1
|
Başpınar A, Özkan D, Tokgöz S, Özkardeş AB, Kaya İO. Diagnostic value of serum autotaxin level in colorectal cancer. Biomark Med 2023; 17:787-798. [PMID: 38095984 DOI: 10.2217/bmm-2023-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Background: Autotaxin (ATX) is a nucleotide enzyme linked to cell growth, differentiation and migration. This study investigated serum levels of ATX in colorectal cancer (CRC). Methods: The study involved stage I-III CRC diagnosed between December 2020 and 2021, excluding those with neoadjuvant or adjuvant therapy, or metastasis. Healthy volunteers were controls. Serum ATX levels were measured by ELISA and compared. Results: This study included 129 patients (91 in the patient group and 38 in the control group). The optimal cutoff value of ATX for CRC was 169.98 ng/ml, and sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 91.2% (95% CI: 89.4-96.2), 78.9% (95% CI: 62.7-90.4), 4.33 and 0.11, respectively. Conclusion: The serum ATX level is a useful biomarker for CRC.
Collapse
Affiliation(s)
- Abdurrahman Başpınar
- Department of General Surgery, Ankara Training and Research Hospital, University of Health Science, Ankara, 06230, Turkey
| | - Didem Özkan
- Department of Microbiology, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Serhat Tokgöz
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Alper Bilal Özkardeş
- Department of General Surgery, Ankara Hospital, Lokman Hekim University, Ankara, 06510, Turkey
| | - İsmail Oskay Kaya
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| |
Collapse
|
2
|
Tsamchoe M, Lazaris A, Kim D, Krzywon L, Bloom J, Mayer T, Petrillo SK, Dejgaard K, Gao ZH, Rak J, Metrakos P. Circulating extracellular vesicles containing S100A9 reflect histopathology, immunophenotype and therapeutic responses of liver metastasis in colorectal cancer patients. BJC REPORTS 2023; 1:8. [PMID: 39516397 PMCID: PMC11524068 DOI: 10.1038/s44276-023-00007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 11/16/2024]
Abstract
BACKGROUND Metastasis is the principal cause of cancer treatment failure and an area of dire diagnostic needs. Colorectal cancer metastases to the liver (CRCLMs) are predominantly classified into desmoplastic and replacement based on their histological growth patterns (HGPs). Desmoplastic responds well to current treatments, while replacement HGP has a poor prognosis with low overall survival rates. METHODS We hypothesised that complex cellular response underlying HGPs may be reflected in the proteome of circulating extracellular vesicles (EVs). EV proteomics data was generated through LC-MS/MS and analysed with Maxquant and Perseus. To validate the S100A9 signature, ELISA was performed, and IHC and IF were conducted on tissue for marker detection and colocalization study. RESULTS Plasma EV proteome signature distinguished desmoplastic from the replacement in patients with 22 differentially expressed proteins, including immune related markers. Unsupervised PCA analysis revealed clear separation of the two lesions. The marker with the highest confidence level to stratify the two HGPs was S100A9, which was traced in CRCLM lesions and found to colocalize with macrophages and neutrophils. EV-associated S100A9 in plasma may reflect the innate immunity status of metastatic lesions and their differential therapeutic responses. CONCLUSION Plasma EV-derived S100A9 could be useful in personalising therapy in patients with CRCLM.
Collapse
Affiliation(s)
- Migmar Tsamchoe
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Anthoula Lazaris
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada.
| | - Diane Kim
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Lucyna Krzywon
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Jessica Bloom
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Thomas Mayer
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Stephanie K Petrillo
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Zu-Hua Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, QC, Canada
| | - Peter Metrakos
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada.
- Department of Surgery, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
3
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Bharti Sonkar A, Kumar P, Kumar A, Kumar Gautam A, Verma A, Singh A, Kumar U, Kumar D, Mahata T, Bhattacharya B, Keshari AK, Maity B, Saha S. Vinpocetine mitigates DMH-induce pre-neoplastic colon damage in rats through inhibition of pro-inflammatory cytokines. Int Immunopharmacol 2023; 119:110236. [PMID: 37148772 DOI: 10.1016/j.intimp.2023.110236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Colorectal cancer (CRC) is currently recognized as the third most prevalent cancer worldwide. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine. It has been found effective in ameliorating the growth and progression of cancerous cells. However, its pharmacological effect on colon damage remains elusive. Hence, in this study, we have shown the role of vinpocetine in DMH-induced colon carcinogenesis. At first, male albino Wistar rats were administered with DMH consistently for four weeks to induce pre-neoplastic colon damage. Afterward, animals were treated with vinpocetine (4.2 and 8.4 mg/kg/day p.o.) for 15 days. Serum samples were collected to assess the physiological parameters, including ELISA and NMR metabolomics. Colon from all the groups was collected and processed separately for histopathology and western blot analysis. Vinpocetine attenuated the altered plasma parameters; lipid profile and showed anti-proliferative action as evidenced by suppressed COX-2 stimulation and decreased levels of IL-1β, IL-2, IL-6, and IL-10. Vinpocetine is significantly effective in preventing CRC which may be associated with its anti-inflammatory and antioxidant potential. Accordingly, vinpocetine could serve as a potential anticancer agent for CRC treatment and thus be considered for future clinical and therapeutic research.
Collapse
Affiliation(s)
- Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India.
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bolay Bhattacharya
- Geethanjali College of Pharmacy, Cheeryal, Keesara, Hyderabad 501301, India
| | - Amit K Keshari
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| |
Collapse
|
5
|
Shimizu Y, Tamiya-Koizumi K, Tsutsumi T, Kyogashima M, Kannagi R, Iwaki S, Aoyama M, Tokumura A. Hypoxia increases cellular levels of phosphatidic acid and lysophospholipids in undifferentiated Caco-2 cells. Lipids 2023; 58:93-103. [PMID: 36708255 DOI: 10.1002/lipd.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
Cancer cells are known to survive in a hypoxic microenvironment by altering their lipid metabolism as well as their energy metabolism. In this study, Caco-2 cells derived from human colon cancer, were found to have elevated intracellular levels of phosphatidic acid and its lysoform, lysophosphatidic acid (LPA), under hypoxic conditions. Our results suggested that the elevation of LPA in Caco-2 cells was mainly due to the combined increases in cellular levels of lysophosphatidylcholine and lysophosphatidylethanolamine by phospholipase A2 and subsequent hydrolysis to LPA by lysophospholipase D. We detected the Ca2+ -stimulated choline-producing activities toward exogenous lysophosphatidylcholines in whole Caco-2 cell homogenates, indicating their involvement in the LPA production in intact Caco-2 cells.
Collapse
Affiliation(s)
- Yoshibumi Shimizu
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiko Tamiya-Koizumi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshihiko Tsutsumi
- Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Mamoru Kyogashima
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Soichiro Iwaki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akira Tokumura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
6
|
Cook CJ, Miller AE, Barker TH, Di Y, Fogg KC. Characterizing the extracellular matrix transcriptome of cervical, endometrial, and uterine cancers. Matrix Biol Plus 2022; 15:100117. [PMID: 35898192 PMCID: PMC9309672 DOI: 10.1016/j.mbplus.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The matrisome plays a critical role in the progression of cancer, but the matrisomes of gynecological cancers have not been well characterized. We built an in silico analysis pipeline to analyze publicly available bulk RNA-seq datasets of cervical, endometrial, and uterine cancers. Using a machine learning approach, we identified genes and gene networks that held inferential significance for cancer stage and patient survival. Cervical, endometrial, and uterine cancers are highly distinct from one another and should be analyzed separately.
Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies. In this work, we explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially expressed and hold inferential significance with respect to tumor progression, patient survival, or both. Through a combination of statistical and machine learning analysis techniques, we identified sets of genes and gene networks which characterized each of the gynecological cancer cohorts. Our findings demonstrate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mechanisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future studies, matrisome genes and gene ontology terms that were identified as holding inferential significance for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into in vitro models of disease.
Collapse
Affiliation(s)
- Carson J Cook
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Yanming Di
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlin C Fogg
- Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
7
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
9
|
Hashimura S, Kido J, Matsuda R, Yokota M, Matsui H, Inoue-Fujiwara M, Inagaki Y, Hidaka M, Tanaka T, Tsutsumi T, Nagata T, Tokumura A. A low level of lysophosphatidic acid in human gingival crevicular fluid from patients with periodontitis due to high soluble lysophospholipase activity: Its potential protective role on alveolar bone loss by periodontitis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158698. [PMID: 32179099 DOI: 10.1016/j.bbalip.2020.158698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
We previously detected a submicromolar concentration of lysophosphatidic acid (LPA) in human saliva. Here, we compare LPA concentrations in human gingival crevicular fluid (GCF) from patients with periodontitis and healthy controls, and examine how the local LPA levels are regulated enzymatically. The concentrations of LPA and its precursor lysophospholipids in GCF was measured by liquid chromatography-tandem mass spectrometry. The LPA-producing and LPA-degrading enzymatic activities were measured by quantifying the liberated choline and free fatty acid, respectively. The concentration of LPA in GCF of periodontitis patients was lower than that of healthy controls, due to higher soluble lysophospholipase activity toward LPA. LPA was found to prevent survival of Sa3, a human gingival epithelium-derived tumor cell line, activate Sa3 through Ca2+ mobilization, and release interleukin 6 from Sa3 in vitro. Furthermore, local injection of LPA into the gingiva attenuated ligature-induced experimental alveolar bone loss induced by oral bacteria inoculation in a rat model of periodontitis in vivo. A high concentration of LPA in human GCF is necessary to maintain normal gingival epithelial integrity and function, protecting the progression of periodontitis.
Collapse
Affiliation(s)
- Satoru Hashimura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Miho Yokota
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Hirokazu Matsui
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Manami Inoue-Fujiwara
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Mayumi Hidaka
- Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
10
|
Sensitivity analysis methods in the biomedical sciences. Math Biosci 2020; 323:108306. [PMID: 31953192 DOI: 10.1016/j.mbs.2020.108306] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Sensitivity analysis is an important part of a mathematical modeller's toolbox for model analysis. In this review paper, we describe the most frequently used sensitivity techniques, discussing their advantages and limitations, before applying each method to a simple model. Also included is a summary of current software packages, as well as a modeller's guide for carrying out sensitivity analyses. Finally, we apply the popular Morris and Sobol methods to two models with biomedical applications, with the intention of providing a deeper understanding behind both the principles of these methods and the presentation of their results.
Collapse
|
11
|
Peng M, Lee SH, Rahaman SO, Biswas D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food Funct 2020; 11:10724-10735. [DOI: 10.1039/d0fo02652b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolites from Lactobacillus casei display substantial antioxidant and anti-inflammatory activities, inhibit colorectal cancer cell proliferation and growth, and modulate gut microfloral composition, specifically reducing sulfidogenic bacteria.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| | - Seong-Ho Lee
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| |
Collapse
|
12
|
Alabi BR, LaRanger R, Shay JW. Decellularized mice colons as models to study the contribution of the extracellular matrix to cell behavior and colon cancer progression. Acta Biomater 2019; 100:213-222. [PMID: 31562987 DOI: 10.1016/j.actbio.2019.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Current 3D culture models to study colorectal cancer lack architectural support and signaling proteins provided by the tissue extracellular matrix (ECM) which may influence cell behavior and cancer progression. Therefore, the ability to study cancer cells in the context of a matrix that is physiologically more relevant and to understand how the ECM affects cancer progression has been understudied. To address this, we developed an ex-vivo 3D system, provided by intact wild type (WT) and colon cancer susceptible decellularized mouse colons (DMC), to support the growth of human cancer cells. DMC are free of viable cells but still contain extracellular matrix proteins including subsets of collagens. Stiffness, an important mechanical property, is also maintained in DMCs. Importantly, we observed that the DMC is permissive for cell proliferation and differentiation of a human colon cancer cell line (HT-29). Notably, the ability of cells in the WT DMC to differentiate was also greater when compared to Matrigel™, an extracellular matrix extract from a mouse tumor cell line. Additionally, we observed in invasion assays that DMC obtained from polyps from a colon cancer susceptible mouse model facilitated increased cell migration/invasion of colorectal cancer cells and immortalized non-tumor colonic epithelial cells compared to DMC from WT mice. Finally, using mass spectrometry, we identified extracellular matrix proteins that are more abundant in DMC from a colorectal cancer mouse model compared to age and sex-matched WT mice. We propose that these abundantly expressed proteins in the tumor microenvironment are potentially involved in colorectal cancer progression. STATEMENT OF SIGNIFICANCE: Decellularized matrices, when properly produced, are attractive biomaterials for tissue regeneration and replacement. We show here that the mouse decellularized matrices can also be repurposed to elucidate how the extracellular matrix influences human cell behavior and cancer progression. To do this we produce decellularized matrices, from mice colonic tissue, that have preserved tissue mechanical and structural properties. We demonstrate that the matrix better supports the differentiation of HT-29 cells, a colonic cancer cell line, compared to Matrigel™. Additionally, we show that the extracellular matrix contributes to colon cancer progression via invasion assays using extracellular matrix extracts. Finally, we use mass spectrometry to identify ECM proteins that are more abundant in colonic polyps compared to adjacent tissue regions. This model system may have therapeutic implications for colorectal cancer patients.
Collapse
Affiliation(s)
- Busola R Alabi
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Ryan LaRanger
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| |
Collapse
|
13
|
Akbal O, Bolat G, Yaman YT, Abaci S. Folic acid conjugated Prussian blue nanoparticles: Synthesis, physicochemical characterization and targeted cancer cell sensing. Colloids Surf B Biointerfaces 2019; 187:110655. [PMID: 31837885 DOI: 10.1016/j.colsurfb.2019.110655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023]
Abstract
In the study, folic acid doped Prussian blue nanoparticles (FA-PB NPs) for theranostic applications were synthesized for the first time. Folic acid was chosen for maintaining nanoparticle stability and also to increase its binding affinity especially for cancer cells. Multifunctional PB NPs were fabricated by one route co-precipitation method to synthesize biocompatible NPs without any further process. Then, FA was doped on the surface of PB NPs. The characterization studies demonstrated that the FA-PB NPs modified sensor surface had large surface area with biocompatible and hydrophilic properties where cancer cells can easily bind. The FA-PB NPs were used for the modification of pencil graphite electrode (PGE) for electrochemical detection of colon cancer cells (DLD-1). Electrochemical impedimetric diagnosis was based on the specific interaction between FA groups on the nanoparticles and FA receptors overexpressed on cancer cells. The voltammetric and impedimetric results showed that the FA-PB NPs based electrode had good sensing performance for the immobilized DLD-1 cells.
Collapse
Affiliation(s)
- Oznur Akbal
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Gulcin Bolat
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Yesim Tugce Yaman
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Serdar Abaci
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
14
|
Jung JH, Han S, Ju M, Jung ST, Yu YG. Isolation of Single Chain Antibodies Specific to Lysophosphatidic Acid Receptor 1 (LPA
1
) from a M13 Phage Display Library Using Purified LPA
1
Stabilized in Nanodiscs. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Hae Jung
- Department of Applied ChemistryKookmin University Seoul 02707 South Korea
| | - Seong‐Gu Han
- Department of Applied ChemistryKookmin University Seoul 02707 South Korea
| | - Man‐Seok Ju
- Department of Applied ChemistryKookmin University Seoul 02707 South Korea
| | - Sang Taek Jung
- Graduate School of MedicineKorea University Seoul 02841 South Korea
| | - Yeon Gyu Yu
- Department of Applied ChemistryKookmin University Seoul 02707 South Korea
| |
Collapse
|
15
|
Yang S, Zhang X, Qu H, Qu B, Yin X, Zhao H. Cabozantinib induces PUMA-dependent apoptosis in colon cancer cells via AKT/GSK-3β/NF-κB signaling pathway. Cancer Gene Ther 2019; 27:368-377. [PMID: 31182761 DOI: 10.1038/s41417-019-0098-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
Cabozantinib is a multi-kinase inhibitor targeting MET, AXL, and VEGFR2, and has been approved for use in multiple malignancies. The means by which Cabozantinib acts to target colorectal cancer (CRC) cells remains poorly understood, and we sought to investigate how this drug disrupts cell growth in CRC cells and how it interacts to enhance the efficacy of other chemotherapeutic agents. In this study, we found that Cabozantinib activated a p65-dependent signaling pathway in response to both inhibition of AKT and activation of glycogen synthase kinase 3β (GSK3β), leading to upregulation of PUMA in CRC cells regardless of p53 activity. PUMA upregulation facilitates CRC apoptosis in response to Cabozantinib, which also acts synergistically with the chemotherapeutic agents Cetuximab and 5-FU to induce robust apoptosis in a PUMA-dependent manner. Eliminating PUMA expression ablated this apoptosis induced by Cabozantinib in xenograft mouse model. Our findings revealed that Cabozantinib acts to drive CRC cells apoptosis via a PUMA-dependent mechanism, thus identifying PUMA expression as a potential predictor of Cabozantinib efficacy and a potential novel therapeutic target.
Collapse
Affiliation(s)
- Shida Yang
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The people's Hospital of Liaoning Province, Shenyang, China
| | - Bo Qu
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Xiaoxue Yin
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The people's Hospital of Liaoning Province, Shenyang, China.
| |
Collapse
|
16
|
Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice. Inflammation 2019; 42:1530-1541. [DOI: 10.1007/s10753-019-01015-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
López-Serrano C, Santos-Nogueira E, Francos-Quijorna I, Coll-Miro M, Chun J, López-Vales R. Lysophosphatidic acid receptor type 2 activation contributes to secondary damage after spinal cord injury in mice. Brain Behav Immun 2019; 76:258-267. [PMID: 30550929 PMCID: PMC6348147 DOI: 10.1016/j.bbi.2018.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions by signaling through six known G-protein-coupled receptors (LPA1-LPA6). In the central nervous system (CNS), LPA mediates a wide range of effects, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and contributions to pain, schizophrenia and hydrocephalus. We recently reported that LPA-LPA1 signaling mediates functional deficits and myelin loss after spinal cord injury (SCI). Here, we provide clear evidence on the deleterious contribution of another LPA receptor, LPA2, to myelin loss after SCI. We found that LPA2 is constitutively expressed in the spinal cord parenchyma and its transcripts were up-regulated after contusion injury, in part, by microglial cells. We also found that the demyelinating lesion triggered by intraspinal injection of LPA into the undamaged spinal cord was markedly reduced in the lack of LPA2. Similarly, LPA2 deficient mice showed enhanced motor skills and myelin sparing after SCI. To gain insights into the detrimental actions of LPA2 in spinal cord we performed cell culture studies. These experiments revealed that, similar to LPA1, activation of microglia LPA2 led to oligodendrocyte cell death. Moreover, we also found that the cytotoxic effects underlaying microglial LPA-LPA2 axis were mediated by the release of purines by microglia and the activation of P2X7 receptor on oligodendrocytes. Overall, this study provides new mechanistic insights into how LPA contributes to SCI physiopathology, and suggest that targeting LPA2 could be a novel therapeutic approach for the treatment of acute SCI.
Collapse
Affiliation(s)
- Clara López-Serrano
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Eva Santos-Nogueira
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Isaac Francos-Quijorna
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Marina Coll-Miro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA 92037
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain.
| |
Collapse
|
18
|
Inoue M, Okamoto Y, Atsumi Y, Shiojiri M, Hidaka M, Tanaka T, Tsutsumi T, Shirasaka N, Tokumura A. Addition of high load of lysophosphatidic acid to standard and high-fat chows causes no significant changes of its circulating and peripheral tissue levels but affects body weight and visceral fat mass of mice. Biofactors 2018; 44:548-557. [PMID: 30368958 DOI: 10.1002/biof.1451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/17/2023]
Abstract
Oral administration of lysophosphatidic acid (LPA), a critical intercellular lipid mediator, exerts wound healing and antiulcer effects on gastrointestinal system. To evaluate effects of food-derived LPA on body homeostasis, we measured LPA levels by liquid chromatography-tandem mass spectrometry in chows, feces, plasma, liver, and visceral fat of mice fed a normal or high-fat chow supplemented with or without LPA-rich soybean phospholipids for 30 days. Reductions in daily body weight gains and visceral fat mass were mainly related to lower chow intake by mice fed the LPA-rich high-fat chow, whereas reduced body weight gains and fat mass were mainly related to decreased intestinal triacylglycerol absorption in mice fed LPA-rich chow. Our results showed no significant increase in plasma, liver, or adipose LPA levels, even if a quite high LPA concentration (2.0%) in chows was ingested daily, suggesting limited effects of food-derived LPA on the lumen side of the digestive tract. © 2018 BioFactors, 44(6):548-557, 2018.
Collapse
Affiliation(s)
- Manami Inoue
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoko Okamoto
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuta Atsumi
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Masatoshi Shiojiri
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Mayumi Hidaka
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Asaminamiku, Hiroshima, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Naoki Shirasaka
- Bio Chemicals Department, Enzymes Division, Product Development Section, Nagase ChemteX Corporation, Fukuchiyama, Kyoto, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Asaminamiku, Hiroshima, Japan
| |
Collapse
|
19
|
Orientin, a flavanoid, mitigates 1, 2 dimethylhydrazine-induced colorectal lesions in Wistar rats fed a high-fat diet. Toxicol Rep 2018; 5:977-987. [PMID: 30319939 PMCID: PMC6180431 DOI: 10.1016/j.toxrep.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023] Open
Abstract
DMH induced preneoplastic lesions in colonic mucosa. Orientin treatment reduced DMH induction of cytochrome P450. Orientin attenuates DMH induced aberrant crypt formation. Orientin suppresses colonic tumor cell proliferation.
Orientin, a c- glycosyl flavonoid found copiously in roobios tea and various medicinal plants is well known for its antioxidant, anti-inflammatory, and antitumor effects. The present study aims to investigate the anti-cancer efficacy of orientin on 1,2 dimethyl hydrazine induced colonic aberrant crypt foci (ACF) and cell proliferation in Wistar rats. Rats were randomly divided into six groups and fed with high fat diet. Group 1 left as untreated control. Group 2 administered with DMH (20 mg/kg body weight) for initial 4 weeks and left untreated. Group 3 received orientin (10 mg/kg body weight) alone for the entire period. Group 4 received orientin along with DMH for initial 4 weeks and left untreated; Group 5 administered DMH for initial 4 weeks and treated with orientin for remaining 12 weeks; Group 6 administered DMH and treated with orientin throughout the entire period. Our preclinical findings suggest that the administration of orientin decreases the occurrence of DMH induced colonic polyps and aberrant crypt foci, augments antioxidant defense and altered the activities of drug metabolizing phase I and phase II enzymes in colonic and hepatic tissues and thereby ensuring the detoxification of carcinogen. Furthermore, orientin attenuates the aberrant crypt foci formation and reinstates the DMH induced cell proliferation, as evident from the AgNORs staining of colonic tissues of experimental rats. Thus, our study emphasizes that orientin may prevent DMH induced precancerous lesions and proven to be a potent antioxidant and antiproliferative agent.
Collapse
|
20
|
Fernandes Messias MC, Mecatti GC, Figueiredo Angolini CF, Eberlin MN, Credidio L, Real Martinez CA, Rodrigues Coy CS, de Oliveira Carvalho P. Plasma Lipidomic Signature of Rectal Adenocarcinoma Reveals Potential Biomarkers. Front Oncol 2018; 7:325. [PMID: 29359123 PMCID: PMC5766651 DOI: 10.3389/fonc.2017.00325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023] Open
Abstract
Background Rectal adenocarcinoma (RAC) is a common malignant tumor of the digestive tract and survival is highly dependent upon stage of disease at diagnosis. Lipidomic strategy can be used to identify potential biomarkers for establishing early diagnosis or therapeutic programs for RAC. Objective To evaluate the lipoperoxidation biomarkers and lipidomic signature in the plasma of patients with RAC (n = 23) and healthy controls (n = 18). Methods Lipoperoxidation was evaluated based on malondialdehyde (MDA) and F2-isoprostane levels and the lipidomic profile obtained by gas chromatography and high resolution mass spectrometry (ESI-q-TOF) associated with a multivariate statistical technique. Results The most abundant ions identified in the RAC patients were those of protonated phosphatidylcholine and phosphatidylethanolamine. It was found that a lisophosphatidylcholine (LPC) plasmalogen containing palmitoleic acid [LPC (P-16:1)], with highest variable importance projection score, showed a tendency to be lower in the cancer patients. A reduction of n − 3 polyunsaturated fatty acids was observed in the plasma of these patients. MDA levels were higher in patients with advanced cancer (stages III/IV) than in the early stages groups and the healthy group (p < 0.05). No differences in F2-isoprostane levels were observed among these groups. Conclusion This study shows that the reduction in plasma levels of LPC plasmalogens associated with an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as a putatively novel lipid signature for RAC.
Collapse
Affiliation(s)
| | - Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Bragança Paulista, São Paulo, Brazil
| | | | | | - Laura Credidio
- Department of Surgery, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2017; 41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ainhoa Nieto Gutierrez
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Patricia H McDonald
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
22
|
Zuckerman V, Sokolov E, Swet JH, Ahrens WA, Showlater V, Iannitti DA, Mckillop IH. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget 2016; 7:2951-67. [PMID: 26701886 PMCID: PMC4823083 DOI: 10.18632/oncotarget.6696] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and is characterized by rapid tumor expansion and metastasis. Lysophosphatidic acid (LPA) signaling, via LPA receptors 1–6 (LPARs1–6), regulates diverse cell functions including motility, migration, and proliferation, yet the role of LPARs in hepatic tumor pathology is poorly understood. We sought to determine the expression and function of endothelial differentiation gene (EDG) LPARs (LPAR1–3) in human HCC and complimentary in vitro models. Human HCC were characterized by significantly elevated LPAR1/LPAR3 expression in the microenvironment between the tumor and non-tumor liver (NTL), a finding mirrored in human SKHep1 cells. Analysis of human tissue and human hepatic tumor cells in vitro revealed cells that express LPAR3 (HCC-NTL margin in vivo and SKHep1 in vitro) also express cancer stem cell markers in the absence of hepatocyte markers. Treatment of SKHep1 cells with exogenous LPA led to significantly increased cell motility but not proliferation. Using pharmacological agents and cells transfected to knock-down LPAR1 or LPAR3 demonstrated LPA-dependent cell migration occurs via an LPAR3-Gi-ERK-pathway independent of LPAR1. These data suggest cells that stain positive for both LPAR3 and cancer stem cell markers are distinct from the tumor mass per se, and may mediate tumor invasiveness/expansion via LPA-LPAR3 signaling.
Collapse
Affiliation(s)
| | - Eugene Sokolov
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Jacob H Swet
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - William A Ahrens
- Department of Pathology, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Victor Showlater
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - David A Iannitti
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Iain H Mckillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| |
Collapse
|
23
|
Identification of Altered Metabolomic Profiles Following a Panchakarma-based Ayurvedic Intervention in Healthy Subjects: The Self-Directed Biological Transformation Initiative (SBTI). Sci Rep 2016; 6:32609. [PMID: 27611967 PMCID: PMC5017211 DOI: 10.1038/srep32609] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
The effects of integrative medicine practices such as meditation and Ayurveda on human physiology are not fully understood. The aim of this study was to identify altered metabolomic profiles following an Ayurveda-based intervention. In the experimental group, 65 healthy male and female subjects participated in a 6-day Panchakarma-based Ayurvedic intervention which included herbs, vegetarian diet, meditation, yoga, and massage. A set of 12 plasma phosphatidylcholines decreased (adjusted p < 0.01) post-intervention in the experimental (n = 65) compared to control group (n = 54) after Bonferroni correction for multiple testing; within these compounds, the phosphatidylcholine with the greatest decrease in abundance was PC ae C36:4 (delta = −0.34). Application of a 10% FDR revealed an additional 57 metabolites that were differentially abundant between groups. Pathway analysis suggests that the intervention results in changes in metabolites across many pathways such as phospholipid biosynthesis, choline metabolism, and lipoprotein metabolism. The observed plasma metabolomic alterations may reflect a Panchakarma-induced modulation of metabotypes. Panchakarma promoted statistically significant changes in plasma levels of phosphatidylcholines, sphingomyelins and others in just 6 days. Forthcoming studies that integrate metabolomics with genomic, microbiome and physiological parameters may facilitate a broader systems-level understanding and mechanistic insights into these integrative practices that are employed to promote health and well-being.
Collapse
|
24
|
Velasco M, O'Sullivan C, Sheridan GK. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 2016; 113:608-617. [PMID: 27059127 DOI: 10.1016/j.neuropharm.2016.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- María Velasco
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
25
|
LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. PLoS One 2015; 10:e0139094. [PMID: 26418031 PMCID: PMC4587977 DOI: 10.1371/journal.pone.0139094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell cycle control.
Collapse
|
26
|
Tveteraas IH, Aasrum M, Brusevold IJ, Ødegård J, Christoffersen T, Sandnes D. Lysophosphatidic acid induces both EGFR-dependent and EGFR-independent effects on DNA synthesis and migration in pancreatic and colorectal carcinoma cells. Tumour Biol 2015; 37:2519-26. [DOI: 10.1007/s13277-015-4010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
|
27
|
Abstract
Lysophosphatidic acid (LPA) and its receptors, LPA1-6, are integral parts of signaling pathways involved in cellular proliferation, migration and survival. These signaling pathways are of therapeutic interest for the treatment of multiple types of cancer and to reduce cancer metastasis and side effects. Validated therapeutic potential of key receptors, as well as recent structure-activity relationships yielding compounds with low nanomolar potencies are exciting recent advances in the field. Some compounds have proven efficacious in vivo against tumor proliferation and metastasis, bone cancer pain and the pulmonary fibrosis that can result as a side effect of pulmonary cancer radiation treatment. However, recent studies have identified that LPA contributes through multiple pathways to the development of chemotherapeutic resistance suggesting new applications for LPA antagonists in cancer treatment. This review summarizes the roles of LPA signaling in cancer pathophysiology and recent progress in the design and evaluation of LPA agonists and antagonists.
Collapse
|
28
|
Kataoka M, Ishibashi K, Kumagai S, Yanagida T, Aikawa K, Chiba H, Kojima Y. Expression and Function of LPA1 in Bladder Cancer. J Urol 2014; 194:238-44. [PMID: 25524242 DOI: 10.1016/j.juro.2014.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE LPA is one of several physiologically active lipid mediators that promote cell proliferation and invasion, and are present in serum, ascites and urine. LPA receptor is a G-protein coupled receptor that is considered a potential therapeutic target for some malignant cancers. We evaluated the expression of LPA receptors in bladder cancer and the effect of LPA in bladder cancer invasion. MATERIALS AND METHODS Using real-time polymerase chain reaction and immunohistochemical staining we determined LPA receptor expression in bladder cancer specimens from patients with bladder cancer, including 12 with Ta or T1 and 15 with T2-T4 disease. ROCK expression, myosin light chain phosphorylation and Matrigel™ invasion assays were done and morphological observations were made to assess LPA effects in T24 cells, which were derived from bladder cancer. RESULTS Notably LPA1 mRNA expression was significantly higher in muscle invasive bladder cancer specimens than in nonmuscle invasive specimens. Strong LPA1 expression was evident on cell membranes in muscle invasive specimens. T24 cell invasion was increased by LPA treatment and invasiveness was decreased by LPA1 siRNA or LPA1 inhibitor. LPA treatment increased ROCK1 expression and myosin light chain phosphorylation, and induced morphological changes, including lamellipodia formation and cell rounding. CONCLUSIONS Results indicate that LPA signaling via LPA1 activation promoted bladder cancer invasion. LPA1 might be useful to detect bladder cancer with highly invasive potential and become a new therapeutic target for invasive bladder cancer treatment.
Collapse
Affiliation(s)
- Masao Kataoka
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan.
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| | - Shin Kumagai
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| | - Tomohiko Yanagida
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University, Fukushima, Japan; Department of Pathology (HC), Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
29
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
30
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 556] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
31
|
Abstract
OBJECTIVES Tumor microenvironment, defined by a variety of growth factors including lysophosphatidic acid (LPA), whose levels are increased in pancreatic cancer patients, plays a major role in the genesis and progression of pancreatic cancer. Because the gep proto-oncogenes, Gα12 and Gα13, are implicated in LPA-stimulated oncogenic signaling, this study is focused on evaluating the role of these proto-oncogenes in LPA-stimulated invasive migration of pancreatic cancer cells. METHODS Effect of LPA on the migration and proliferation of pancreatic cancer cells was assessed using BxPC3, Dan-G, MDAPanc-28, Panc-1, and PaCa-2 cell lines. The role of Gα13 in the migration of pancreatic cancer cells was interrogated by disrupting lysophosphatidic acid receptor-Gα13 interaction using CT13, a dominant negative mutant of Gα13, and by silencing the expression of Gα13. RESULTS Results indicate that LPA stimulates the migration of pancreatic cancer cells and such LPA-stimulated migratory response is mediated by Gα13. Furthermore, the results establish that the silencing of Gα13, but not Gα12, abrogates LPA-stimulated invasive migration of pancreatic cancer cells. CONCLUSIONS These results report for the first time a critical role for Gα13 in LPA-stimulated invasive migration of pancreatic cancer cells. These findings identify LPA-lysophosphatidic acid receptor-Gα13 signaling node as a novel therapeutic target for pancreatic cancer treatment and control.
Collapse
|
32
|
Tsukahara T, Murakami-Murofushi K. Release of cyclic phosphatidic acid from gelatin-based hydrogels inhibit colon cancer cell growth and migration. Sci Rep 2012; 2:687. [PMID: 23008752 PMCID: PMC3449289 DOI: 10.1038/srep00687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 01/21/2023] Open
Abstract
Microparticle and nanoparticle formulations are widely used to improve the bioavailability of low-solubility drugs and as vehicles for organ- and tissue-specific targeted drug delivery. We investigated the effect of a novel, controlled-release form of a bioactive lipid, cyclic phosphatidic acid (cPA), on human colon cancer cell line functions. We encapsulated cPA in gelatin-based hydrogels and examined its ability to inhibit the viability and migration of HT-29 and DLD-1 cells in vitro and the LPA-induced activity of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). The hydrogel delivery system prolonged cPA release into the culture medium. Accordingly, cPA-hydrogel microspheres substantially inhibited LPA-induced PPARγ activity and cell growth and migration compared with that of cells cultured with cPA alone. Thus, hydrogel microspheres are a potential system for stable and efficient delivery of bioactive lipids such as cPA and may offer a new strategy for targeted colon cancer treatment.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Integrative Physiology & Bio-System Control, Shinshu University School of Medicine , 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | | |
Collapse
|
33
|
Orosa B, González A, Mera A, Gómez-Reino JJ, Conde C. Lysophosphatidic acid receptor 1 suppression sensitizes rheumatoid fibroblast-like synoviocytes to tumor necrosis factor-induced apoptosis. ACTA ACUST UNITED AC 2012; 64:2460-70. [DOI: 10.1002/art.34443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Xiao Y, Guengerich FP. Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. J Lipid Res 2012; 53:1610-7. [PMID: 22591743 DOI: 10.1194/jlr.m027185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytochrome P450 (P450) 2W1 is still considered an "orphan" because its physiological function is not characterized. To identify its substrate specificity, the purified recombinant enzyme was incubated with colorectal cancer extracts for untargeted substrate searches using an LC/MS-based metabolomic and isotopic labeling approach. In addition to previously reported fatty acids, oleyl (18:1) lysophosphatidylcholine (LPC, lysolecithin) was identified as a substrate for P450 2W1. Other human P450 enzymes tested showed little activity with 18:1 LPC. In addition to the LPCs, P450 2W1 acted on a series of other lysophospholipids, including lysophosphatidylinositol, lysophosphatidylserine, lysophosphatidylglycerol, lysophosphatidylethanolamine, and lysophosphatidic acid but not diacylphospholipids. P450 2W1 utilized sn-1 18:1 LPC as a substrate much more efficiently than the sn-2 isomer; we conclude that the sn-1 isomers of lysophospholipids are preferred substrates. Chiral analysis was performed on the 18:1 epoxidation products and showed enantio-selectivity for formation of (9R,10S) over (9S,10R). [corrected]. The kinetics and position specificities of P450 2W1-catalyzed oxygenation of lysophospholipids (16:0 LPC and 18:1 LPC) and fatty acids (C16:0 and C18:1) were also determined. Epoxidation and hydroxylation of 18:1 LPC are considerably more efficient than for the C18:1 free fatty acid.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
35
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
36
|
Ye L, Zhang B, Seviour EG, Tao KX, Liu XH, Ling Y, Chen JY, Wang GB. Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett 2011; 307:6-17. [DOI: 10.1016/j.canlet.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 01/29/2023]
|
37
|
Inoue M, Adachi M, Shimizu Y, Tsutsumi T, Tokumura A. Comparison of lysophospholipid levels in rat feces with those in a standard chow. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7062-7067. [PMID: 21648420 DOI: 10.1021/jf200986k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although lysophospholipids have attracted much attention due to their diverse physiological activities through their specific receptors, little is known about their metabolic fates in mammalian digestive systems after their ingestion as a minor food component. In this study, we analyzed five lysophospholipids in lipid extracts of a standard rat chow and feces of rats fed the chow by two-dimensional thin layer chromatography and liquid chromatography-tandem mass spectrometry. The most abundant lysophospholipid in the rat chow was lysophosphatidylcholine followed by lysophosphatidylethanolamine, lysophosphatidic acid (LPA), lysophosphatidylinositol and lysophosphatidylserine (LPS) in an increasing order, but their concentrations were very low in rat feces. Among the molecular species of LPS in the chow, only saturated species were detected in the feces in significant amounts. In addition, several molecular species of LPA remained in the feces in variable portions (saturated > monounsaturated > polyunsaturated). These results suggest that a portion of ingested LPA and LPS reach the rat large intestine, affecting physiological colon functions.
Collapse
Affiliation(s)
- Manami Inoue
- Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
38
|
Tokumura A. Physiological Significance of Lysophospholipids that Act on the Lumen Side of Mammalian Lower Digestive Tracts. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biosciences, University of Tokushima Graduate School
| |
Collapse
|