1
|
Yoshihara E. Adapting Physiology in Functional Human Islet Organogenesis. Front Cell Dev Biol 2022; 10:854604. [PMID: 35557947 PMCID: PMC9086403 DOI: 10.3389/fcell.2022.854604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of three-dimensional (3D)-structured functional human islets is expected to be an alternative cell source for cadaveric human islet transplantation for the treatment of insulin-dependent diabetes. Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer infinite resources for newly synthesized human islets. Recent advancements in hPSCs technology have enabled direct differentiation to human islet-like clusters, which can sense glucose and secrete insulin, and those islet clusters can ameliorate diabetes when transplanted into rodents or non-human primates (NHPs). However, the generated hPSC-derived human islet-like clusters are functionally immature compared with primary human islets. There remains a challenge to establish a technology to create fully functional human islets in vitro, which are functionally and transcriptionally indistinguishable from cadaveric human islets. Understanding the complex differentiation and maturation pathway is necessary to generate fully functional human islets for a tremendous supply of high-quality human islets with less batch-to-batch difference for millions of patients. In this review, I summarized the current progress in the generation of 3D-structured human islets from pluripotent stem cells and discussed the importance of adapting physiology for in vitro functional human islet organogenesis and possible improvements with environmental cues.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Ho AMC, Winham SJ, McCauley BM, Kundakovic M, Robertson KD, Sun Z, Ordog T, Webb LM, Frye MA, Veldic M. Plasma Cell-Free DNA Methylomics of Bipolar Disorder With and Without Rapid Cycling. Front Neurosci 2021; 15:774037. [PMID: 34916903 PMCID: PMC8669968 DOI: 10.3389/fnins.2021.774037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid cycling (RC) burdens bipolar disorder (BD) patients further by causing more severe disability and increased suicidality. Because diagnosing RC can be challenging, RC patients are at risk of rapid decline due to delayed suitable treatment. Here, we aimed to identify the differences in the circulating cell-free DNA (cfDNA) methylome between BD patients with and without RC. The cfDNA methylome could potentially be developed as a diagnostic test for BD RC. We extracted cfDNA from plasma samples of BD1 patients (46 RC and 47 non-RC). cfDNA methylation levels were measured by 850K Infinium MethylationEPIC array. Principal component analysis (PCA) was conducted to assess global differences in methylome. cfDNA methylation levels were compared between RC groups using a linear model adjusted for age and sex. PCA suggested differences in methylation profiles between RC groups (p = 0.039) although no significant differentially methylated probes (DMPs; q > 0.15) were found. The top four CpG sites which differed between groups at p < 1E-05 were located in CGGPB1, PEX10, NR0B2, and TP53I11. Gene set enrichment analysis (GSEA) on top DMPs (p < 0.05) showed significant enrichment of gene sets related to nervous system tissues, such as neurons, synapse, and glutamate neurotransmission. Other top notable gene sets were related to parathyroid regulation and calcium signaling. To conclude, our study demonstrated the feasibility of utilizing a microarray method to identify circulating cfDNA methylation sites associated with BD RC and found the top differentially methylated CpG sites were mostly related to the nervous system and the parathyroid.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Stacey J Winham
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Bryan M McCauley
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, New York, NY, United States
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Zhifu Sun
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Lauren M Webb
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Wang Y, Li M, Ni Z. Primary study on the hypoglycemic mechanism of 5rolGLP-HV in STZ-induced type 2 diabetes mellitus mice. J Biosci 2018. [DOI: 10.1007/s12038-018-9809-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Wu N, Kim KH, Zhou Y, Lee JM, Kettner NM, Mamrosh JL, Choi S, Fu L, Moore DD. Small Heterodimer Partner (NR0B2) Coordinates Nutrient Signaling and the Circadian Clock in Mice. Mol Endocrinol 2016; 30:988-95. [PMID: 27427832 PMCID: PMC5004116 DOI: 10.1210/me.2015-1295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/13/2016] [Indexed: 12/13/2022] Open
Abstract
Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprandially, serving as regulators of the fed state in the liver. Here, we show that nuclear receptor Small Heterodimer Partner (SHP), a regulator of bile acid metabolism, impacts the endogenous peripheral clock by directly regulating Bmal1. Bmal1-dependent gene expression is altered in Shp knockout mice, and liver clock adaptation is delayed in Shp knockout mice upon restricted feeding. These results identify SHP as a potential mediator connecting nutrient signaling with the circadian clock.
Collapse
Affiliation(s)
- Nan Wu
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Ying Zhou
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Jae Man Lee
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Nicole M Kettner
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Jennifer L Mamrosh
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Sungwoo Choi
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Loning Fu
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - David D Moore
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
6
|
Lu J, Gan J, Fu G, Ding L, Zheng Q. The Impact of Small RNA Interference Against Homer1 on Rats with Type 2 Diabetes and ERK Phosphorylation. Cell Biochem Biophys 2016; 73:597-601. [PMID: 27259299 DOI: 10.1007/s12013-015-0657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study is to evaluate Homer1 expression in rats with Type 2 diabetes mellitus (T2DM) and investigate the mechanism by which Homer1 influences the pathogenesis of diabetes through study on rat model with decreased Homer1 expression. Rat model of T2DM was constructed and blood insulin concentration was measured. Homer1 mRNA and protein expressions in rat pancreatic tissue were determined using RT-PCR as well as Western blotting. Homer1 expression in human monocytic THP-1 cells was interfered using short hairpin RNA, and its effect on phosphorylation of extracellular signal-regulated kinase (ERK) was assessed. Fasting glucose concentration in rat model of T2DM was significantly higher than that of normal rats (13.1 ± 2.4 vs 5.1 ± 1.1 mmol/L), and fasting blood insulin concentration of diabetic group was significantly lower than that of normal group (13.6 ± 1.9 18.3 ± 2.2 mIU/L) (P < 0.05). Homer1 mRNA and protein expressions in pancreatic tissue of rats with T2DM were significantly higher than those of normal rats (P < 0.05). Level of ERK phosphorylation in pancreatic tissue of rats with T2DM was significantly higher than that of normal rats. Homer1 mRNA level in rat pancreatic tissue of T2DM was positively correlated with the area of pancreatic islets (r = 0.526, P = 0.014). Homer1 mRNA level was significantly inhibited in high-glucose and high-fat stimulated human monotypic THP-1 cells with interfered Homer1. Compared with controls, P-ERK phosphorylation was significantly decreased in THP-1 cells with interfered Homer1 (P < 0.05). Homer1 can promote the progression of T2DM, which may be achieved through affecting ERK phosphorylation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Jihong Gan
- Department of Cardiology, Lanzhou Military General Hospital in Urumqi, Urumqi, 830000, Xinjiang, China
| | - Guoqiang Fu
- Department of Emergency, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China.
| |
Collapse
|
7
|
Castelli M, Amodeo G, Negri L, Lattanzi R, Maftei D, Gotti C, Pistillo F, Onnis V, Congu C, Panerai AE, Sacerdote P, Franchi S. Antagonism of the Prokineticin System Prevents and Reverses Allodynia and Inflammation in a Mouse Model of Diabetes. PLoS One 2016; 11:e0146259. [PMID: 26730729 PMCID: PMC4701417 DOI: 10.1371/journal.pone.0146259] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a severe diabetes complication and its treatment is not satisfactory. It is associated with neuroinflammation-related events that participate in pain generation and chronicization. Prokineticins are a new family of chemokines that has emerged as critical players in immune system, inflammation and pain. We investigated the role of prokineticins and their receptors as modulators of neuropathic pain and inflammatory responses in experimental diabetes. In streptozotocin-induced-diabetes in mice, the time course expression of prokineticin and its receptors was evaluated in spinal cord and sciatic nerves, and correlated with mechanical allodynia. Spinal cord and sciatic nerve pro- and anti-inflammatory cytokines were measured as protein and mRNA, and spinal cord GluR subunits expression studied. The effect of preventive and therapeutic treatment with the prokineticin receptor antagonist PC1 on behavioural and biochemical parameters was evaluated. Peripheral immune activation was assessed measuring macrophage and T-helper cytokine production. An up-regulation of the Prokineticin system was present in spinal cord and nerves of diabetic mice, and correlated with allodynia. Therapeutic PC1 reversed allodynia while preventive treatment blocked its development. PC1 normalized prokineticin levels and prevented the up-regulation of GluN2B subunits in the spinal cord. The antagonist restored the pro-/anti-inflammatory cytokine balance altered in spinal cord and nerves and also reduced peripheral immune system activation in diabetic mice, decreasing macrophage proinflammatory cytokines and the T-helper 1 phenotype. The prokineticin system contributes to altered sensitivity in diabetic neuropathy and its inhibition blocked both allodynia and inflammatory events underlying disease.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cytokines/genetics
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Disease Models, Animal
- Gastrointestinal Hormones/genetics
- Gastrointestinal Hormones/metabolism
- Gene Expression
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/prevention & control
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/prevention & control
- Male
- Mice, Inbred C57BL
- Neuralgia/genetics
- Neuralgia/metabolism
- Neuralgia/prevention & control
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sciatic Nerve/metabolism
- Spinal Cord/metabolism
- Triazines/pharmacology
Collapse
Affiliation(s)
- Mara Castelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Negri
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University of Rome, Roma, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University of Rome, Roma, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University of Rome, Roma, Italy
| | - Cecilia Gotti
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Milano, Italy
| | - Francesco Pistillo
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Milano, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Cenzo Congu
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto E. Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Zhou J, Yan J, Bai Z, Li K, Huang K. Hypoglycemic activity and potential mechanism of a polysaccharide from the loach in streptozotocin-induced diabetic mice. Carbohydr Polym 2015; 121:199-206. [DOI: 10.1016/j.carbpol.2014.12.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
|
9
|
Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, Huang K. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:229-38. [PMID: 25698243 DOI: 10.1016/j.jep.2015.02.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/19/2015] [Accepted: 02/09/2015] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rehmannia glutinosa (Gaertn.) DC. (RG) has been widely used as traditional Chinese herbal medicine for treatment of diabetes and its complications. The polysaccharide fraction of RG has been proposed to possess hypoglycemic effect by intraperitoneal administration, however, the mechanisms responsible for the hypoglycemic effect of RG polysaccharide (RGP) remain poorly understood. Here we studied the anti-hyperglycemic and anti-hyperlipidemic effect of oral administration of a purified RGP and its underlying mechanisms in streptozotocin (STZ)-induced diabetic mice. MATERIALS AND METHODS The preliminary structure of RGP was determined by GC and FT-IR. Mice were injected with STZ to induce type 1 diabetes. RGP at doses of 20, 40 and 80 mg/kg/day was orally administered to mice for 4 weeks, and metformin was used as positive control. After 4 weeks, the blood biochemical parameters, the pancreatic insulin contents, in vitro insulin secretion, the hepatic glycogen contents and mRNA expression of phosphoenolpyruvate carboxyl kinase (PEPCK) were assayed. RESULTS RGP was composed of rhamnose, arabinose, mannose, glucose and galactose in the molar ratio of 1.00:1.26:0.73:16.45:30.40 with the average molecular weight of 63.5 kDa. RGP administration significantly decreased the blood levels of glucose, total cholesterol, triglycerides, low density lipoprotein-cholesterol, and increased the blood levels of high density lipoprotein-cholesterol and insulin in diabetic mice, concurrent with increases in body weights and pancreatic insulin contents. The in vitro study revealed that RGP significantly enhanced both basal and glucose-stimulated insulin secretions, as well as islet insulin contents in the pancreatic islets of diabetic mice. Moreover, RGP reversed the increased mRNA expression of PEPCK and the reduced glycogen contents in the liver of diabetic mice. Furthermore, RGP exhibited potent anti-inflammatory and anti-oxidative activities, as evidenced by the decreased blood levels of TNF-α, IL-6, monocyte chemoattractant protein-1, MDA, and also the elevated blood levels of SOD and GPx activities in diabetic mice. CONCLUSIONS Taken together, RGP can effectively ameliorate hyperglycemia, hyperlipemia, vascular inflammation and oxidative stress in STZ-induced diabetic mice, and thus may be a potential therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| | - Gang Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Junyan Yan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kaicheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Zhaoshuai Bai
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Weinan Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Han Y, Jung HW, Park YK. Selective therapeutic effect of cornus officinalis fruits on the damage of different organs in STZ-induced diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1169-82. [PMID: 25169907 DOI: 10.1142/s0192415x14500736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to identify the selective therapeutic effects of Corni Fructus (Cornus officinalis Sieb. et Zucc.) on different organs in streptozotocin (STZ)-induced diabetic rats. Diabetes in rats was induced by intraperitonal injection with STZ at a dose of 30 mg/kg body weight (bw) for 3 days (once per a day). STZ-induced diabetic rats were orally administrated Corni Fructus (CF) extract at 300 mg/kg or metformin at 250 mg/kg daily for 4 weeks. Blood glucose and triglyceride (TG) in sera and urine total volume were measured. Histopathological changes of different organs, pancreas, liver, kidney, and lung tissues were observed by H&E staining. The expression of insulin and α-smooth muscle actin (α-SMA) was investigated in pancreas, and kidney by immunohistochemistry, respectively. The results revealed that CF extract significantly decreased the serum levels of blood glucose, and TG, and also urine total volume in STZ-induced diabetic rats. The histological examinations revealed amelioration of diabetes-induced pancreas injury including pathological changes of the Langerhans's islet and glomerular with their loss after the administration of CF extraction. Moreover, the administration of CF extract increased the numbers of insulin releasing beta cells in pancreas and also inhibited the expression of α-SMA in kidney of STZ-induced diabetic rats. On the other hand, CF extract showed no effect on the pathological damages of liver and lung in STZ-induced diabetic rats. These results demonstrated that CF extract may have a selective therapeutic potential through the control of hyperglycemia, and the protection of pancreas and kidney against diabetic damage.
Collapse
Affiliation(s)
- Yunkyung Han
- Korean Medicine R&D Center, Dongguk University, Gyeongju 780-714, Republic of Korea
| | | | | |
Collapse
|