1
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Vázquez-Cuevas FG, Reyna-Jeldes M, Velázquez-Miranda E, Coddou C. Transactivation of receptor tyrosine kinases by purinergic P2Y and adenosine receptors. Purinergic Signal 2023; 19:613-621. [PMID: 36529846 PMCID: PMC10754767 DOI: 10.1007/s11302-022-09913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Transactivation of receptor tyrosine kinases (RTK) is a crosstalk mechanism exhibited by G-protein-coupled receptors (GPCR) to activate signaling pathways classically associated with growth factors. The discovery of RTK transactivation was a breakthrough in signal transduction that contributed to developing current concepts in intracellular signaling. RTK transactivation links GPCR signaling to important cellular processes, such as cell proliferation and differentiation, and explains the functional diversity of these receptors. Purinergic (P2Y and adenosine) receptors belong to class A of GPCR; in the present work, we systematically review the experimental evidence showing that purinergic receptors have the ability to transactivate RTK in multiple tissues and physiopathological conditions resulting in the modulation of cellular physiology. Of particular relevance, the crosstalk between purinergic receptors and epidermal growth factor receptor is a redundant pathway that participates in multiple pathophysiological processes. Specific and detailed knowledge of purinergic receptor-regulated pathways advances our understanding of the complexity of GPCR signal transduction and opens the way for pharmacologic intervention in the pathological context.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México.
| | - M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile
| | - E Velázquez-Miranda
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla # 3001, Juriquilla, Querétaro, 76230, México
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, 8331150, Chile.
- Núcleo Para El Estudio del Cáncer a Nivel Básico, Aplicado Y Clínico, Universidad Católica del Norte, Larrondo 1281, Coquimbo , 1781421, Chile.
| |
Collapse
|
3
|
Babaahmadi-Rezaei H, Mohamed R, Dayati P, Mehr RN, Seif F, Sharifat N, Khedri A, Kamato D, Little PJ. Endothelin-1 dependent expression of GAG genes involves NOX and p38 mediated Smad linker region phosphorylation. Clin Exp Pharmacol Physiol 2022; 49:710-718. [PMID: 35527471 PMCID: PMC9322435 DOI: 10.1111/1440-1681.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the development of atherosclerosis and mediates glycosaminoglycan (GAG) chain hyperelongation on proteoglycans. Our aim was to identify the ET-1-mediated signalling pathway involving NADPH oxidase (NOX), p38 MAP kinsae and Smad2 linker region phosphorylation (phospho-Smad2L) regulate GAG synthesizing enzymes mRNA expression (C4ST-1 and ChSy1) involved in GAG chains hyperelongation in human vascular smooth muscle cells (VSMCs). Signalling intermediates were detected and quantified by Western blotting and the mRNA levels of GAG synthesizing enzymes were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). ET-1 treatment of human VSMCs resulted in an increase in phospho-Smad2L level. The TGF-β receptor antagonist, SB431542 and the mixed ETA and ETB receptor antagonist bosentan, inhibited ET-1-mediated phospho-Smad2L level. In the presence of apocynin and diphenyleneiodonium chloride (DPI) (NOX inhibitors) and SB239063 (p38 inhibitor) ET-1-mediated phospho-Smad2L levels were inhibited. The gene expression levels of GAG synthesizing enzymes post-ET-1 treatment were increased compared to untreated controls (P<0.01). The ET-mediated the mRNA levels of these enzymes were blocked by the bosentan, SB431542, SB239063, DPI, apocynin and antioxidant N-acetyl-L-cysteine (NAC). ET-1-mediated signalling to GAG synthesizing enzymes gene expression occurs via transactivation-dependent pathway involving NOX, p38 MAP kinsae and Smad2 linker region phosphorylation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rafat Mohamed
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Parisa Dayati
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Sharifat
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dannii Kamato
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia
| | - Peter J Little
- The University of Queensland, , Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| |
Collapse
|
4
|
Babaahmadi-Rezaei H, Little PJ, Mohamed R, Zadeh GM, Kheirollah A, Mehr RN, Kamato D, Dayati P. Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Mol Cell Biochem 2022; 477:981-988. [PMID: 34982346 DOI: 10.1007/s11010-021-04342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) through transactivation of the transforming growth factor (TGF) β receptor (TGFBR1) stimulates glycosaminoglycan (GAG) elongation on proteoglycans. GPCR agonists thrombin and lysophosphatidic acid (LPA) via respective receptors transactivate the TGFBR1 via Rho/ROCK dependent pathways however mechanistic insight for ET-1 transactivation of the TGFBR1 remains unknown. NADPH oxidase (NOX) generates reactive oxygen species (ROS) and is a signalling entity implicated in the pathogenesis of many diseases including atherosclerosis. If implicated in this pathway, NOX/ROS would be a potential therapeutic target. In this study, we investigated the involvement of NOX in ET-1/ET receptor-mediated transactivation of TGFBR1 to stimulate mRNA expression of GAG chain synthesizing enzymes chondroitin 4-O-sulfotransferase 1 (C4ST-1) and chondroitin sulfate synthase 1 (ChSy-1). The invitro model used vascular smooth muscle cells that were treated with pharmacological antagonists in the presence and absence of ET-1 or TGF-β. Proteins and phosphoproteins isolated from treated cells were quantified by western blotting and quantitative real-time PCR was used to assess mRNA expression of GAG synthesizing enzymes. In the presence of diphenyliodonium (DPI) (NOX inhibitor), ET-1 stimulated phospho-Smad2C levels were inhibited. ET-1 mediated mRNA expression of GAG synthesizing enzymes C4ST-1 and ChSy-1 was also blocked by TGBFR1 antagonists, SB431542, broad spectrum ET receptor antagonist bosentan, DPI and ROS scavenger N-acetyl-L-cysteine. This work shows that NOX and ROS play an important role in ET-1 mediated transactivation of the TGFBR1 and downstream gene targets associated with GAG chain elongation. As ROS is involved in GPCR to protein tyrosine kinase receptor transactivation, the NOX/ROS axis presents as the first common biochemical target in all GPCR to kinase receptor transactivation signalling.
Collapse
Affiliation(s)
- Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia
| | - Ghorban Mohammad Zadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Peng C, Chen XT, Xu H, Chen LP, Shen W. Role of the CXCR4/ALK5/Smad3 Signaling Pathway in Cancer-Induced Bone Pain. J Pain Res 2020; 13:2567-2576. [PMID: 33116799 PMCID: PMC7569080 DOI: 10.2147/jpr.s260508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The chemokine receptor, CXCR4, and the transforming growth factor-beta receptor, ALK5, both contribute to various processes associated with the sensation of pain. However, the relationship between CXCR4 and ALK5 and the possible mechanisms promoted by ALK5 in the development of pain have not been evaluated. Materials and Methods Tumor cell implantation (TCI) technology was used to generate a model of cancer-induced bone pain (CIBP) in rats; intrathecal (i.t.) injections of small interfering (si) RNAs targeting CXCR4 and the ALK5-specific inhibitor, RepSox, were performed. Behavioral outcomes, Western blotting, and immunofluorescence techniques were used to evaluate the expression of the aforementioned specific target proteins in the CIBP model. Results The results revealed that i.t. administration of siRNAs targeting CXCR4 resulted in significant reductions in both mechanical and thermal hyperalgesia in rats with CIBP and likewise significantly reduced the expression of ALK5 in the spinal cord. Similarly, i.t. administration of RepSox also resulted in significant reductions in mechanical and thermal hyperalgesia in rats with CIBP together with diminished levels of spinal p-Smad3. Conclusion Taken together, our results suggest that CXCR4 expression in the spinal cord may be a critical mediator of CIBP via its capacity to activate ALK5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
6
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Kamato D, Little PJ. Smad2 linker region phosphorylation is an autonomous cell signalling pathway: Implications for multiple disease pathologies. Biomed Pharmacother 2020; 124:109854. [DOI: 10.1016/j.biopha.2020.109854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
|
8
|
Mohamed R, Cao Y, Afroz R, Xu S, Ta HT, Barras M, Zheng W, Little PJ, Kamato D. ROS directly activates transforming growth factor β type 1 receptor signalling in human vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2020; 1864:129463. [DOI: 10.1016/j.bbagen.2019.129463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
|
9
|
Kamato D, Burch M, Zhou Y, Mohamed R, Stow JL, Osman N, Zheng W, Little PJ. Individual Smad2 linker region phosphorylation sites determine the expression of proteoglycan and glycosaminoglycan synthesizing genes. Cell Signal 2018; 53:365-373. [PMID: 30423352 DOI: 10.1016/j.cellsig.2018.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
Growth factors such as thrombin and transforming growth factor (TGF)-β facilitate glycosaminoglycan (GAG) chain hyperelongation on proteoglycans, a phenomenon that increases lipoprotein binding in the vessel wall and the development of atherosclerosis. TGF-β signals via canonical carboxy terminal phosphorylation of R-Smads and also non-canonical linker region phosphorylation of R-Smads. The G protein coupled receptor agonist, thrombin, can transactivate the TGF-β receptor leading to both canonical and non-canonical Smad signalling. Linker region phosphorylation drives the expression of genes for the synthesis of the proteoglycan, biglycan. Proteoglycan synthesis involves core protein synthesis, the initiation of GAG chains and the subsequent elongation of GAG chains. We have explored the relationship between the thrombin stimulated phosphorylation of individual serine and threonine sites in the linker region of Smad2 and the expression of GAG initiation xylosyltransferase-1 (XT-1) and GAG elongation chondroitin 4-sulfotransferase-1 (C4ST-1) and chondroitin synthase-1 (CHSY-1) genes. Thrombin stimulated the phosphorylation of all four target residues (Thr220, Ser245, Ser250 and Ser255 residues) with a similar temporal pattern - phosphorylation was maximal at 15 min (the earliest time point studied) and the level of the phospho-proteins declined thereafter over the following 4 h. Jnk, p38 and PI3K, selectively mediated the phosphorylation of the Thr220 residue whereas the serine residues were variously phosphorylated by multiple kinases. Thrombin stimulated the expression of all three genes - XT-1, C4ST-1 and CHSY-1. The three pathways mediating Thr220 phosphorylation were also involved in the expression of XT-1. The target pathways (excluding Jnk) were involved in the expression of the GAG elongation genes (C4ST-1 and CHSY-1). These findings support the contention that individual Smad linker region phosphorylation sites are linked to the expression of genes for the initiation and elongation of GAG chains on proteoglycans. The context of this work is that a specific inhibitor of GAG elongation represents a potential therapeutic agent for preventing GAG elongation and lipid binding and the results indicate that the specificity of the pathways is such that it might be therapeutically feasible to specifically target GAG elongation without interfering with other physiological processes with which proteoglycans are involved.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| | - Micah Burch
- Department of Cardiovascular Medicine, Brigham and Harvard Medical School, Boston, MA 02115, USA
| | - Ying Zhou
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Narin Osman
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Wenhua Zheng
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
10
|
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of receptors in humans. Traditional activation of GPCRs involves binding of a ligand to the receptor, activation of heterotrimeric G proteins and induction of subsequent signaling molecules. It is now known that GPCR signaling occurs through G protein-independent pathways including signaling through β-arrestin and transactivation of other receptor types. Generally, transactivation occurs when activation of one receptor leads to the activation of another receptor(s). GPCR-mediated transactivation is an essential component of GPCR signaling, as activation of other receptor types, such as receptor tyrosine kinases, allows GPCRs to expand their signal transduction and affect various cellular responses. Several mechanisms have been identified for receptor transactivation downstream of GPCRs, one of which involves activation of extracellular proteases, such as a disintegrin and metalloprotease, and matrix metalloproteases . These proteases cleave and release ligands that are then able to activate their respective receptors. A disintegrin and metalloprotease, and matrix metalloproteases can be activated via various mechanisms downstream of GPCR activation, including activation via second messenger, direct phosphorylation, or direct G protein interaction. Additional understanding of the mechanisms involved in GPCR-mediated protease activation and subsequent receptor transactivation could lead to identification of new therapeutic targets.
Collapse
|
11
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
12
|
G protein coupled receptors can transduce signals through carboxy terminal and linker region phosphorylation of Smad transcription factors. Life Sci 2018; 199:10-15. [DOI: 10.1016/j.lfs.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
|
13
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Romano G, Santi L, Bianco MR, Giuffrè MR, Pettinato M, Bugarin C, Garanzini C, Savarese L, Leoni S, Cerrito MG, Leone BE, Gaipa G, Grassilli E, Papa M, Lavitrano M, Giovannoni R. The TGF-β pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget 2017; 7:22077-91. [PMID: 26956045 PMCID: PMC5008345 DOI: 10.18632/oncotarget.7895] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/20/2016] [Indexed: 12/12/2022] Open
Abstract
TGF-β pathway is generally associated with the processes of metastasis, angiogenesis and EMT in cancer. Very little is known, however, about the role of TGF-β in cancer drug resistance. In this work, we show a specific activation of the TGF-β pathway in consequence of chemotherapeutic treatment in in vivo and in vitro models of colorectal carcinoma. 5-Fluorouracil (5FU) was able to stimulate the activation of SMAD3 and the transcription of specific genes such as ACVRL1, FN1 and TGFB1. On the other hand, the specific inhibition of TGF-βRI was able to repress the 5FU-induced genes transcription and to restore the sensitivity of chemoresistant cells to the toxic action of the drug, by decreasing the expression of BCL2L1 and ID1 genes. The role of the TGF-β molecule in the chemoresistant colon carcinoma cells' response to 5FU was further demonstrated by conditioned medium (CM) experiments: CM from 5FU-treated chemoresistant cells was able to protect chemosensitive cells against the toxic action of 5FU. In conclusion, these findings showed the pivotal role of TGF-β pathway in colon cancer mechanisms of drug resistance suggesting new possible approaches in diagnosis and treatment of colon cancer patients.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Ludovica Santi
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Maria Rosaria Bianco
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Maria Rita Giuffrè
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Mariateresa Pettinato
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900, Monza, Italy
| | - Cristina Garanzini
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Leonilde Savarese
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Silvia Leoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Maria Grazia Cerrito
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Biagio Eugenio Leone
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900, Monza, Italy
| | - Emanuela Grassilli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Roberto Giovannoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| |
Collapse
|
15
|
Kamato D, Mitra P, Davis F, Osman N, Chaplin R, Cabot PJ, Afroz R, Thomas W, Zheng W, Kaur H, Brimble M, Little PJ. Ga q proteins: molecular pharmacology and therapeutic potential. Cell Mol Life Sci 2017; 74:1379-1390. [PMID: 27815595 PMCID: PMC11107756 DOI: 10.1007/s00018-016-2405-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Partha Mitra
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Davis
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Narin Osman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbounre, VIC, 3004, Australia
| | - Rebecca Chaplin
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Rizwana Afroz
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | - Walter Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4102, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Harveen Kaur
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret Brimble
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
16
|
Sharifat N, Mohammad Zadeh G, Ghaffari MA, Dayati P, Kamato D, Little PJ, Babaahmadi-Rezaei H. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis. ACTA ACUST UNITED AC 2016; 69:66-72. [PMID: 27905105 DOI: 10.1111/jphp.12654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/18/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). METHOD The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. KEY FINDING ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ETA and ETB receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. CONCLUSION In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis.
Collapse
Affiliation(s)
- Narges Sharifat
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Ghaffari
- Cellular and Molecular Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Parisa Dayati
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danielle Kamato
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| |
Collapse
|
17
|
Al Gwairi O, Osman N, Getachew R, Zheng W, Liang XL, Kamato D, Thach L, Little PJ. Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells. Int J Biol Sci 2016; 12:1041-51. [PMID: 27570478 PMCID: PMC4997048 DOI: 10.7150/ijbs.16134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
A major feature of early age-related macular degeneration (AMD) is the thickening of Bruch's membrane in the retina and an alteration in its composition with increased lipid deposition. In certain pathological conditions proteoglycans are responsible for lipid retention in tissues. Growth factors are known to increase the length of glycosaminoglycan chains and this can lead to a large increase in the interaction between proteoglycans and lipids. Using choroidal endothelial cells, we investigated the effects of a number of AMD relevant growth factors TGFβ, thrombin, PDGF, IGF and VEGF on proteoglycan synthesis. Cells were characterized as of endothelial origin using the specific cell markers endothelial nitric oxide synthesis and von Willebrand factor and imaged using confocal microscopy. Cells were treated with growth factors in the presence and absence of the appropriate inhibitors and were radiolabeled with [35S]-SO4. Proteoglycans were isolated by ion exchange chromatography and sized using SDS-PAGE. Radiosulfate incorporation was determined by the cetylpyridinium chloride (CPC) precipitation technique. To measure cellular glycosaminoglycan synthesizing capacity we added xyloside and assessed the xyloside-GAGs by SDS-PAGE. TGFβ, thrombin, PDGF & IGF dose-dependently stimulated radiosulfate incorporation and GAG elongation as well as xyloside-GAG synthesis, however VEGF treatment did not stimulate any changes in proteoglycan synthesis. VEGF did not increase pAKT but caused a large increase in pERK relative to the response to PDGF. Thus, AMD relevant agonists cause glycosaminoglycan hyperelongation of proteoglycans synthesised and secreted by retinal choroidal endothelial cells. The absence of a response to VEGF is intriguing and identifies proteoglycans as a novel potential target in AMD. Future studies will examine the relevance of these changes to enhanced lipid binding and the development of AMD.
Collapse
Affiliation(s)
- Othman Al Gwairi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; Department of Immunology, Monash University, Melbourne 3004 VIC, Australia
| | - Robel Getachew
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China;; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - X-L Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Danielle Kamato
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Lyna Thach
- School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| | - Peter J Little
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| |
Collapse
|
18
|
Heger J, Schulz R, Euler G. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol 2015; 173:3-14. [PMID: 26431212 DOI: 10.1111/bph.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/23/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is a mechanism to compensate for increased cardiac work load, that is, after myocardial infarction or upon pressure overload. However, in the long run cardiac hypertrophy is a prevailing risk factor for the development of heart failure. During pathological remodelling processes leading to heart failure, decompensated hypertrophy, death of cardiomyocytes by apoptosis or necroptosis and fibrosis as well as a progressive dysfunction of cardiomyocytes are apparent. Interestingly, the induction of hypertrophy, cell death or fibrosis is mediated by similar signalling pathways. Therefore, tiny changes in the signalling cascade are able to switch physiological cardiac remodelling to the development of heart failure. In the present review, we will describe examples of these molecular switches that change compensated hypertrophy to the development of heart failure and will focus on the importance of the signalling cascades of the TGFβ superfamily in this process. In this context, potential therapeutic targets for pharmacological interventions that could attenuate the progression of heart failure will be discussed.
Collapse
Affiliation(s)
- J Heger
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - R Schulz
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - G Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Kamato D, Rostam MA, Bernard R, Piva TJ, Mantri N, Guidone D, Zheng W, Osman N, Little PJ. The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell Mol Life Sci 2015; 72:799-808. [PMID: 25384733 PMCID: PMC11113717 DOI: 10.1007/s00018-014-1775-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the "triple membrane bypass" pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.
Collapse
Affiliation(s)
- Danielle Kamato
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Muhamad Ashraf Rostam
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Rebekah Bernard
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- Discipline of Cell Biology and Anatomy, School of Medical Sciences and Health Innovations Research Institute, Bundoora, VIC 3083 Australia
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel Guidone
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Narin Osman
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| | - Peter J. Little
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| |
Collapse
|
20
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
21
|
Silva MT, Wensing LA, Brum PC, Câmara NO, Miyabara EH. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice. Acta Physiol (Oxf) 2014; 211:617-33. [PMID: 24938737 PMCID: PMC4660878 DOI: 10.1111/apha.12329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/09/2013] [Accepted: 06/12/2014] [Indexed: 12/28/2022]
Abstract
Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries.
Collapse
Affiliation(s)
- M. T. Silva
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - L. A. Wensing
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - P. C. Brum
- Department of Biodynamics School of Physical Education and Sport University of Sao Paulo Sao Paulo Brazil
| | - N. O. Câmara
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - E. H. Miyabara
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
22
|
Nodal signals via β-arrestins and RalGTPases to regulate trophoblast invasion. Cell Signal 2014; 26:1935-42. [PMID: 24863882 DOI: 10.1016/j.cellsig.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/05/2023]
Abstract
Placentation is critical for establishing a healthy pregnancy. Trophoblasts mediate implantation and placentation and certain subtypes, most notably extravillous cytotrophoblast, are highly invasive. Trophoblast invasion is tightly regulated by microenvironmental cues that dictate placental morphology and depth. In choriocarcinomas, malignant trophoblast cells become hyperinvasive, breaching the myometrium and leading to major complications. Nodal, a member of the TGF-β superfamily, is expressed throughout the endometrium during the peri-implantation period and in invasive trophoblast cells. Nodal promotes the invasion of numerous types of cancer cells. However, Nodal's role in trophoblast and choriocarcinoma cell invasion is unclear. Here we show that Nodal stimulates the invasion of both the non-malignant HTR-8SV/neo trophoblast and JAR choriocarcinoma cells in a dose-dependent manner. We found that endogenous β-arrestins and Ral GTPases, key regulators of the cell cytoskeleton, are constitutively associated with Nodal receptors (ALK4 and ALK7) in trophoblast cells and that RalA is colocalized with ALK4 in endocytic vesicles. Nodal stimulates endogenous β-arrestin2 to associate with phospho-ERK1/2, and knockdown of β-arrestin or Ral proteins impairs Nodal-induced trophoblast and choriocarcinoma cell invasion. These results demonstrate, for the first time, that β-arrestins and RalGTPases are important regulators of Nodal-induced invasion.
Collapse
|
23
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
24
|
Gigoux V, Fourmy D. Acting on Hormone Receptors with Minimal Side Effect on Cell Proliferation: A Timely Challenge Illustrated with GLP-1R and GPER. Front Endocrinol (Lausanne) 2013; 4:50. [PMID: 23641235 PMCID: PMC3638125 DOI: 10.3389/fendo.2013.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside the cell and activate inside signal transduction pathways and cellular responses. GPCR are involved in a wide variety of physiological processes, including in the neuroendocrine system. GPCR are also involved in many diseases and are the target of 30% of marketed medicinal drugs. Whereas the majority of the GPCR-targeting drugs have proved their therapeutic benefit, some of them were associated with undesired effects. We develop two examples of used drugs whose therapeutic benefits are tarnished by carcinogenesis risks. The chronic administration of glucagon-like peptide-1 (GLP-1) analogs widely used to treat type-2 diabetes was associated with an increased risk of pancreatic or thyroid cancers. The long-term treatment with the estrogen antagonist tamoxifen, developed to target breast cancer overexpressing estrogen receptors ER, presents agonist activity on the G protein-coupled estrogen receptor which is associated with an increased incidence of endometrial cancer and breast cancer resistance to hormonotherapy. We point out and discuss the need of pharmacological studies to understand and overcome the undesired effects associated with the chronic administration of GPCR ligands. In fact, biological effects triggered by GPCR often result from the activation of multiple intracellular signaling pathways. Deciphering which signaling networks are engaged following GPCR activation appears to be primordial to unveil their contribution in the physiological and physiopathological processes. The development of biased agonists to elucidate the role of the different signaling mechanisms mediated by GPCR activation will allow the generation of new therapeutic agents with improved efficacy and reduced side effects. In this regard, the identification of GLP-1R biased ligands promoting insulin secretion without inducing pro-tumoral effects would offer therapeutic benefit.
Collapse
Affiliation(s)
- Véronique Gigoux
- Université de Toulouse, Université Paul SabatierToulouse, France
- *Correspondence: Véronique Gigoux, CHU Rangueil – INSERM, Université de Toulouse, Université Paul Sabatier, EA4552, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France. e-mail:
| | - Daniel Fourmy
- Université de Toulouse, Université Paul SabatierToulouse, France
| |
Collapse
|