1
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Litwin TR, Clarke MA, Dean M, Wentzensen N. Somatic Host Cell Alterations in HPV Carcinogenesis. Viruses 2017; 9:v9080206. [PMID: 28771191 PMCID: PMC5580463 DOI: 10.3390/v9080206] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.
Collapse
Affiliation(s)
- Tamara R Litwin
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA.
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA.
| | - Megan A Clarke
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA.
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA.
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD 20850, USA.
| | - Nicolas Wentzensen
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Lin CH, Lin SY, Chang HW, Ko LJ, Tseng YS, Chang VHS, Yu WCY. CDK2 phosphorylation regulates the protein stability of KLF10 by interfering with binding of the E3 ligase SIAH1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1174-81. [PMID: 25728284 DOI: 10.1016/j.bbamcr.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 01/07/2023]
Abstract
Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGF-β1-mediated growth inhibition of human carcinoma cells. It is known that KLF10 mimics the anti-proliferative and apoptotic effects that TGF-β1 has on epithelial cell growth and the growth of various tumor cells; based on these findings it is considered as a tumor suppressor. KLF10 protein expression is tightly associated with cell cycle-dependent events. However, the regulatory mechanism and its biological meaning have not been identified. In this study, we have demonstrated that KLF10 is a substrate of CDK2/cyclin E and can be phosphorylated. We also have shown that KLF10 efficiently binds to CDK2, while binding much less to CDK4, and displaying no binding to Cdk6. Using mass spectrometry, site direct mutagenesis, in vitro kinase assays and depletion assays, we have established that CDK2 phosphorylates Ser206, which subsequently affects the steady state level of KLF10 in cells. Our studies have also proved that CDK2 up-regulates the protein level of KLF10 through reducing its association with SIAH1, a KLF10 E3-ubiqutin ligase involved in proteasomal degradation. Taken all together, these findings indicate that CDK2-dependent phosphorylation regulates KLF10 stability and that this affects the role of KLF10 in cell.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsuen-Wen Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Li-Jung Ko
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Yan-Shen Tseng
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Vincent H S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Winston C Y Yu
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan; Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Habbous S, Pang V, Xu W, Amir E, Liu G. Human papillomavirus and host genetic polymorphisms in carcinogenesis: a systematic review and meta-analysis. J Clin Virol 2014; 61:220-9. [PMID: 25174543 DOI: 10.1016/j.jcv.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND As the role of human papillomavirus (HPV) in carcinogenesis continues to rise, the role of genetic factors that modify this risk have become increasingly important. In this study, we reviewed the literature for associations between polymorphisms and HPV in carcinogenesis. OBJECTIVE To identify any associations of genetic polymorphisms with oncogenic HPV in carcinogenesis and to evaluate the methodology used. STUDY DESIGN Systematic literature review of HPV, genetic polymorphisms, and cancer risk. Odds ratios (OR), interaction terms, and p-values were tabulated. Meta-analyses and measures of heterogeneity were estimated using RevMan 5.1. RESULTS The cervix was the most frequently studied cancer site followed by the head and neck. Overall risk of cancer (cancer vs. control) was the most common comparison, whereas reports of initiation (pre-cancer vs. control) and progression (cancer vs. pre-cancer) were rare. Case-series and joint-effect of HPV and genotype on risk was evaluated frequently, but the independent effect of either risk factor alone was rarely provided. P53-Arg72Pro was the most commonly studied polymorphism studied. No consistent interaction was detected by meta-analysis in the HPV(+) [OR 0.98 (0.55-1.76)] or the HPV(-) [OR 1.10 (0.76-1.60)] subsets in head and neck cancer risk. Polymorphisms in genes known to encode proteins that physically interact with HPV were infrequently studied. CONCLUSION No consistent polymorphism-HPV interactions were observed. Study design, choice of candidate polymorphisms/genes, and a focus on overall risk rather than any specific portions of the carcinogenic pathway may have contributed to lack of significant findings.
Collapse
Affiliation(s)
- Steven Habbous
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Vincent Pang
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Wei Xu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Eitan Amir
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Division of Medical Oncology and Hematology, Toronto, Ontario, Canada M5G 2M9
| | - Geoffrey Liu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Medicine and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada M5G 2M9.
| |
Collapse
|
5
|
Abstract
Krüppel-like factors (KLFs) are a family of DNA-binding transcriptional regulators with diverse and essential functions in a multitude of cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency. In this Review, we discuss the roles and regulation of the 17 known KLFs in various cancer-relevant processes. Importantly, the functions of KLFs are context dependent, with some KLFs having different roles in normal cells and cancer, during cancer development and progression and in different cancer types. We also identify key questions for the field that are likely to lead to important new translational research and discoveries in cancer biology.
Collapse
Affiliation(s)
- Marie-Pier Tetreault
- Department of Medicine, Gastroenterology Division, University of Pennsylvania Perelman School of Medicine, 913 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia PA 19104-6144, USA
| | | | | |
Collapse
|
6
|
Hwang YC, Yang CH, Lin CH, Ch'ang HJ, Chang VHS, Yu WCY. Destabilization of KLF10, a tumor suppressor, relies on thr93 phosphorylation and isomerase association. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3035-3045. [PMID: 23994618 DOI: 10.1016/j.bbamcr.2013.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
Abstract
KLF10 is now classified as a member of the Krüppel-like transcription factor family and acts as a tumor suppressor. Although KLF10 is originally named as TGF-β-inducible early gene-1 and mimicking the anti-proliferative effect of TGF-β in various carcinoma cells, the transcriptional upregulatory function of KLF10 has been described for a variety of cytokines and in many diseases. Through in vivo and in vitro phosphorylation assays, we identified that KLF10 is a phosphorylated protein in cells. Using yeast-two hybrid screening and site direct mutagenesis, we also identified PIN1 as a novel KLF10 associated protein. PIN1 is a peptidyl-prolyl isomerase enzyme belonging to the parvulin family, which specifically recognizes phosphorylated Ser/Thr-Pro containing substrates. Through protein-protein interaction assays, we showed that the Pro-directed Ser/Thr-Pro motif at Thr-93 in the KLF10 N-terminal region is essential for the interaction between KLF10 and PIN1. More importantly, PIN1 interacts with KLF10 in a phosphorylation-dependent manner and this interaction promotes KLF10 protein degradation in cells. Therefore, KLF10 shows shorter protein stability compared with mutant KLF10 that lacks PIN1 binding ability after cycloheximide treatments. The reversely correlated expression profile between KLF10 and PIN1 as observed in cell lines was also shown in clinic pancreatic cancer specimen. Using in vitro kinase assays and depletion assays, we were able to show that RAF-1 phosphorylates the Thr-93 of KLF10 and affects the KLF10 expression level in cells. Thus these findings as a whole indicate that RAF-1 phosphorylation and PIN1 isomerization together regulate KLF10 stability and further affect the role of KLF10 in tumor progression.
Collapse
Affiliation(s)
- Yu-Chyi Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Hui Yang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hui Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-Ju Ch'ang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Vincent H S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan.
| | - Winston C Y Yu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Krüppel-like factor 10 expression as a prognostic indicator for pancreatic adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:423-30. [PMID: 22688058 DOI: 10.1016/j.ajpath.2012.04.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 12/14/2022]
Abstract
Deregulation of transforming growth factor (TGF)-β function is a common feature of pancreatic cancer, rendering these cancers unresponsive to TGF-β-stimulated growth inhibition. Recent findings have supported a primary role for Krüppel-like factor 10 (KLF10) as an important transcription factor involved in mediating TGF-β1 signaling. The aim of this study was to evaluate the correlation between KLF10 expression and the clinical and pathologic features of pancreatic cancer. Tissue specimens from patients with pancreatic adenocarcinoma were retrospectively collected for immunohistochemical analysis. To demonstrate that Klf10 expression was primarily regulated by methylation status, the Klf10 promoter was examined by methylation-specific PCR using a pancreatic cancer cell line (Panc-1). DNA methyltransferase (DNMT) inhibitor and small-interfering RNA depletion of DNMT genes were used to reverse KLF10 expression in the Panc-1 cells. In parallel, DNMT1 expression was evaluated in the pancreatic cancer tissue specimens. In 95 pancreatic cancer tissue specimens, KLF10 expression was inversely correlated with pancreatic cancer stage (P = 0.01). Multivariable analysis revealed that, in addition to the presence of distant metastasis at diagnosis (P = 0.001 and 0.001, respectively), KLF10 was another independent prognostic factor related to progression-free and overall survival (P = 0.018 and 0.037, respectively). The loss of KLF10 expression in advanced pancreatic cancer is correlated with altered methylation status, which seems to be regulated by DNMT1. Our results suggest that KLF10 is a potential clinical predictor for progression of pancreatic cancer.
Collapse
|
8
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
9
|
Lu H, Wang X, Li T, Urvalek AM, Yu L, Li J, Zhu J, Lin Q, Peng X, Zhao J. Identification of poly (ADP-ribose) polymerase-1 (PARP-1) as a novel Kruppel-like factor 8-interacting and -regulating protein. J Biol Chem 2011; 286:20335-44. [PMID: 21518760 PMCID: PMC3121510 DOI: 10.1074/jbc.m110.215632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/21/2011] [Indexed: 01/28/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclear export. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and -regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions.
Collapse
Affiliation(s)
- Heng Lu
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Xianhui Wang
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Tianshu Li
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Alison M. Urvalek
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Lin Yu
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Jieli Li
- the Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504-7105
| | - Jinghua Zhu
- the Center for Functional Genomics, University at Albany, Rensselaer, New York 12144, and
| | - Qishan Lin
- the Center for Functional Genomics, University at Albany, Rensselaer, New York 12144, and
| | - Xu Peng
- the Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504-7105
| | - Jihe Zhao
- From the Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| |
Collapse
|