metalloid antimony have been discovered in various microorganisms. Here we identified a major facilitator superfamily (MFS) transporter, AntB, on the chromosome of the arsenite-oxidizing bacterium Ensifer adhaerens E-60 that confers resistance to Sb(III) and Sb(V). The antB gene is adjacent to gene encoding a LysR family transcriptional regulator termed LysRars, which is an As(III)/Sb(III)-responsive transcriptional repressor that is predicted to control expression of antB. Similar antB and lysRars genes are found in related arsenic-resistant bacteria, especially strains of Ensifer adhaerens, and the lysRars gene adjacent to antB encodes a member of a divergent subgroup of putative LysR-type regulators. Closely related AntB and LysRars orthologs contain three conserved cysteine residues, which are Cys17, Cys99, and Cys350 in AntB and Cys81, Cys289 and Cys294 in LysRars, respectively. Expression of antB is induced by As(III), Sb(III), Sb(V) and Rox(III) (4-hydroxy-3-nitrophenyl arsenite). Heterologous expression of antB in E. coli AW3110 (Δars) conferred resistance to Sb(III) and Sb(V) and reduced the intracellular concentration of Sb(III). The discovery of the Sb(III) efflux transporter AntB enriches our knowledge of the role of the efflux transporter in the antimony biogeochemical cycle.
Collapse
Affiliation(s)
- Ruixiang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Thiruselvam Viswanatham
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Shuangqin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinlin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International Universitygrid.65456.34, Miami, FL, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Shapira N, Zusman T, Segal G. The LysR-type transcriptional regulator LelA co-regulates various effectors in different Legionella species. Mol Microbiol 2024; 121:243-259. [PMID: 38153189 DOI: 10.1111/mmi.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The intracellular pathogen Legionella pneumophila translocates more than 300 effector proteins into its host cells. The expression levels of the genes encoding these effectors are orchestrated by an intricate regulatory network. Here, we introduce LelA, the first L. pneumophila LysR-type transcriptional regulator of effectors. Through bioinformatic and experimental analyses, we identified the LelA target regulatory element and demonstrated that it directly activates the expression of three L. pneumophila effectors (legL7, legL6, and legU1). We further found that the gene encoding LelA is positively regulated by the RpoS sigma factor, thus linking it to the known effector regulatory network. Examination of other species throughout the Legionella genus revealed that this regulatory element is found upstream of 34 genes encoding validated effectors, putative effectors, and hypothetical proteins. Moreover, ten of these genes were examined and found to be activated by the L. pneumophila LelA as well as by their orthologs in the corresponding species. LelA represents a novel type of Legionella effector regulator, which coordinates the expression of both adjacently and distantly located effector-encoding genes, thus forming small groups of co-regulated effectors.
Collapse
Affiliation(s)
- Naomi Shapira
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Zusman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Wang Q, Wei Y, Huang Y, Qin J, Liu B, Liu R, Chen X, Li D, Wang Q, Li X, Yang X, Li Y, Sun H. Z3495, a LysR-Type Transcriptional Regulator Encoded in O Island 97, Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7. Microorganisms 2024; 12:140. [PMID: 38257967 PMCID: PMC10819331 DOI: 10.3390/microorganisms12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. The genome of EHEC O157:H7 contains 177 unique O islands (OIs). Certain OIs significantly contribute to the heightened virulence and pathogenicity exhibited by EHEC O157:H7. However, the function of most OI genes remains unknown. We demonstrated here that EHEC O157:H7 adherence to and colonization of the mouse large intestine are both dependent on OI-97. Z3495, which is annotated as a LysR-type transcriptional regulator and encoded in OI-97, contributes to this phenotype. Z3495 activated the locus of enterocyte effacement (LEE) gene expression, promoting bacterial adherence. Deletion of z3495 significantly decreased the transcription of ler and other LEE genes, the ability to adhere to the host cells, and colonization in the mouse large intestine. Furthermore, the ChIP-seq results confirmed that Z3495 can directly bind to the promoter region of rcsF, which is a well-known activator of Ler, and increase LEE gene expression. Finally, phylogenetic analysis revealed that Z3495 is a widespread transcriptional regulator in enterohemorrhagic and enteropathogenic Escherichia coli. As a result of this study, we have gained a deeper understanding of how bacteria control their virulence and provide another example of a laterally acquired regulator that regulates LEE gene expression in bacteria.
Collapse
Affiliation(s)
- Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yi Wei
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yu Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Shenzhen 518045, China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xintong Chen
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Dan Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qiushi Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xinyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
5
|
Ki N, Kim J, Jo I, Hyun Y, Ryu S, Ha NC. Isocitrate binds to the itaconic acid-responsive LysR-type transcriptional regulator RipR in Salmonella pathogenesis. J Biol Chem 2022; 298:102562. [PMID: 36198361 PMCID: PMC9637912 DOI: 10.1016/j.jbc.2022.102562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages produce itaconic acid in phagosomes in response to bacterial cell wall component lipopolysaccharide to eliminate invading pathogenic bacteria. Itaconic acid competitively inhibits the first enzyme of the bacterial glyoxylate cycle. To overcome itaconic acid stress, bacteria employ the bacterial LysR-type transcriptional regulator RipR. However, it remains unknown which molecule activates RipR in bacterial pathogenesis. In this study, we determined the crystal structure of the regulatory domain of RipR from the intracellular pathogen Salmonella. The RipR regulatory domain structure exhibited the typical dimeric arrangement with the putative ligand-binding site between the two subdomains. Our isothermal titration calorimetry experiments identified isocitrate as the physiological ligand of RipR, whose intracellular level is increased in response to itaconic acid stress. We further found that 3-phenylpropionic acid significantly decreased the resistance of the bacteria to an itaconic acid challenge. Consistently, the complex structure revealed that the compound is antagonistically bound to the RipR ligand-binding site. This study provides the molecular basis of bacterial survival in itaconic acid stress from our immune systems. Further studies are required to reveal biochemical activity, which would elucidate how Salmonella survives in macrophage phagosomes by defending against itaconic acid inhibition of bacterial metabolism.
Collapse
Affiliation(s)
- Nayeon Ki
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Inseong Jo
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Yongseong Hyun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Abstract
Regulation of flagellum biosynthesis is a hierarchical process that is tightly controlled to allow for efficient tuning of flagellar expression. Flagellum-mediated motility directs Salmonella enterica serovar Typhimurium toward the epithelial surface to enhance gut colonization, but flagella are potent activators of innate immune signaling, so fine-tuning flagellar expression is necessary for immune avoidance. In this work, we evaluate the role of the LysR transcriptional regulator YeiE in regulating flagellum-mediated motility. We show that yeiE is necessary and sufficient for swimming motility. A ΔyeiE mutant is defective for gut colonization in both the calf ligated ileal loop model and the murine colitis model due to its lack of motility. Expression of flagellar class 2 and 3 but not class 1 genes is reduced in the ΔyeiE mutant. We linked the motility dysregulation of the ΔyeiE mutant to repression of the anti-FlhD4C2 factor STM1697. Together, our results indicate that YeiE promotes virulence by enhancing cell motility, thereby providing a new regulatory control point for flagellar expression in Salmonella Typhimurium.
Collapse
|
7
|
Ma S, Jiang L, Wang J, Liu X, Li W, Ma S, Feng L. Downregulation of a novel flagellar synthesis regulator AsiR promotes intracellular replication and systemic pathogenicity of Salmonella typhimurium. Virulence 2021; 12:298-311. [PMID: 33410728 PMCID: PMC7808427 DOI: 10.1080/21505594.2020.1870331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits host macrophage as a crucial survival and replicative niche. To minimize host immune response stimulated by flagellin, the expression of flagellar genes is downregulated during S. Typhimurium growth within host macrophages. However, the underlying mechanisms are largely unknown. In this study, we show that STM14_1285 (named AsiR), a putative RpiR-family transcriptional regulator, which is downregulated within macrophages as previously reported and also confirmed here, positively regulates the expression of flagellar genes by directly binding to the promoter of flhDC. By generating an asiR mutant strain and a strain that persistently expresses asiR gene within macrophages, we confirmed that the downregulation of asiR contributes positively to S. Typhimurium replication in macrophages and systemic infection in mice, which could be attributed to decreased flagellar gene expression and therefore reduced flagellin-stimulated secretion of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, the acidic pH in macrophages is identified as a signal for the downregulation of asiR and therefore flagellar genes. Collectively, our results reveal a novel acidic pH signal-mediated regulatory pathway that is utilized by S. Typhimurium to promote intracellular replication and systemic pathogenesis by repressing flagellar gene expression.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Jingting Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| |
Collapse
|
8
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
9
|
The LysR-type transcriptional regulator STM0030 contributes to Salmonella
Typhimurium growth in macrophages and virulence in mice. J Basic Microbiol 2019; 59:1143-1153. [DOI: 10.1002/jobm.201900315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 11/07/2022]
|
10
|
Qin X, He S, Zhou X, Cheng X, Huang X, Wang Y, Wang S, Cui Y, Shi C, Shi X. Quantitative proteomics reveals the crucial role of YbgC for Salmonella enterica serovar Enteritidis survival in egg white. Int J Food Microbiol 2019; 289:115-126. [DOI: 10.1016/j.ijfoodmicro.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
11
|
Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells. Vet Microbiol 2012; 158:322-8. [DOI: 10.1016/j.vetmic.2012.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
|
12
|
Dillon SC, Espinosa E, Hokamp K, Ussery DW, Casadesús J, Dorman CJ. LeuO is a global regulator of gene expression inSalmonella entericaserovar Typhimurium. Mol Microbiol 2012; 85:1072-89. [DOI: 10.1111/j.1365-2958.2012.08162.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
14
|
Lahiri A, Ananthalakshmi TK, Nagarajan AG, Ray S, Chakravortty D. TolA mediates the differential detergent resistance pattern between the Salmonella enterica subsp. enterica serovars Typhi and Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1402-1415. [PMID: 21252278 DOI: 10.1099/mic.0.046565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The tol-pal genes are essential for maintaining the outer membrane integrity and detergent resistance in various Gram-negative bacteria, including Salmonella. The role of TolA has been well established for the bile resistance of Salmonella enterica subsp. enterica serovar Typhimurium. We compared the bile resistance pattern between the S. enterica serovars Typhi and Typhimurium and observed that Typhi is more resistant to bile-mediated damage. A closer look revealed a significant difference in the TolA sequence between the two serovars which contributes to the differential detergent resistance. The tolA knockout of both the serovars behaves completely differently in terms of membrane organization and morphology. The role of the Pal proteins and difference in LPS organization between the two serovars were verified and were found to have no direct connection with the altered bile resistance. In normal Luria broth (LB), S. Typhi ΔtolA is filamentous while S. Typhimurium ΔtolA grows as single cells, similar to the wild-type. In low osmolarity LB, however, S. Typhimurium ΔtolA started chaining and S. Typhi ΔtolA showed no growth. Further investigation revealed that the chaining phenomenon observed was the result of failure of the outer membrane to separate in the dividing cells. Taken together, the results substantiate the evolution of a shorter TolA in S. Typhi to counteract high bile concentrations, at the cost of lower osmotic tolerance.
Collapse
Affiliation(s)
- Amit Lahiri
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - T K Ananthalakshmi
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Arvindhan G Nagarajan
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Seemun Ray
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Dipshikha Chakravortty
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
15
|
Ranjan A, Pothayee N, Seleem MN, Tyler RD, Brenseke B, Sriranganathan N, Riffle JS, Kasimanickam R. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine 2009; 4:289-97. [PMID: 20054433 PMCID: PMC2802042 DOI: 10.2147/ijn.s7137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Indexed: 11/23/2022] Open
Abstract
Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA(+/-)Na-b-(PEO-b-PPO-b-PEO)-b-PAA(+/-)Na) were blended with PAA(-) Na(+) and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of -0.7 (+/-0.2), and incorporated approximately 20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 microg g(-1) or single dosage of 15 microg g(-1) in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 microg g(-1) revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.
Collapse
Affiliation(s)
- Ashish Ranjan
- Department of Large Animal Clinical Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|