2
|
Bessy T, Candelas A, Souquet B, Saadallah K, Schaeffer A, Vianay B, Cuvelier D, Gobaa S, Nakid-Cordero C, Lion J, Bories JC, Mooney N, Jaffredo T, Larghero J, Blanchoin L, Faivre L, Brunet S, Théry M. Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. J Cell Biol 2021; 220:212662. [PMID: 34570198 PMCID: PMC8479938 DOI: 10.1083/jcb.202005085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
The fate of hematopoietic stem and progenitor cells (HSPCs) is regulated by their interaction with stromal cells in the bone marrow. However, the cellular mechanisms regulating HSPC interaction with these cells and their potential impact on HSPC polarity are still poorly understood. Here we evaluated the impact of cell–cell contacts with osteoblasts or endothelial cells on the polarity of HSPC. We found that an HSPC can form a discrete contact site that leads to the extensive polarization of its cytoskeleton architecture. Notably, the centrosome was located in proximity to the contact site. The capacity of HSPCs to polarize in contact with stromal cells of the bone marrow appeared to be specific, as it was not observed in primary lymphoid or myeloid cells or in HSPCs in contact with skin fibroblasts. The receptors ICAM, VCAM, and SDF1 were identified in the polarizing contact. Only SDF1 was independently capable of inducing the polarization of the centrosome–microtubule network.
Collapse
Affiliation(s)
- Thomas Bessy
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Adrian Candelas
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Benoit Souquet
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France.,Alveole, Paris, France
| | - Khansa Saadallah
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Alexandre Schaeffer
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Benoit Vianay
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Damien Cuvelier
- Sorbonne Université, Paris, France.,Institut Pierre Gilles de Gennes, Paris Sciences et Lettres Research University, Paris, France.,Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Samy Gobaa
- Group of Biomaterials and Microfluidics Core Facility, Institut Pasteur, Paris, France
| | - Cecilia Nakid-Cordero
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Julien Lion
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Jean-Christophe Bories
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement, Centre national de la recherche scientifique, UMR 7622, Institut National de la Santé et de la Recherche Médicale U1156, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Laurent Blanchoin
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Stephane Brunet
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Manuel Théry
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| |
Collapse
|
4
|
Dampmann M, Görgens A, Möllmann M, Murke F, Dührsen U, Giebel B, Dürig J. CpG stimulation of chronic lymphocytic leukemia cells induces a polarized cell shape and promotes migration in vitro and in vivo. PLoS One 2020; 15:e0228674. [PMID: 32040489 PMCID: PMC7010256 DOI: 10.1371/journal.pone.0228674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022] Open
Abstract
In order to accomplish their physiological functions leukocytes have the capability to migrate. As a prerequisite they need to adopt a polarized cell shape, forming a leading edge at the front and a uropod at rear pole. In this study we explored the capability of chronic lymphocytic leukaemia (CLL) cells to adopt this leukocyte-specific migration phenotype. Furthermore, we studied the impact of the Toll-like receptor 9 (TLR9) agonists CpGs type A, B and C and the antagonist oligodesoxynucleotide (ODN) INH-18 on the cell polarization and migration process of primary human CLL cells. Upon cultivation, a portion of purified CLL cells adopted polarized cell shapes spontaneously (range 10–38%). Stimulation with CpG ODNs type B (ODN 2006) and CpGs type C (ODN 2395) significantly increased the frequency of morphologically polarized CLL cells, while ODN INH-18 was hardly able to act antagonistically. Like in human hematopoietic stem and progenitor cells, in morphologically polarized CLL cells CXCR4 was redistributed to the leading edge and CD50 to the uropod. Coupled to the increased frequencies of morphologically polarized cells, CpGs type B and C stimulated CLL cells showed higher migration activities in vitro and following intravenous injection higher homing frequencies to the bone marrow of immunocompromised NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Thus, presumably independent of TLR-9 signaling, CpGs type B and C promote the cellular polarization process of CLL cells and their ability to migrate in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Dampmann
- Department of Hematology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Möllmann
- Department of Hematology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (JD); (BG)
| | - Jan Dürig
- Department of Hematology, University Hospital, University of Duisburg-Essen, Essen, Germany
- Department of Internal Medicine, St. Josef Hospital, Essen, Germany
- * E-mail: (JD); (BG)
| |
Collapse
|
6
|
Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Araki N, Tan P, Baba H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer 2015; 138:1207-19. [PMID: 26414794 DOI: 10.1002/ijc.29864] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co-culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF-573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF-573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Takamori
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Görgens A, Ludwig AK, Möllmann M, Krawczyk A, Dürig J, Hanenberg H, Horn PA, Giebel B. Multipotent hematopoietic progenitors divide asymmetrically to create progenitors of the lymphomyeloid and erythromyeloid lineages. Stem Cell Reports 2014; 3:1058-72. [PMID: 25448068 PMCID: PMC4263999 DOI: 10.1016/j.stemcr.2014.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can self-renew and create committed progenitors, a process supposed to involve asymmetric cell divisions (ACDs). Previously, we had linked the kinetics of CD133 expression with ACDs but failed to detect asymmetric segregation of classical CD133 epitopes on fixed, mitotic HSPCs. Now, by using a novel anti-CD133 antibody (HC7), we confirmed the occurrence of asymmetric CD133 segregation on paraformaldehyde-fixed and living HSPCs. After showing that HC7 binding does not recognizably affect biological features of human HSPCs, we studied ACDs in different HSPC subtypes and determined the developmental potential of arising daughter cells at the single-cell level. Approximately 70% of the HSPCs of the multipotent progenitor (MPP) fraction studied performed ACDs, and about 25% generated lymphoid-primed multipotent progenitor (LMPP) as wells as erythromyeloid progenitor (EMP) daughter cells. Since MPPs hardly created daughter cells maintaining MPP characteristics, our data suggest that under conventional culture conditions, ACDs are lineage instructive rather than self-renewing. The HC7 anti-CD133 antibody allows analyses of ACDs on fixed human HSPCs HC7 and AC133 anti-CD133 antibodies allow tracking of CD133 in living HSPCs Cells of the MPP fraction divide asymmetrically to create LMPP- and EMP-like cells ACDs of MPPs are lineage instructive rather than self-renewing
Collapse
Affiliation(s)
- André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany; German Cancer Consortium (DKTK).
| | - Anna-Kristin Ludwig
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Michael Möllmann
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Adalbert Krawczyk
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Helmut Hanenberg
- Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany; German Cancer Consortium (DKTK)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147 Essen, Germany; German Cancer Consortium (DKTK).
| |
Collapse
|