1
|
Liang H, Zhang X, Hou Y, Zheng K, Hao H, He B, Li H, Sun C, Yang T, Song H, Cai R, Wang Y, Jiang H, Qi L, Wang Y. Super-high procoagulant activity of gecko thrombin: A gift from sky dragon. CNS Neurosci Ther 2023; 29:3081-3093. [PMID: 37144588 PMCID: PMC10493662 DOI: 10.1111/cns.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Kang Zheng
- Anti‐aging & Regenerative Medicine Research Institution, School of Life Sciences and MedicineShandong University of TechnologyZiboPR China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Haiyan Jiang
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Lei Qi
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| |
Collapse
|
2
|
Abe T, Koshino Y, Watanabe T, Miyakoshi Y, Yoshida Y, Kudo H. Gene expression of neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex components in the olfactory organ and brain during seaward and homeward migration by pink salmon (Oncorhynchus gorbuscha). JOURNAL OF FISH BIOLOGY 2020; 97:1794-1807. [PMID: 32920827 DOI: 10.1111/jfb.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The expression of synaptic vesicle exocytosis-regulator SNARE complex component genes (snap25, stx1 and vamp2) was examined in the olfactory nervous system during seaward and homeward migration by pink salmon (Oncorhynchus gorbuscha). The expression levels of snares in the olfactory organ were higher in seaward fry than in feeding and homeward adults, reflecting the development of the olfactory nervous system. The expression of snap25a, b and stx1a was upregulated or stable in the adult olfactory bulb and telencephalon. This upregulated expression suggested alterations in olfactory neuronal plasticity that may be related to the discrimination of natal rivers. The expression of stx1b was downregulated in the adult olfactory bulb, but remained stable in the adult telencephalon. The expression of vamp2 was initially strong in seaward fry, but was downregulated in adults in both the olfactory bulb and telencephalon. Pink salmon has the lowest diversity of maturation age, the largest population, and the most evolutional position in Pacific salmon (genus Oncorhynchus). The expression of snares in the olfactory center of pink salmon reflected the timing of sexual maturation and homeward migration. The present results and our previous studies indicate that snares show distinct expression patterns between two salmon species that depend on physiological and ecological features of migration.
Collapse
Affiliation(s)
- Takashi Abe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yosuke Koshino
- Doto Research Branch, Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Nakashibetsu, Japan
| | - Tomoharu Watanabe
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, Eniwa, Japan
| | | | | | - Hideaki Kudo
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
3
|
Kakebeen AD, Chitsazan AD, Williams MC, Saunders LM, Wills AE. Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors. eLife 2020; 9:e52648. [PMID: 32338593 PMCID: PMC7250574 DOI: 10.7554/elife.52648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Vertebrate appendage regeneration requires precisely coordinated remodeling of the transcriptional landscape to enable the growth and differentiation of new tissue, a process executed over multiple days and across dozens of cell types. The heterogeneity of tissues and temporally-sensitive fate decisions involved has made it difficult to articulate the gene regulatory programs enabling regeneration of individual cell types. To better understand how a regenerative program is fulfilled by neural progenitor cells (NPCs) of the spinal cord, we analyzed pax6-expressing NPCs isolated from regenerating Xenopus tropicalis tails. By intersecting chromatin accessibility data with single-cell transcriptomics, we find that NPCs place an early priority on neuronal differentiation. Late in regeneration, the priority returns to proliferation. Our analyses identify Pbx3 and Meis1 as critical regulators of tail regeneration and axon organization. Overall, we use transcriptional regulatory dynamics to present a new model for cell fate decisions and their regulators in NPCs during regeneration.
Collapse
Affiliation(s)
| | | | | | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | |
Collapse
|
4
|
SOCS3 Attenuates GM-CSF/IFN-γ-Mediated Inflammation During Spontaneous Spinal Cord Regeneration. Neurosci Bull 2020; 36:778-792. [PMID: 32306216 PMCID: PMC7340708 DOI: 10.1007/s12264-020-00493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
SOCS3, a feedback inhibitor of the JAK/STAT signal pathway, negatively regulates axonal regrowth and inflammation in the central nervous system (CNS). Here, we demonstrated a distinct role of SOCS3 in the injured spinal cord of the gecko following tail amputation. Severing the gecko spinal cord did not evoke an inflammatory cascade except for an injury-stimulated elevation of the granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon gamma (IFN-γ) cytokines. Simultaneously, the expression of SOCS3 was upregulated in microglia, and unexpectedly not in neurons. Enforced expression of SOCS3 was sufficient to suppress the GM-CSF/IFN-γ-driven inflammatory responses through its KIR domain by attenuating the activities of JAK1 and JAK2. SOCS3 was also linked to GM-CSF/IFN-γ-induced cross-tolerance. Transfection of adenovirus overexpressing SOCS3 in the injured cord resulted in a significant decrease of inflammatory cytokines. These results reveal a distinct role of SOCS3 in the regenerating spinal cord, and provide new hints for CNS repair in mammals.
Collapse
|
5
|
Wang Y, Wei S, Song H, Zhang X, Wang W, Du N, Song T, Liang H, Chen X, Wang Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation. FASEB J 2019; 33:14798-14810. [PMID: 31689136 DOI: 10.1096/fj.201801966rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macrophages and their initiation of acute inflammation have been defined to be functionally important in tissue repair and regeneration. In injury-induced production of macrophage migration inhibitory factor (MIF), which has been described as a pleiotropic protein that participates in multiple cellular and biologic processes, it is unknown whether it is involved in the regulation of macrophage events during the epimorphic regeneration. In the model of gecko tail amputation, the protein levels of gecko MIF (gMIF) have been determined to be significantly increased in the nerve cells of the spinal cord in association with the recruitment of macrophages to the lesion site. gMIF has been shown to interact with the CD74 receptor to promote the migration of macrophages through activation of Ras homolog gene family member A and to trigger inflammatory responses through MAPK signaling pathways. The determination of microsphere phagocytosis also indicated that gMIF could enhance macrophage phagocytosis. gMIF-mediated recruitment and activation of macrophages have been found to be necessary for gecko tail regeneration, as evidenced by the depletion of macrophages using clodronate liposomes. The results present a novel function of MIF during the epimorphic regeneration, which is beneficial for insights into its pleiotropic property.-Wang, Y., Wei, S., Song, H., Zhang, X., Wang, W., Du, N., Song, T., Liang, H., Chen, X., Wang, Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sumei Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Nan Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tiancheng Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaojun Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
Fleming T, Martinez-Moreno CG, Carranza M, Luna M, Harvey S, Arámburo C. Growth hormone promotes synaptogenesis and protects neuroretinal dendrites against kainic acid (KA) induced damage. Gen Comp Endocrinol 2018; 265:111-120. [PMID: 29454595 DOI: 10.1016/j.ygcen.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022]
Abstract
There is increasing evidence that suggests a possible role for GH in retinal development and synaptogenesis. While our previous studies have focused largely on embryonic retinal ganglion cells (RGCs), our current study demonstrates that GH has a synaptogenic effect in retinal primary cell cultures, increasing the abundance of both pre- (SNAP25) and post- (PSD95) synaptic proteins. In the neonatal chick, kainate (KA) treatment was found to damage retinal synapses and abrogate GH expression. In response to damage, an increase in Cy3-GH internalization into RGCs was observed when administered shortly before or after damage. This increase in internalization also correlated with increase in PSD95 expression, suggesting a neuroprotective effect on the dendritic trees of RGCs and the inner plexiform layer (IPL). In addition, we observed the presence of PSD95 positive Müller glia, which may suggest GH is having a neuroregenerative effect in the kainate-damaged retina. This work puts forth further evidence that GH acts as a synaptogenic modulator in the chick retina and opens a new possibility for the use of GH in retinal regeneration research.
Collapse
Affiliation(s)
- Thomas Fleming
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carlos G Martinez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico.
| |
Collapse
|
7
|
Abe T, Minowa Y, Kudo H. Molecular characterization and gene expression of synaptosome-associated protein-25 (SNAP-25) in the brain during both seaward and homeward migrations of chum salmon Oncorhynchus keta. Comp Biochem Physiol A Mol Integr Physiol 2018; 217:17-25. [DOI: 10.1016/j.cbpa.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/12/2023]
|
8
|
Ulloa F, Cotrufo T, Ricolo D, Soriano E, Araújo SJ. SNARE complex in axonal guidance and neuroregeneration. Neural Regen Res 2018; 13:386-392. [PMID: 29623913 PMCID: PMC5900491 DOI: 10.4103/1673-5374.228710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Through complex mechanisms that guide axons to the appropriate routes towards their targets, axonal growth and guidance lead to neuronal system formation. These mechanisms establish the synaptic circuitry necessary for the optimal performance of the nervous system in all organisms. Damage to these networks can be repaired by neuroregenerative processes which in turn can re-establish synapses between injured axons and postsynaptic terminals. Both axonal growth and guidance and the neuroregenerative response rely on correct axonal growth and growth cone responses to guidance cues as well as correct synapses with appropriate targets. With this in mind, parallels can be drawn between axonal regeneration and processes occurring during embryonic nervous system development. However, when studying parallels between axonal development and regeneration many questions still arise; mainly, how do axons grow and synapse with their targets and how do they repair their membranes, grow and orchestrate regenerative responses after injury. Major players in the cellular and molecular processes that lead to growth cone development and movement during embryonic development are the Soluble N-ethylamaleimide Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) proteins, which have been shown to be involved in axonal growth and guidance. Their involvement in axonal growth, guidance and neuroregeneration is of foremost importance, due to their roles in vesicle and membrane trafficking events. Here, we review the recent literature on the involvement of SNARE proteins in axonal growth and guidance during embryonic development and neuroregeneration.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Delia Ricolo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, School of Biology, and Institute of Neurosciences, University of Barcelona, Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid; Vall d´Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona; Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic 2017; 18:767-775. [PMID: 28857378 DOI: 10.1111/tra.12524] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
SNAREs are the core machinery mediating membrane fusion. In this review, we provide an update on the recent progress on SNAREs regulating membrane fusion events, especially the more detailed fusion processes dissected by well-developed biophysical methods and in vitro single molecule analysis approaches. We also briefly summarize the relevant research from Chinese laboratories and highlight the significant contributions on our understanding of SNARE-mediated membrane trafficking from scientists in China.
Collapse
Affiliation(s)
- Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Liangcheng Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Wanjin Hong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
10
|
Shen T, Wang Y, Zhang Q, Bai X, Wei S, Zhang X, Wang W, Yuan Y, Liu Y, Liu M, Gu X, Wang Y. Potential Involvement of Snail Members in Neuronal Survival and Astrocytic Migration during the Gecko Spinal Cord Regeneration. Front Cell Neurosci 2017; 11:113. [PMID: 28484372 PMCID: PMC5401887 DOI: 10.3389/fncel.2017.00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
Certain regenerative vertebrates such as fish, amphibians and reptiles are capable of regenerating spinal cord after injury. Most neurons of spinal cord will survive from the injury and regrow axons to repair circuits with an absence of glial scar formation. However, the underlying mechanisms of neuronal anti-apoptosis and glia-related responses have not been fully clarified during the regenerative process. Gecko has becoming an inspiring model to address spinal cord regeneration in amniotes. In the present study, we investigated the regulatory roles of Snail family members, the important transcriptional factors involved in both triggering of the cell migration and cell survival, during the spontaneous spinal cord regeneration. Both Snail1 and Snail3 have been shown to promote neuronal survival and astrocytic migration via anti-apoptotic and GTPases signaling following gecko tail amputation. Transforming growth factor-beta (TGFβ), together with other cytokines were involved in inducing expression of Snail protein. Our data indicate a conserved function of Snail proteins in embryonic development and tissue regeneration, which may provide clues for CNS repair in the mammals.
Collapse
Affiliation(s)
- Tingting Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xue Bai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sumei Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Oscillating Magnet Array-Based Nanomagnetic Gene Transfection: A Valuable Tool for Molecular Neurobiology Studies. NANOMATERIALS 2017; 7:nano7020028. [PMID: 28336862 PMCID: PMC5333013 DOI: 10.3390/nano7020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
To develop treatments for neurodegenerative disorders, it is critical to understand the biology and function of neurons in both normal and diseased states. Molecular studies of neurons involve the delivery of small biomolecules into cultured neurons via transfection to study genetic variants. However, as cultured primary neurons are sensitive to temperature change, stress, and shifts in pH, these factors make biomolecule delivery difficult, particularly non-viral delivery. Herein we used oscillating nanomagnetic gene transfection to successfully transfect SH-SY5Y cells as well as primary hippocampal and cortical neurons on different days in vitro. This novel technique has been used to effectively deliver genetic material into various cell types, resulting in high transfection efficiency and viability. From these observations and other related studies, we suggest that oscillating nanomagnetic gene transfection is an effective method for gene delivery into hard-to-transfect neuronal cell types.
Collapse
|
12
|
Liu X, Yan D, Li Y, Sha X, Wu K, Zhao J, Yang C, Zhang C, Shi J, Wu X. Erythroblast transformation-specific 2 correlates with vascular smooth muscle cell apoptosis in rat heterotopic heart transplantation model. J Thorac Dis 2016; 8:2027-37. [PMID: 27621856 DOI: 10.21037/jtd.2016.07.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) decreases the long-term survival of heart transplantation recipients. Vascular smooth muscle cell (VSMC) apoptosis is an important pathological feature of CAV. Erythroblast transformation-specific 2 (Ets-2), as a transcription factor, participates in cell apoptosis and plays an important role in organ transplantation. METHODS Hearts from Wistar-Furth (WF:RT1u) rats were heterotopically transplanted into Lewis (Lew:RT1(l)) rats without immunosuppression. Additional syngeneic heterotopic cardiac transplantations were performed in Lewis rats. HE staining was used to identify CAV. Ets-2 expression was examined by western blot. Ets-2 tissue location was examined by immunohistochemical assay and double immunostaining. Cleaved caspase 3 expression was detected by western blot. Co-localization of Ets-2 and cleaved caspase 3 was detected by double immunostaining. Ets-2, p53, cleaved caspase 3 and Bcl-xl expression in rat VSMC line A7R5 was examined after Ets-2 siRNA transfection. TUNEL assay was applied to detect A7R5 apoptosis with or without ETS-2 siRNA transfection. Immunoprecipitation was performed to explore the interaction between Ets-2 and p53. RESULTS Ets-2 expression decreased in the allograft group but had no obvious change in the isograft group. Meanwhile, the phenomenon of CAV was observed in the allograft group and there is neointima formation in the isograft group which is not obvious compared with allograft group. Additionally, Ets-2 expression was opposite to VSMC apoptosis in the allograft group. In vitro, Ets-2 siRNA transfection in A7R5cells resulted in enhanced cell apoptosis. Finally, Ets-2 interacted with p53. CONCLUSIONS Ets-2 might inhibit VSMC apoptosis via p53 pathway. The results further elucidate the molecular mechanism of VSMC apoptosis after heart transplantation during CAV and provide theoretical basis for seeking new specific drug targets for CAV prevention and treatment.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, China;; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yangcheng Li
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Cancer Hospital of Nantong University, Nantong 226361, China
| | - Xilin Sha
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Rugao People's Hospital, Rugao 226500, China
| | - Kunpeng Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Zhao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 2016; 54:2189-2200. [PMID: 26941099 DOI: 10.1007/s12035-016-9810-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case-control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Dai
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Guo Chen
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
14
|
Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration. Sci Rep 2016; 6:20752. [PMID: 26853930 PMCID: PMC4745102 DOI: 10.1038/srep20752] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.
Collapse
|
15
|
Kunieda K, Tsutsuki H, Ida T, Kishimoto Y, Kasamatsu S, Sawa T, Goshima N, Itakura M, Takahashi M, Akaike T, Ihara H. 8-Nitro-cGMP Enhances SNARE Complex Formation through S-Guanylation of Cys90 in SNAP25. ACS Chem Neurosci 2015. [PMID: 26221773 DOI: 10.1021/acschemneuro.5b00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nitrated guanine nucleotide 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) generated by reactive oxygen/nitrogen species causes protein S-guanylation. However, the mechanism of 8-nitro-cGMP formation and its protein targets in the normal brain have not been identified. Here, we investigated 8-nitro-cGMP generation and protein S-guanylation in the rodent brain. Immunohistochemistry indicated that 8-nitro-cGMP was produced by neurons, such as pyramidal cells and interneurons. Using liquid chromatography-tandem mass spectrometry, we determined endogenous 8-nitro-cGMP levels in the brain as 2.92 ± 0.10 pmol/mg protein. Based on S-guanylation proteomics, we identified several S-guanylated neuronal proteins, including SNAP25 which is a core member of the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex. SNAP25 post-translational modification including palmitoylation, phosphorylation, and oxidation, are known to regulate neurotransmission. Our results demonstrate that S-guanylation of SNAP25 enhanced the stability of the SNARE complex, which was further promoted by Ca(2+)-dependent activation of neuronal nitric oxide synthase. Using site-directed mutagenesis, we identified SNAP25 cysteine 90 as the main target of S-guanylation which enhanced the stability of the SNARE complex. The present study revealed a novel target of redox signaling via protein S-guanylation in the nervous system and provided the first substantial evidence of 8-nitro-cGMP function in the nervous system.
Collapse
Affiliation(s)
- Kohei Kunieda
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Hiroyasu Tsutsuki
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoaki Ida
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yusuke Kishimoto
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Shingo Kasamatsu
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Tomohiro Sawa
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Goshima
- Quantitative
Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Makoto Itakura
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masami Takahashi
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takaaki Akaike
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Hideshi Ihara
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
16
|
Bai X, Wang Y, Man L, Zhang Q, Sun C, Hu W, Liu Y, Liu M, Gu X, Wang Y. CD59 mediates cartilage patterning during spontaneous tail regeneration. Sci Rep 2015; 5:12798. [PMID: 26238652 PMCID: PMC4523838 DOI: 10.1038/srep12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Lili Man
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Qing Zhang
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wen Hu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yan Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Mei Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| |
Collapse
|
17
|
Gilbert EAB, Delorme SL, Vickaryous MK. The regeneration blastema of lizards: an amniote model for the study of appendage replacement. ACTA ACUST UNITED AC 2015; 2:45-53. [PMID: 27499867 PMCID: PMC4895314 DOI: 10.1002/reg2.31] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/03/2023]
Abstract
Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema‐mediated) regenerative program, resulting in a fully functional but structurally non‐identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self‐detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail‐regenerating lizards.
Collapse
Affiliation(s)
- E A B Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| | - S L Delorme
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| | - M K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| |
Collapse
|
18
|
Song H, Man L, Wang Y, Bai X, Wei S, Liu Y, Liu M, Gu X, Wang Y. The Regenerating Spinal Cord of Gecko Maintains Unaltered Expression of β-Catenin Following Tail Amputation. J Mol Neurosci 2014; 55:653-62. [DOI: 10.1007/s12031-014-0405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
19
|
Wang W, Wang F, Liu J, Zhao W, Zhao Q, He M, Qian BJ, Xu Y, Liu R, Liu SJ, Liu W, Liu J, Zhou XF, Wang TH. SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 2014; 50:290-304. [PMID: 24519330 DOI: 10.1007/s12035-014-8642-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 02/05/2023]
Abstract
Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Institute of Neurological Disease, Translation Neuroscience Center, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park S, Infante CR, Rivera-Davila LC, Menke DB. Conserved regulation ofhoxc11by pitx1 inAnolislizards. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:156-65. [DOI: 10.1002/jez.b.22554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Sungdae Park
- Department of Genetics; University of Georgia; Athens Georgia
| | | | - Laura C. Rivera-Davila
- Department of Genetics; University of Georgia; Athens Georgia
- Department of Biology; University of Puerto Rico at Cayey; RISE Program; Cayey Puerto Rico
| | | |
Collapse
|
21
|
Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013; 288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.m113.463810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled, excessive inflammation contributes to the secondary tissue damage of traumatic spinal cord, and HMGB1 is highlighted for initiation of a vicious self-propagating inflammatory circle by release from necrotic cells or immune cells. Several regenerative-competent vertebrates have evolved to circumvent the second damages during the spontaneous spinal cord regeneration with an unknown HMGB1 regulatory mechanism. By genomic surveys, we have revealed that two paralogs of HMGB1 are broadly retained from fish in the phylogeny. However, their spatial-temporal expression and effects, as shown in lowest amniote gecko, were tightly controlled in order that limited inflammation was produced in spontaneous regeneration. Two paralogs from gecko HMGB1 (gHMGB1) yielded distinct injury and infectious responses, with gHMGB1b significantly up-regulated in the injured cord. The intracellular gHMGB1b induced less release of inflammatory cytokines than gHMGB1a in macrophages, and the effects could be shifted by exchanging one amino acid in the inflammatory domain. Both intracellular proteins were able to mediate neuronal programmed apoptosis, which has been indicated to produce negligible inflammatory responses. In vivo studies demonstrated that the extracellular proteins could not trigger a cascade of the inflammatory cytokines in the injured spinal cord. Signal transduction analysis found that gHMGB1 proteins could not bind with cell surface receptors TLR2 and TLR4 to activate inflammatory signaling pathway. However, they were able to interact with the receptor for advanced glycation end products to potentiate oligodendrocyte migration by activation of both NFκB and Rac1/Cdc42 signaling. Our results reveal that HMGB1 does not mediate the inflammatory response in spontaneous spinal cord regeneration, but it promotes CNS regeneration.
Collapse
Affiliation(s)
- Yingying Dong
- Key Laboratory of Neuroregeneration, Nantong University, Nantong 226007, China
| | | | | | | | | | | | | | | | | |
Collapse
|