1
|
Rayevsky A, Platonov M, Elijah B, Volochnyuk D, Veklich T, Cherenok S, Rodik R, Kalchenko V, Kosterin S. Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg 2+-Dependent Atp-Hydrolases. Mol Inform 2025; 44:e202400200. [PMID: 39635768 DOI: 10.1002/minf.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function. This study focused on the domain architecture model of P-type ATPases, which participate in the reaction cycles of ATP hydrolysis carried out by membrane transport systems - Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Targeted modulation of Na+, K+-ATPase and Ca2+, Mg2+-ATPase by unnatural drugs is of greatest interest due to the lack of known effectors. This new discovery presents a convenient model based on our recent experimental studies of the membrane structures and myocytes of the uterine smooth muscle, the myometrium. This current study strongly supports the fact that nanosized calix[4]arenes functionalised on the upper rings of the macrocycle with biologically active phosphonic acid fragments can serve as selective and potent inhibitors of cation-transporting electroenzymes. This is how we discovered that calix[4]arene of methylenebisphosphonic acid C-97 and calix[4]arene of bis-aminophosphonic acid C-107 selectively and effectively (I0.5 <100 nM) inhibit the activity of Mg2+, ATP-dependent electrogenic Na+ K+ plasma membrane pump. As drug discovery in the field of Mg2+-ATPase inhibitors is uncharted territory, basic research holds the key to explaining and predicting the mechanism of interaction and action of different classes of compounds. In light of the presented results, new calix[4]arene compounds can be used as potent inhibitors of Mg2+, ATP-dependent electrogenic ion pumps.
Collapse
Affiliation(s)
- Alexey Rayevsky
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Maksym Platonov
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Dmytro Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Glushkova Ave, Kyiv, 03022, Ukraine
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Tetyana Veklich
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| | - Sergiy Cherenok
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Roman Rodik
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Vitaliy Kalchenko
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Sergiy Kosterin
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Monesterolo NE, Santander VS, Campetelli AN, Rivelli Antonelli JF, Nigra AD, Balach MM, Muhlberger T, Previtali G, Casale CH. Tubulin Regulates Plasma Membrane Ca 2+-ATPase Activity in a Lipid Environment-dependent Manner. Cell Biochem Biophys 2024; 82:319-328. [PMID: 38133791 DOI: 10.1007/s12013-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ca2+ plays a crucial role in cell signaling, cytosolic Ca2+ can change up to 10,000-fold in concentration due to the action of Ca2+-ATPases, including PMCA, SERCA and SCR. The regulation and balance of these enzymes are essential to maintain cytosolic Ca2+ homeostasis. Our laboratory has discovered a novel PMCA regulatory system, involving acetylated tubulin alone or in combination with membrane lipids. This regulation controls cytosolic Ca2+ levels and influences cellular properties such as erythrocyte rheology. This review summarizes the findings on the regulatory mechanism of PMCA activity by acetylated tubulin in combination with lipids. The combination of tubulin cytoskeleton and membrane lipids suggests a novel regulatory system for PMCA, which consequently affects cytosolic Ca2+ content, depending on cytoskeletal and plasma membrane dynamics. Understanding the interaction between acetylated tubulin, lipids and PMCA activity provides new insights into Ca2+ signaling and cell function. Further research may shed light on potential therapeutic targets for diseases related to Ca2+ dysregulation. This discovery contributes to a broader understanding of cellular processes and offers opportunities to develop innovative approaches to treat Ca2+-related disorders. By elucidating the complex regulatory mechanisms of Ca2+ homeostasis, we advance our understanding of cell biology and its implications for human health.
Collapse
Affiliation(s)
- Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Juan F Rivelli Antonelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Melisa M Balach
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Gabriela Previtali
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
3
|
Kalsbeek A, Dhar-Dass R, Hanan A, Al-Haddad E, William I, Alazraki A, Poulik J, McCollum K, Almashad A, Shehata BM. Five New Cases of Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (MMIHS), with One Case Showing a Novel Mutation. Fetal Pediatr Pathol 2022; 41:749-758. [PMID: 34383618 DOI: 10.1080/15513815.2021.1964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a lethal congenital disorder characterized by a large, non-obstructed bladder, microcolon, and lack of proper peristalsis. MATERIALS AND METHODS Five cases of MMIHS were identified, confirmed histologically and were predominantly female (F:M, 4:1). DNA sequencing was also performed. RESULTS Four cases showed mutations in the α3 and β4 nicotinic acetylcholine receptor (ηAChR) subunits (CHRNA3 and CHRNB4, respectively) on chromosome 15q24. The 5th case had a delayed clinical presentation of intussusception at 11 months and showed a novel missense mutation in ATP2B4 on Chromosome 1q32. CONCLUSION The first four patients showed a previously identified mutation. The 5th patient shows a novel mutation in ATP2B4. This novel gene was associated with a less severe presentation and increases success of multiorgan transplant than the other four patients. This highlights how identifying various mutations may impact prognosis and clinical treatment plans for MMIHS patients.
Collapse
Affiliation(s)
- Alyssa Kalsbeek
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Renee Dhar-Dass
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Abdul Hanan
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Eman Al-Haddad
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Iman William
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Adina Alazraki
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Janet Poulik
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Kasey McCollum
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Aya Almashad
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Bahig M Shehata
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| |
Collapse
|
4
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
5
|
Kimura M, Mochizuki H, Satou R, Iwasaki M, Kokubu E, Kono K, Nomura S, Sakurai T, Kuroda H, Shibukawa Y. Plasma Membrane Ca 2+-ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization. Biomolecules 2021; 11:biom11071010. [PMID: 34356633 PMCID: PMC8301758 DOI: 10.3390/biom11071010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of mRNA-encoding PMCA subtypes, pharmacological properties, and other cellular functions remain unclear. Thus, we investigated PMCA mRNA levels and their contribution to mineralization under physiological conditions. We also examined the role of PMCA in the Ca2+ extrusion pathway during hypotonic and alkaline stimulation-induced increases in intracellular free Ca2+ concentration ([Ca2+]i). We performed RT-PCR and mineralization assays in human odontoblasts. [Ca2+]i was measured using fura-2 fluorescence measurements in odontoblasts isolated from newborn Wistar rat incisor teeth and human odontoblasts. We detected mRNA encoding PMCA1–4 in human odontoblasts. The application of hypotonic or alkaline solutions transiently increased [Ca2+]i in odontoblasts in both rat and human odontoblasts. The Ca2+ extrusion efficiency during the hypotonic or alkaline solution-induced [Ca2+]i increase was decreased by PMCA inhibitors in both cell types. Alizarin red and von Kossa staining showed that PMCA inhibition suppressed mineralization. In addition, alkaline stimulation (not hypotonic stimulation) to human odontoblasts upregulated the mRNA levels of dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). The PMCA inhibitor did not affect DMP-1 or DSPP mRNA levels at pH 7.4–8.8 and under isotonic and hypotonic conditions, respectively. We also observed PMCA1 immunoreactivity using immunofluorescence analysis. These findings indicate that PMCA participates in maintaining [Ca2+]i homeostasis in odontoblasts by Ca2+ extrusion following [Ca2+]i elevation. In addition, PMCA participates in dentinogenesis by transporting Ca2+ to the mineralizing front (which is independent of non-collagenous dentin matrix protein secretion) under physiological and pathological conditions following mechanical stimulation by hydrodynamic force inside dentinal tubules, or direct alkaline stimulation by the application of high-pH dental materials.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hiroyuki Mochizuki
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Ryouichi Satou
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Miyu Iwasaki
- Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; (R.S.); (M.I.)
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan;
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Takeshi Sakurai
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (M.K.); (H.M.); (K.K.); (S.N.); (T.S.); (H.K.)
- Correspondence:
| |
Collapse
|
6
|
Rodolphi MS, Kopczynski A, Carteri RB, Sartor M, Fontella FU, Feldmann M, Hansel G, Strogulski NR, Portela LV. Glutamate transporter-1 link astrocytes with heightened aggressive behavior induced by steroid abuse in male CF1 mice. Horm Behav 2021; 127:104872. [PMID: 33069754 DOI: 10.1016/j.yhbeh.2020.104872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022]
Abstract
The astrocytic glutamate transporter GLT-1 performs glutamate uptake thereby mediating NMDAr responses in neurons. Ceftriaxone (CEF) upregulates astrocytic GLT-1 expression/activity, which could counteract excessive glutamate levels and aggressive behavior induced by anabolic synthetic steroids such as nandrolone decanoate (ND). Here, adult male CF-1 mice were allocated to oil (VEH), ND, CEF, and ND/CEF groups. Mice were subcutaneously (s.c.) injected with ND (15 mg/kg) or VEH for 19 days, and received intraperitoneal (i.p.) injections of CEF (200 mg/kg) or saline for 5 days. The ND/CEF group received ND for 19 days plus coadministration of CEF in the last 5 days. On the 19th day, the aggressive phenotypes were evaluated through the resident-intruder test. After 24 h, cerebrospinal fluid was collected to measure glutamate levels, and the pre-frontal cortex was used to assess GLT-1, pGluN2BTyr1472, and pGluN2ATyr1246 by Western blot. Synaptosomes from the left brain hemisphere was used to evaluate mitochondrial function including complex II-succinate dehydrogenase (SDH), Ca2+ handling, membrane potential (ΔѰm), and H2O2 production. ND decreased the latency for the first attack and increased the number of attacks by the resident mice against the intruder, mechanistically associated with an increase in glutamate levels and pGluN2BTyr1472 but not pGluN2ATyr1244, and GLT-1 downregulation. The abnormalities in mitochondrial Ca2+ influx, SDH, ΔѰm, and H2O2 implies in deficient energy support to the synaptic machinery. The ND/CEF group displayed a decreased aggressive behavior, normalization of glutamate and pGluN2BTyr1472levels, and mitochondrial function at synaptic terminals. In conclusion, the pharmacological modulation of GLT-1 highlights its relevance as an astrocytic target against highly impulsive and aggressive phenotypes.
Collapse
Affiliation(s)
- Marcelo S Rodolphi
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Coronel Joaquim Pedro Salgado 80, Porto Alegre, RS 90420-060, Brazil
| | - Monia Sartor
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda U Fontella
- Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Marceli Feldmann
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Gisele Hansel
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil; Robert A. Groff Professor of Teaching and Research in Neurosurgery Department: Neurosurgery, University of Pennsylvania, 105 Hayden Hall 3320 Smith Walk, Philadelphia, PA 19104-6316, USA; Laboratório de Neuroinflamação e Neuroimunologia, Instituto do Cérebro do Rio Grande do Sul, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil
| | - Luis V Portela
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação Bioquímica, Universidade Federal do Rio Grande do Sul-UFRGS, Ramiro Barcelos 2600, anexo, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
7
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Mirabelli E, Ni L, Li L, Acioglu C, Heary RF, Elkabes S. Pathological pain processing in mouse models of multiple sclerosis and spinal cord injury: contribution of plasma membrane calcium ATPase 2 (PMCA2). J Neuroinflammation 2019; 16:207. [PMID: 31703709 PMCID: PMC6839084 DOI: 10.1186/s12974-019-1585-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuropathic pain is often observed in individuals with multiple sclerosis (MS) and spinal cord injury (SCI) and is not adequately alleviated by current pharmacotherapies. A better understanding of underlying mechanisms could facilitate the discovery of novel targets for therapeutic interventions. We previously reported that decreased plasma membrane calcium ATPase 2 (PMCA2) expression in the dorsal horn (DH) of healthy PMCA2+/− mice is paralleled by increased sensitivity to evoked nociceptive pain. These studies suggested that PMCA2, a calcium extrusion pump expressed in spinal cord neurons, plays a role in pain mechanisms. However, the contribution of PMCA2 to neuropathic pain processing remains undefined. The present studies investigated the role of PMCA2 in neuropathic pain processing in the DH of wild-type mice affected by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and following SCI. Methods EAE was induced in female and male C57Bl/6N mice via inoculation with myelin oligodendrocyte glycoprotein fragment 35–55 (MOG35–55) emulsified in Complete Freund’s Adjuvant (CFA). CFA-inoculated mice were used as controls. A severe SC contusion injury was induced at thoracic (T8) level in female C57Bl/6N mice. Pain was evaluated by the Hargreaves and von Frey filament tests. PMCA2 levels in the lumbar DH were analyzed by Western blotting. The effectors that decrease PMCA2 expression were identified in SC neuronal cultures. Results Increased pain in EAE and SCI was paralleled by a significant decrease in PMCA2 levels in the DH. In contrast, PMCA2 levels remained unaltered in the DH of mice with EAE that manifested motor deficits but not increased pain. Interleukin-1β (IL-1β), tumor necrosis factor α (TNFα), and IL-6 expression were robustly increased in the DH of mice with EAE manifesting pain, whereas these cytokines showed a modest increase or no change in mice with EAE in the absence of pain. Only IL-1β decreased PMCA2 levels in pure SC neuronal cultures through direct actions. Conclusions PMCA2 is a contributor to neuropathic pain mechanisms in the DH. A decrease in PMCA2 in DH neurons is paralleled by increased pain sensitivity, most likely through perturbations in calcium signaling. Interleukin-1β is one of the effectors that downregulates PMCA2 by acting directly on neurons.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Li Ni
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Robert F Heary
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA. .,School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Hörtenhuber M, Toledo EM, Smedler E, Arenas E, Malmersjö S, Louhivuori L, Uhlén P. Mapping genes for calcium signaling and their associated human genetic disorders. Bioinformatics 2018; 33:2547-2554. [PMID: 28430858 PMCID: PMC5870714 DOI: 10.1093/bioinformatics/btx225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
Motivation Signal transduction via calcium ions (Ca2+) represents a fundamental signaling pathway in all eukaryotic cells. A large portion of the human genome encodes proteins used to assemble signaling systems that can transduce signals with diverse spatial and temporal dynamics. Results Here, we provide a map of all of the genes involved in Ca2+ signaling and link these genes to human genetic disorders. Using Gene Ontology terms and genome databases, 1805 genes were identified as regulators or targets of intracellular Ca2+ signals. Associating these 1805 genes with human genetic disorders uncovered 1470 diseases with mutated ‘Ca2+ genes’. A network with scale-free properties appeared when the Ca2+ genes were mapped to their associated genetic disorders. Availability and Implementation The Ca2+ genome database is freely available at http://cagedb.uhlenlab.org and will foster studies of gene functions and genetic disorders associated with Ca2+ signaling. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthias Hörtenhuber
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Enrique M Toledo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
10
|
A complex of Neuroplastin and Plasma Membrane Ca 2+ ATPase controls T cell activation. Sci Rep 2017; 7:8358. [PMID: 28827723 PMCID: PMC5566957 DOI: 10.1038/s41598-017-08519-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
The outcome of T cell activation is determined by mechanisms that balance Ca2+ influx and clearance. Here we report that murine CD4 T cells lacking Neuroplastin (Nptn -/-), an immunoglobulin superfamily protein, display elevated cytosolic Ca2+ and impaired post-stimulation Ca2+ clearance, along with increased nuclear levels of NFAT transcription factor and enhanced T cell receptor-induced cytokine production. On the molecular level, we identified plasma membrane Ca2+ ATPases (PMCAs) as the main interaction partners of Neuroplastin. PMCA levels were reduced by over 70% in Nptn -/- T cells, suggesting an explanation for altered Ca2+ handling. Supporting this, Ca2+ extrusion was impaired while Ca2+ levels in internal stores were increased. T cells heterozygous for PMCA1 mimicked the phenotype of Nptn -/- T cells. Consistent with sustained Ca2+ levels, differentiation of Nptn -/- T helper cells was biased towards the Th1 versus Th2 subset. Our study thus establishes Neuroplastin-PMCA modules as important regulators of T cell activation.
Collapse
|
11
|
Khariv V, Elkabes S. Contribution of Plasma Membrane Calcium ATPases to neuronal maladaptive responses: Focus on spinal nociceptive mechanisms and neurodegeneration. Neurosci Lett 2017; 663:60-65. [PMID: 28780172 DOI: 10.1016/j.neulet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are ion pumps that expel Ca2+ from cells and maintain Ca2+ homeostasis. Four isoforms and multiple splice variants play important and non-overlapping roles in cellular function and integrity and have been implicated in diseases including disorders of the central nervous system (CNS). In particular, one of these isoforms, PMCA2, is critical for spinal cord (SC) neuronal function. PMCA2 expression is decreased in SC neurons at onset of symptoms in animal models of multiple sclerosis. Decreased PMCA2 expression affects the function and viability of SC neurons, with motor neurons being the most vulnerable population. Recent studies have also shown that PMCA2 could be an important contributor to pain processing in the dorsal horn (DH) of the SC. Pain sensitivity was altered in female, but not male, PMCA2+/- mice compared to PMCA2+/+ littermates in a modality-dependent manner. Changes in pain responsiveness in the female PMCA2+/- mice were paralleled by female-specific alterations in the expression of effectors, which have been implicated in the excitability of DH neurons, in mechanisms governing nociception and in the transmission of pain signals. Other PMCA isoforms and in particular, PMCA4, also contribute to the excitability of neurons in the dorsal root ganglia (DRG), which contain the first-order sensory neurons that convey nociceptive information from the periphery to the DH. These findings suggest that specific PMCA isoforms play specialized functions in neurons that mediate pain processing. Further investigations are necessary to unravel the precise contribution of PMCAs to mechanisms governing pathological pain in models of injury and disease.
Collapse
Affiliation(s)
- Veronika Khariv
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Stella Elkabes
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
12
|
Bandulik S. Of channels and pumps: different ways to boost the aldosterone? Acta Physiol (Oxf) 2017; 220:332-360. [PMID: 27862984 DOI: 10.1111/apha.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid aldosterone is a major factor controlling the salt and water balance and thereby also the arterial blood pressure. Accordingly, primary aldosteronism (PA) characterized by an inappropriately high aldosterone secretion is the most common form of secondary hypertension. The physiological stimulation of aldosterone synthesis in adrenocortical glomerulosa cells by angiotensin II and an increased plasma K+ concentration depends on a membrane depolarization and an increase in the cytosolic Ca2+ activity. Recurrent gain-of-function mutations of ion channels and transporters have been identified in a majority of cases of aldosterone-producing adenomas and in familial forms of PA. In this review, the physiological role of these genes in the regulation of aldosterone synthesis and the altered function of the mutant proteins as well are described. The specific changes of the membrane potential and the cellular ion homoeostasis in adrenal cells expressing the different mutants are compared, and their impact on autonomous aldosterone production and proliferation is discussed.
Collapse
Affiliation(s)
- S. Bandulik
- Medical Cell Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
13
|
Robertson SYT, Wen X, Yin K, Chen J, Smith CE, Paine ML. Multiple Calcium Export Exchangers and Pumps Are a Prominent Feature of Enamel Organ Cells. Front Physiol 2017; 8:336. [PMID: 28588505 PMCID: PMC5440769 DOI: 10.3389/fphys.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Calcium export is a key function for the enamel organ during all stages of amelogenesis. Expression of a number of ATPase calcium transporting, plasma membrane genes (ATP2B1-4/PMCA1-4), solute carrier SLC8A genes (sodium/calcium exchanger or NCX1-3), and SLC24A gene family members (sodium/potassium/calcium exchanger or NCKX1-6) have been investigated in the developing enamel organ in earlier studies. This paper reviews the calcium export pathways that have been described and adds novel insights to the spatiotemporal expression patterns of PMCA1, PMCA4, and NCKX3 during amelogenesis. New data are presented to show the mRNA expression profiles for the four Atp2b1-4 gene family members (PMCA1-4) in secretory-stage and maturation-stage rat enamel organs. These data are compared to expression profiles for all Slc8a and Slc24a gene family members. PMCA1, PMCA4, and NCKX3 immunolocalization data is also presented. Gene expression profiles quantitated by real time PCR show that: (1) PMCA1, 3, and 4, and NCKX3 are most highly expressed during secretory-stage amelogenesis; (2) NCX1 and 3, and NCKX6 are expressed during secretory and maturation stages; (3) NCKX4 is most highly expressed during maturation-stage amelogenesis; and (4) expression levels of PMCA2, NCX2, NCKX1, NCKX2, and NCKX5 are negligible throughout amelogenesis. In the enamel organ PMCA1 localizes to the basolateral membrane of both secretory and maturation ameloblasts; PMCA4 expression is seen in the basolateral membrane of secretory and maturation ameloblasts, and also cells of the stratum intermedium and papillary layer; while NCKX3 expression is limited to Tomes' processes, and the apical membrane of maturation-stage ameloblasts. These new findings are discussed in the perspective of data already present in the literature, and highlight the multiplicity of calcium export systems in the enamel organ needed to regulate biomineralization.
Collapse
Affiliation(s)
- Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Junjun Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States.,Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Charles E Smith
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill UniversityMontreal, QC, Canada
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| |
Collapse
|
14
|
Tauber P, Aichinger B, Christ C, Stindl J, Rhayem Y, Beuschlein F, Warth R, Bandulik S. Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca(2+)-ATPase ATP2B3. Endocrinology 2016; 157:2489-99. [PMID: 27035656 DOI: 10.1210/en.2015-2029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenal aldosterone-producing adenomas (APAs) are a main cause for primary aldosteronism leading to arterial hypertension. Physiologically, aldosterone production in the adrenal gland is stimulated by angiotensin II and high extracellular potassium. These stimuli lead to a depolarization of the plasma membrane and, as a consequence, an increase of intracellular Ca(2+). Mutations of the plasma membrane Ca(2+)-ATPase ATP2B3 have been found in APAs with a prevalence of 0.6%-3.1%. Here, we investigated the effects of the APA-associated ATP2B3(Leu425_Val426del) mutation in adrenocortical NCI-H295R and human embryonic kidney (HEK-293) cells. Ca(2+) measurements revealed a higher basal Ca(2+) level in cells expressing the mutant ATP2B3. This rise in intracellular Ca(2+) was even more pronounced under conditions with high extracellular Ca(2+) pointing to an increased Ca(2+) influx associated with the mutated protein. Furthermore, cells with the mutant ATP2B3 appeared to have a reduced capacity to export Ca(2+) suggesting a loss of the physiological pump function. Surprisingly, expression of the mutant ATP2B3 caused a Na(+)-dependent inward current that strongly depolarized the plasma membrane and compromised the cytosolic cation composition. In parallel to these findings, mRNA expression of the cytochrome P450, family 11, subfamily B, polypeptide 2 (aldosterone synthase) was substantially increased and aldosterone production was enhanced in cells overexpressing mutant ATP2B3. In summary, the APA-associated ATP2B3(Leu425_Val426del) mutant promotes aldosterone production by at least 2 different mechanisms: 1) a reduced Ca(2+) export due to the loss of the physiological pump function; and 2) an increased Ca(2+) influx due to opening of depolarization-activated Ca(2+) channels as well as a possible Ca(2+) leak through the mutated pump.
Collapse
Affiliation(s)
- Philipp Tauber
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - B Aichinger
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - C Christ
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - J Stindl
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Y Rhayem
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - F Beuschlein
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - R Warth
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - S Bandulik
- Medical Cell Biology (P.T., B.A., C.C., J.S., R.W., S.B.), University of Regensburg, 93053 Regensburg, Germany; and Medizinische Klinik und Poliklinik IV (Y.R., F.B.), Ludwig-Maximilians-Universität, 80336 Munich, Germany
| |
Collapse
|
15
|
Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T, Zhou SF. Targeting Na⁺/K⁺ -translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 2016; 42:427-43. [PMID: 25739707 DOI: 10.1111/1440-1681.12385] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 12/24/2022]
Abstract
The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an α-subunit that has four isoforms (α1 -α4 ) and a β-subunit that has three isoforms (β1 -β3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer.
Collapse
Affiliation(s)
- Cameron T Durlacher
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Monesterolo NE, Nigra AD, Campetelli AN, Santander VS, Rivelli JF, Arce CA, Casale CH. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2813-20. [DOI: 10.1016/j.bbamem.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
|
17
|
Strehler EE. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.). Biochem Biophys Res Commun 2015; 460:26-33. [PMID: 25998731 DOI: 10.1016/j.bbrc.2015.01.121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Guggenheim 16-11A1, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Ho PWL, Pang SYY, Li M, Tse ZHM, Kung MHW, Sham PC, Ho SL. PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion. Brain Behav 2015; 5:e00321. [PMID: 25798335 PMCID: PMC4356846 DOI: 10.1002/brb3.321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. Recently, we described a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP. Further to this finding, here we describe the functional effect of this mutation. METHODS As PMCA4 removes cytosolic calcium, we measured transient changes and the time-dependent decay of cytosolic calcium level as visualized by using fura-2 fluorescent dye with confocal microscopy in human SH-SY5Y neuroblastoma cells overexpressing either wild-type or R268Q mutant PMCA4. RESULTS Overexpressing both wild-type and R268Q PMCA4 significantly reduced maximum calcium surge after KCl-induced depolarization as compared with vector control cells. However, cells overexpressing mutant PMCA4 protein demonstrated significantly higher level of calcium surge when compared with wild-type. Furthermore, the steady-state cytosolic calcium concentration in these mutant cells remained markedly higher than the wild-type after SERCA inhibition by thapsigargin. CONCLUSION Our result showed that p.R268Q mutation in PMCA4 resulted in functional changes in calcium homeostasis in human neuronal cells. This suggests that calcium dysregulation may be associated with the pathogenesis of FSP.
Collapse
Affiliation(s)
- Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong, China ; Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong, China
| | - Miaoxin Li
- Department of Psychiatry, University of Hong Kong Hong Kong, China ; Centre for Reproduction, Development and Growth, University of Hong Kong Hong Kong, China ; Centre for Genomic Sciences, University of Hong Kong Hong Kong, China
| | - Zero Ho-Man Tse
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, University of Hong Kong Hong Kong, China ; Centre for Reproduction, Development and Growth, University of Hong Kong Hong Kong, China ; Centre for Genomic Sciences, University of Hong Kong Hong Kong, China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong, China
| |
Collapse
|
19
|
Krebs J. The plethora of PMCA isoforms: Alternative splicing and differential expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2018-24. [PMID: 25535949 DOI: 10.1016/j.bbamcr.2014.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
In this review the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to their tissue distribution, their differences during development and their importance for regulating Ca²⁺ homeostasis under different conditions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Joachim Krebs
- NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
20
|
Thorsen K, Agafonov O, Selstø CH, Jolma IW, Ni XY, Drengstig T, Ruoff P. Robust concentration and frequency control in oscillatory homeostats. PLoS One 2014; 9:e107766. [PMID: 25238410 PMCID: PMC4169565 DOI: 10.1371/journal.pone.0107766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e. perturbation-independent) at a given set-point A(set) by feeding the integrated error back into the process that generates A. The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory) mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators ("oscillatory homeostats") to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
Collapse
Affiliation(s)
- Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Oleg Agafonov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | - Ingunn W. Jolma
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Xiao Y. Ni
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
21
|
Gutierres JM, Carvalho FB, Schetinger MRC, Agostinho P, Marisco PC, Vieira JM, Rosa MM, Bohnert C, Rubin MA, Morsch VM, Spanevello R, Mazzanti CM. Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci 2013; 33:88-97. [PMID: 24374256 DOI: 10.1016/j.ijdevneu.2013.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
Anthocyanins are a group of natural phenolic compounds responsible for the color to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimer's disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na(+),K(+)-ATPase and Ca(2+)-ATPase and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine-challenged (SCO), and scopolamine+anthocyanins (SCO+ANT). After seven days of treatment with ANT (200mgkg(-1); oral), the animals were SCO injected (1mgkg(-1); IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P<0.05). The ANT treatment per se had an anxiolytic effect. AChE activity was increased in both in cortex and hippocampus of SCO group, this effect was significantly attenuated by ANT (P<0.05). SCO decreased Na(+),K(+)-ATPase and Ca(2+)-ATPase activities in hippocampus, and ANT was able to significantly (P<0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na(+),K(+)-ATPase and Ca(2+)-ATPase activities, and also prevented memory deficits caused by scopolamine administration.
Collapse
Affiliation(s)
- Jessié M Gutierres
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil.
| | - Fabiano B Carvalho
- Setor de Bioquímica e Biologia Molecular do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Maria Rosa C Schetinger
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Faculty of Medicine, Biochemistry Institute, University of Coimbra, 3004 Coimbra, Portugal
| | - Patricia C Marisco
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Juliano M Vieira
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Michele M Rosa
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Crystiani Bohnert
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Maribel A Rubin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Vera M Morsch
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil
| | - Roselia Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, Pelotas RS 96010-900, Brazil
| | - Cinthia M Mazzanti
- Setor de Bioquímica e Biologia Molecular do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria RS 97105-900, Brazil.
| |
Collapse
|
22
|
Strehler EE. Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2013; 16:190-206. [PMID: 23958189 PMCID: PMC3869240 DOI: 10.18433/j3z011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|