1
|
Moran PA, Colgan TJ, Phillips KP, Coughlan J, McGinnity P, Reed TE. Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories. Mol Ecol 2024; 33:e17538. [PMID: 39497337 PMCID: PMC11589691 DOI: 10.1111/mec.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024]
Abstract
Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.
Collapse
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- A‐LIFE, Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Thomas J. Colgan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg, University MainzMainzGermany
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Canadian Rivers Institute, University of New BrunswickFrederictonNew BrunswickCanada
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine Institute, Furnace, NewportMayoIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
2
|
Pan J, Wang M, Zhu J, Huang Y, Zhang F, Li E, Qin J, Chen L, Wang X. Quantitative proteomic and metabolomic profiling reveals different osmoregulation mechanisms of tilapia cells coping with different hyperosmotic stress. J Proteomics 2024; 296:105113. [PMID: 38346667 DOI: 10.1016/j.jprot.2024.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate the different regulatory mechanisms of euryhaline fish under regular hyperosmotic and extreme hyperosmotic stress. The OmB (Oreochromis mossambicus brain) cells were exposed to three treatments: control, regular hyperosmotic stress and extreme hyperosmotic stress. After 12 h exposure, proteomics, metabolomics analyses and integrative analyses were explored. Both kinds of stress lead to lowering cell growth and morphology changes, while under regular hyperosmotic stress, the up-regulated processes related with compatible organic osmolytes synthesis are crucial strategy for the euryhaline fish cell line to survive; On the other hand, under extreme hyperosmotic stress, the processes related with cell apoptosis and cell cycle arrest are dominant. Furthermore, down-regulated pyrimidine metabolism and several ribosomal proteins partially participated in the lowered cell metabolism and increased cell death under both kinds of hyperosmotic stress. The PI3K-Akt and p53 signaling pathways were involved in the stagnant stage of cell cycles and induction of cell apoptosis under both kinds of hyperosmotic stress. However, HIF-1, FoxO, JAK-STAT and Hippo signaling pathways mainly contribute to disrupting the cell cycle, metabolism and induction of cell apoptosis under extreme hyperosmotic stress. SIGNIFICANCE: In the past, the research on fish osmoregulation mainly focused on the transcription factors and ion transporters of osmoregulation, the processes between osmotic sensing and signal transduction, and the associations between signaling pathways and regulation processes have been poorly understood. Investigating fish cell osmoregulation and potential signal transduction pathways is necessary. With the advancements in omics research, it is now feasible to investigate the relationship between environmental stress and molecular responses. In this study, we aimed to explore the signaling pathways and substance metabolism mode during hyper-osmoregulation in OmB cell line, to reveal the key factors that are critical to cell osmoregulation.
Collapse
Affiliation(s)
- Jingyu Pan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Zhu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Jiang Y, Wang BX, Xie Y, Meng L, Li M, Du CP. MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochem Biophys 2023; 81:469-479. [PMID: 37550525 DOI: 10.1007/s12013-023-01159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.
Collapse
Affiliation(s)
- Yu Jiang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bai-Xue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Xie
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
4
|
Osmotic Gradient Is a Factor That Influences the Gill Microbiota Communities in Oryzias melastigma. BIOLOGY 2022; 11:biology11101528. [PMID: 36290431 PMCID: PMC9598346 DOI: 10.3390/biology11101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary This study was applied to the laboratory medaka to understand how the osmotic gradient could influence the composition of the gill microbiota communities. The data suggested that the shift of the gill microbiota community has relied on the first sense of osmolality differences, and such changes were accomplished by the enriched osmosensing and metabolic pathways. Abstract The fish gill is the first tissue that is exposed to the external media and undergoes continuous osmotic challenges. Recently, our group published an article entitled “Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka” in the journal mSystems (e0004722, 2022), and suggested the possible host-bacterium interaction in the fish gill during osmotic stress. The previous study was performed by the progressive fresh water transfer (i.e., seawater to fresh water transfer via 50% seawater (FW)). Our group hypothesized that osmotic gradient could be a factor that determines the microbiota communities in the gill. The current 16S rRNA metagenomic sequencing study found that the direct transfer (i.e., seawater to fresh water (FWd)) could result in different gill microbiota communities in the same fresh water endpoints. Pseduomonas was the dominant bacteria (more than 55%) in the FWd gill. The Kyoto Encyclopedia of Genes and Genomes and MetaCyc analysis further suggested that the FWd group had enhanced osmosensing pathways, such as the ATP-binding cassette transporters, taurine degradation, and energy-related tricarboxylic acid metabolism compared to the FW group.
Collapse
|
5
|
Transcriptomic Analysis in Marine Medaka Gill Reveals That the Hypo-Osmotic Stress Could Alter the Immune Response via the IL17 Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012417. [PMID: 36293271 PMCID: PMC9604416 DOI: 10.3390/ijms232012417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fish gills are the major osmoregulatory tissue that contact the external water environment and have developed an effective osmoregulatory mechanism to maintain cellular function. Marine medaka (Oryzias melastigma) has the ability to live in both seawater and fresh water environments. The present study performed a seawater (SW) to 50% seawater (SFW) transfer, and the gill samples were used for comparative transcriptomic analysis to study the alteration of hypo-osmotic stress on immune responsive genes in this model organism. The result identified 518 differentiated expressed genes (DEGs) after the SW to SFW transfer. Various pathways such as p53 signaling, forkhead box O signaling, and the cell cycle were enriched. Moreover, the immune system was highlighted as one of the top altered biological processes in the enrichment analysis. Various cytokines, chemokines, and inflammatory genes that participate in the IL-17 signaling pathway were suppressed after the SW to SFW transfer. On the other hand, some immunoglobulin-related genes were up-regulated. The results were further validated by real-time qPCR. Taken together, our study provides additional gill transcriptome information in marine medaka; it also supports the notion that osmotic stress could influence the immune responses in fish gills.
Collapse
|
6
|
Lin YT, Lee TH. Rapid response of osmotic stress transcription factor 1 (OSTF1) expression to salinity challenge in gills of marine euryhaline milkfish (Chanos chanos). PLoS One 2022; 17:e0271029. [PMID: 35793350 PMCID: PMC9258805 DOI: 10.1371/journal.pone.0271029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts can survive in environments with different salinities. Cortisol is an important hormone for acclimation to seawater (SW) of euryhaline teleosts. Osmotic stress transcription factor 1 (OSTF1), also called the transforming growth factor-beta stimulated clone 22 domain 3 (tsc22d3), was first reported in tilapia as an acute response gene and protein under hyperosmotic stress, and it is regulated by cortisol. To date, most studies on OSTF1 have focused on freshwater inhabitants, such as tilapia, medaka, and catadromous eel. The expression of OSTF1 and the correlation between OSTF1 and cortisol in marine inhabitant euryhaline teleosts, to our knowledge, remain unclear. This study reveals the changes in the expression levels of branchial OSTF1, plasma cortisol levels, and their correlation in the marine inhabitant milkfish with ambient salinities. The two sequences of milkfish TSC22D3 transcripts were classified as OSTF1a and OSTF1b. Both genes were expressed universally in all detected organs and tissues but were the most abundant in the liver. Similar gene expression levels of ostf1a and ostf1b were found in SW- and fresh water (FW)-acclimated milkfish gills, an important osmoregulatory organ. Within 12 hours of being transferred from FW to SW, the gene expression level of ostf1b increased significantly (4 folds) within 12 h, whereas the expression level of ostf1a remained constant. Moreover, cortisol levels increased rapidly after being transferred to a hyperosmotic environment. After an intraperitoneal injection of cortisol, the gene expression levels of ostf1a and ostf1b were elevated. However, under hyperosmotic stress, ostf1a gene expression remained stable. Overall, the results revealed that ostf1b was the primary gene in milkfish responding to hypertonic stress, and cortisol concentration increased after the transfer of milkfish from FW to SW. Furthermore, cortisol injection increased the expression of ostf1a and ostf1b. As a result, factors other than cortisol may activate ostf1b in milkfish gills in response to an environmental salinity challenge.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka. mSystems 2022; 7:e0004722. [PMID: 35285678 PMCID: PMC9040874 DOI: 10.1128/msystems.00047-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first study using the transcriptome and 16S rRNA gene sequencing to report the hypotonic responsive genes in gill cells and the compositions of gill microbiota in marine medaka. The overlapped glycosaminoglycan- and chitin-related pathways suggest host-bacterium interaction in fish gill during osmotic stress.
Collapse
|
8
|
Khvorova IA, Nadei OV, Agalakova NI. Differential protein expression of mitogen-activated protein kinases in erythrocytes and liver of lamprey Lampetra fluviatilis on the course of prespawning starvation. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111108. [PMID: 34728403 DOI: 10.1016/j.cbpa.2021.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
The study was designed to identify the types of mitogen-activated protein kinases (MAPKs) in erythrocytes and liver tissues of river lamprey Lampetra fluviatilis and monitor the changes in protein expression levels of found enzymes on the course of prespawning starvation (from November to the end of May). Immunoreactivity of the native and phosphorylated forms of ERK1/2, JNK and p38 was examined in the cytosolic and membrane cell fractions. Both lamprey erythrocytes and liver were found to highly express ERK1/2 and JNK, whereas only trace amounts of p38 were revealed in hepatic tissues. ERK1/2 was identified in cytosolic and membrane fractions, whereas JNK and p38 were predominantly cytosolic enzymes. Total cellular amounts of ERK1/2 and phospho-ERK1/2 in both erythrocytes and liver tissues appeared to be relatively stable on the course of prespawning starvation. However, before spawning ERK1/2 translocated from cytosol to membranes, with partial decline of its cytoplasmic expression being compensated by increases in membrane-bound pool. Immunoreactivity of cytoplasmic JNK, phospho-JNK and p38 were stable from November to March, but sharply decreased before spawning exhibiting almost negligible levels in May, which suggests the depletion of their cellular fractions. Most probably, ERK1/2 plays more important role in mediating adaptive responses of erythrocytes and liver tissues to conditions of natural starvation and maintenance of cell viability before spawning and death of animals in May.
Collapse
Affiliation(s)
- Irina A Khvorova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, Saint-Petersburg, 194223, Russia
| | - Olga V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, Saint-Petersburg, 194223, Russia
| | - Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, Saint-Petersburg, 194223, Russia.
| |
Collapse
|
9
|
Garcia-Elfring A, Paccard A, Thurman TJ, Wasserman BA, Palkovacs EP, Hendry AP, Barrett RDH. Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highly-variable estuaries. Mol Ecol 2021; 30:2054-2064. [PMID: 33713378 DOI: 10.1111/mec.15879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Antoine Paccard
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada.,McGill University Genome Center, McGill University, Montreal, QC, Canada
| | - Timothy J Thurman
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Ben A Wasserman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Chen J, Luo Y, Cao J, Xie L. Fluoride exposure changed the expression of microRNAs in gills of male zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105789. [PMID: 33667915 DOI: 10.1016/j.aquatox.2021.105789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Fluoride has been found to cause detrimental effects on fish gills. Despite essential roles in various metabolism activities, whether and how miRNAs participate in the course of toxicity caused by fluoride in gills is still unclear. In this study, male zebrafish were exposed to 0, 20, 40 mg/L fluoride for 60 days to study the underlying osmotic regulatory mechanism by determining the influences of fluoride on the miRNAs and regulated genes in gills. mRNAs were isolated from the gills and the expression profiles were analyzed by using Illumina Hiseq 2500 platforms. Expressions of 7 differentially miRNAs and some related-genes in gills were validated by qRT-PCR. The results showed that miRNAs expressions were notably altered by fluoride. A total of 584 and 327 miRNAs were remarkably changed after 20 and 40 mg/L fluoride exposure, of which 322 were increased and 262 were decreased in 20 mg/L fluoride group, whereas 219 were elevated and 108 were reduced in 40 mg/L fluoride group. The differentially expressive miRNAs confirmed by qRT-PCR were consistent with micro-assay data. Cluster of Orthologous Groups of proteins (COG) function classification showed that the target genes of differentially expressive miRNAs are mainly related to signal transduction mechanisms, replication, transcription, inorganic ion transport and metabolism, repair and recombination, and energy formation and transformation. In addition, fluoride disturbed the expressions of target genes involved in the osmoregulation of the gill in the fluoride-exposed zebrafish, such as the increased expressions of OSTF1 and the decreased expressions of Na+-K+-ATPase, CFTR, and AQP-3, which provides a possibility that miRNAs regulation induced by fluoride has an effects on osmotic regulation, providing new hints to the osmotic regulatory mechanism of the toxicity caused by fluoride in zebrafish, and distinguishes new biomarkers of miRNAs for fluoride toxicity.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
12
|
Lai KP, Lin X, Tam N, Ho JCH, Wong MKS, Gu J, Chan TF, Tse WKF. Osmotic stress induces gut microbiota community shift in fish. Environ Microbiol 2020; 22:3784-3802. [PMID: 32618094 DOI: 10.1111/1462-2920.15150] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin-angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jeff Cheuk Hin Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8564, Japan
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
13
|
Tian Y, Wen H, Qi X, Zhang X, Li Y. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges. Gene 2019; 684:20-29. [DOI: 10.1016/j.gene.2018.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
14
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|
15
|
Tse WKF. Importance of deubiquitinases in zebrafish craniofacial development. Biochem Biophys Res Commun 2017; 487:813-819. [DOI: 10.1016/j.bbrc.2017.04.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022]
|
16
|
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci U S A 2017; 114:E2729-E2738. [PMID: 28289196 PMCID: PMC5380061 DOI: 10.1073/pnas.1614712114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of Omossambicus Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named "OSRE1." Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1 Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation).
Collapse
Affiliation(s)
- Xiaodan Wang
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dietmar Kültz
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616;
| |
Collapse
|
17
|
Lau MCC, Kwong EML, Lai KP, Li JW, Ho JCH, Chan TF, Wong CKC, Jiang YJ, Tse WKF. Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1147-58. [PMID: 26972049 DOI: 10.1016/j.bbadis.2016.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/05/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Treacher Collins Syndrome (TCS) is a rare congenital birth disorder (1 in 50,000 live births) characterized by severe craniofacial defects, including the downward slanting palpebral fissures, hypoplasia of the facial bones, and cleft palate (CP). Over 90% of patients with TCS have a mutation in the TCOF1 gene. However, some patients exhibit mutations in two new causative genes, POLR1C and POLR1D, which encode subunits of RNA polymerases I and III, that affect ribosome biogenesis. In this study, we examine the role of POLR1C in TCS using zebrafish as a model system. Our data confirmed that polr1c is highly expressed in the facial region, and dysfunction of this gene by knockdown or knock-out resulted in mis-expression of neural crest cells during early development that leads to TCS phenotype. Next generation sequencing and bioinformatics analysis of the polr1c mutants further demonstrated the up-regulated p53 pathway and predicted skeletal disorders. Lastly, we partially rescued the TCS facial phenotype in the background of p53 mutants, which supported the hypothesis that POLR1C-dependent type 3 TCS is associated with the p53 pathway.
Collapse
Affiliation(s)
| | | | - Keng Po Lai
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Jing-Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Ting-Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | |
Collapse
|
18
|
|
19
|
Lai KP, Li JW, Gu J, Chan TF, Tse WKF, Wong CKC. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 2015; 16:1072. [PMID: 26678671 PMCID: PMC4683740 DOI: 10.1186/s12864-015-2271-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeostasis of ions and water is important for the maintenance of cellular functions. The regulation of the homeostasis is particularly important in euryhaline fish that migrate between freshwater (FW) and seawater (SW) environments. The fish gill, the major tissue that forms an interface separating the extracellular fluids and external water environment, has an effective transport system to maintain and regulate a constant body osmolality. In fish gills, the two major epithelial cells, pavement cells (PVCs) and mitochondria-rich cells (MRCs), are known to play key and complementary roles in ion transport at the interface. Discovering the robust mechanisms underlying the two cell types' response to osmotic stress would benefit our understanding of the fundamental mechanism allowing PVCs and MRCs to handle osmotic stress. Owing to the limited genomic data available on estuarine species, existing knowledge in this area is slim. In this study, transcriptome analyses were conducted using PVCs and MRCs isolated from Japanese eels adapted to FW or SW environments to provide a genome-wide molecular study to unravel the fundamental processes at work. RESULTS The study identified more than 12,000 transcripts in the gill cells. Interestingly, remarkable differential expressed genes (DEGs) were identified in PVCs (970 transcripts) instead of MRCs (400 transcripts) in gills of fish adapted to FW or SW. Since PVCs cover more than 90 % of the gill epithelial surface, the greater change in gene expression patterns in PVCs in response to external osmolality is anticipated. In the integrity pathway analysis, 19 common biological functions were identified in PVCs and MRCs. In the enriched signaling pathways analysis, most pathways differed between PVCs and MRCs; 14 enriched pathways were identified in PVCs and 12 in MRCs. The results suggest that the osmoregulatory responses in PVCs and MRCs are cell-type specific, which supports the complementary functions of the cells in osmoregulation. CONCLUSIONS This is the first study to provide transcriptomic analysis of PVCs and MRCs in gills of eels adapted to FW or SW environments. It describes the cell-type specific transcriptomic network in different tonicity. The findings consolidate the known osmoregulatory pathways and provide molecular insight in osmoregulation. The presented data will be useful for researchers to select their targets for further studies.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Jing-Woei Li
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Je Gu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong. .,Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Pok Fu Lam, Hong Kong.
| |
Collapse
|
20
|
Wang X, Yin D, Li P, Yin S, Wang L, Jia Y, Shu X. MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata. PLoS One 2015; 10:e0136383. [PMID: 26301415 PMCID: PMC4547744 DOI: 10.1371/journal.pone.0136383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.
Collapse
Affiliation(s)
- Xiaolu Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Danqing Yin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Li Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Yihe Jia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, United Kingdom
| |
Collapse
|
21
|
Wong MKS, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. Discovery of osmotic sensitive transcription factors in fish intestine via a transcriptomic approach. BMC Genomics 2014; 15:1134. [PMID: 25520040 PMCID: PMC4377849 DOI: 10.1186/1471-2164-15-1134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Teleost intestine is crucial for seawater acclimation by sensing osmolality of imbibed seawater and regulating drinking and water/ion absorption. Regulatory genes for transforming intestinal function have not been identified. A transcriptomic approach was used to search for such genes in the intestine of euryhaline medaka. Results Quantitative RNA-seq by Illumina Hi-Seq Sequencing method was performed to analyze intestinal gene expression 0 h, 1 h, 3 h, 1 d, and 7 d after seawater transfer. Gene ontology (GO) enrichment results showed that cell adhesion, signal transduction, and protein phosphorylation gene categories were augmented soon after transfer, indicating a rapid reorganization of cellular components and functions. Among >50 transiently up-regulated transcription factors selected via co-expression correlation and GO selection, five transcription factors, including CEBPB and CEBPD, were confirmed by quantitative PCR to be specific to hyperosmotic stress, while others were also up-regulated after freshwater control transfer, including some well-known osmotic-stress transcription factors such as SGK1 and TSC22D3/Ostf1. Protein interaction networks suggest a high degree of overlapping among the signaling of transcription factors that respond to osmotic and general stresses, which sheds light on the interpretation of their roles during hyperosmotic stress and emergency. Conclusions Since cortisol is an important hormone for seawater acclimation as well as for general stress in teleosts, emergency and osmotic challenges could have been evolved in parallel and resulted in the overlapped signaling networks. Our results revealed important interactions among transcription factors and offer a multifactorial perspective of genes involved in seawater acclimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1134) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Tse WKF. The role of osmotic stress transcription factor 1 in fishes. Front Zool 2014; 11:86. [PMID: 25419222 PMCID: PMC4240841 DOI: 10.1186/s12983-014-0086-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/05/2014] [Indexed: 11/12/2022] Open
Abstract
Osmotic stress transcription factor 1 (Ostf1) was first discovered by subtractive hybridization in the gills of Mozambique tilapia (Oreochromis mossambicus) transferred from fresh water (FW) to seawater (SW). It is a putative transcriptional regulator and the “early hyperosmotic regulated protein”. In the 2 hours after FW to SW transfer, ostf1 mRNA levels increase six fold. It is believed that, as a fast-response gene, Ostf1 plays a critical role in fish osmoregulation. Since its discovery, numerous studies have been performed to understand the nature and osmoregulatory mechanism of Ostf1. A decade has passed since the discovery of Ostf1, and it is a good time to summarize our current understanding of this gene. Different fish models have been used to study Ostf1, which is not limited to the traditional euryhaline fishes, such as eels and tilapia. Ostf1 can be found in modern fish models such as medaka and zebrafish. This review covers and summarizes the findings from different fishes, and provides a perspective for future Ostf1 studies.
Collapse
Affiliation(s)
- William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
23
|
Tse WKF, Sun J, Zhang H, Lai KP, Gu J, Qiu JW, Wong CKC. iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica). J Proteomics 2014; 105:133-43. [PMID: 24503184 DOI: 10.1016/j.jprot.2014.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/09/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Osmoregulation in fish has been a classical research topic for several decades. Salmon and eels are the widely used model animals because of their wide distribution in different geographical locations and spawning migration between fresh- and salt-water habitats. Numerous fish osmoregulatory hormones and ion transporters were identified for their essential roles in acclimation and adaptation to waters of different salinities. Because of the lack of a genomic database, the scope of most studies, however, is very limited. Recently, our group reported the first high-throughput transcriptomic and proteomic studies to identify hyperosmotic-responsive genes/proteins in gills of Japanese eels. In this study, we aimed to decipher changes in hypo-osmotic-responsive proteins in fish acclimating from seawater (SW) to freshwater (FW) conditions. We collected gill samples from SW-adapted and SW-to-FW-acclimating fish. The respective gill proteins were extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) and analyzed using a high-resolution mass spectrometer. In the short-term transfer from SW to FW, 51 hypo-responsive proteins were detected, and 24 unique hypo-osmotic-responsive proteins were identified (15 up-regulated and nine down-regulated proteins). Our data support the use of an omics approach to facilitate the application of functional genomics in non-model organisms. BIOLOGICAL SIGNIFICANCE By combining transcriptomic and proteomic approaches, the study has provided the most comprehensive, targeted investigation of eel gill hypo-osmotic responsive proteins that provides molecular insights of osmoregulation mechanisms in a non-model organism, eel. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Huoming Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Keng Po Lai
- School of Biological Science, The University of Hong Kong, Hong Kong
| | - Jie Gu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong; Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
24
|
Ng IHW, Jans DA, Bogoyevitch MA. Hyperosmotic stress sustains cytokine-stimulated phosphorylation of STAT3, but slows its nuclear trafficking and impairs STAT3-dependent transcription. Cell Signal 2014; 26:815-24. [PMID: 24394455 DOI: 10.1016/j.cellsig.2013.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
Abstract
Persistent STAT3 phosphorylation and nuclear retention are hallmarks of a range of pathologies suggesting the importance of STAT3 transcriptional responses in disease progression. Since hyperosmotic stress (HOS) is a hallmark of diseases such as diabetes and asthma, we analysed the impact of HOS on cytokine-stimulated STAT3 signalling. In contrast to transient STAT3 Y705 and S727 phosphorylation in murine embryonic fibroblasts (MEFs) stimulated by the interleukin-6 family cytokine, leukemia inhibitory factor (LIF), under non-stress conditions, HOS induced by sorbitol treatment increased STAT3 S727 but not Y705 phosphorylation. Strikingly, combined LIF+HOS treatment stimulated persistent STAT3 Y705 and S727 phosphorylation and nuclear localisation, but STAT3 nuclear accumulation was slowed during HOS, likely reflecting the mislocalisation of Ran and importin-α3 during HOS that also reduced the nuclear localisation of classical importin-α/β-recognised nuclear import cargoes. Strikingly, combined LIF+HOS exposure, even though stimulating STAT3 phosphorylation and nuclear accumulation did not elicit a transcriptional output, as demonstrated by qPCR analyses of its target genes SOCS3 and c-Fos. Our analysis thus shows for the first time that HOS can disconnect nuclear, phosphorylated STAT3 from transcriptional outcomes, and emphasizes the importance of assessing STAT3 target gene changes in addition to STAT3 phosphorylation status and localisation.
Collapse
Affiliation(s)
- Ivan H W Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
25
|
Lai K, Law AY, Lau MC, Takei Y, Tse WK, Wong CK. Osmotic stress transcription factor 1b (Ostf1b) promotes migration properties with the modulation of epithelial mesenchymal transition (EMT) phenotype in human embryonic kidney cell. Int J Biochem Cell Biol 2013; 45:1921-6. [DOI: 10.1016/j.biocel.2013.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
|
26
|
Tse WKF, Jiang YJ, Wong CKC. Zebrafish transforming growth factor-β-stimulated clone 22 domain 3 (TSC22D3) plays critical roles in Bmp-dependent dorsoventral patterning via two deubiquitylating enzymes Usp15 and Otud4. Biochim Biophys Acta Gen Subj 2013; 1830:4584-93. [PMID: 23665588 DOI: 10.1016/j.bbagen.2013.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Osmotic stress transcription factor 1/transforming growth factor-β-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. METHODS We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). RESULTS Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. CONCLUSIONS This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. GENERAL SIGNIFICANCE Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.
Collapse
|
27
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
29
|
|