1
|
Shanmugasundaram Prema S, Ganapathy D, Shanmugamprema D. Prehabilitation Strategies: Enhancing Surgical Resilience with a Focus on Nutritional Optimization and Multimodal Interventions. Adv Nutr 2025; 16:100392. [PMID: 39956387 PMCID: PMC11932842 DOI: 10.1016/j.advnut.2025.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025] Open
Abstract
Surgery imposes significant physiological and psychological stress, often leading to complications, delayed recovery, and prolonged hospital stays. Prehabilitation, a proactive strategy to optimize patients' resilience before surgery, has emerged as a transformative approach in perioperative care. Nutritional prehabilitation specifically addresses metabolic dysregulation, muscle loss, and immune suppression caused by surgical stress. This review highlights the critical role of nutritional prehabilitation within a multimodal framework, integrating exercise, psychological support, and emerging technologies. Although some evidence supports the effectiveness of prehabilitation in enhancing functional outcomes and improvements in rates of complications and mortality, its implementation faces challenges such as resources, lack of standardized protocols, and variability across healthcare settings, highlighting the need for greater standardization. Physical training as part of prehabilitation also improves mood, fosters patient engagement, and instills a sense of control over the disease process. These psychosocial benefits, alongside enhanced patient-reported outcomes and qualitative measures, reflect the holistic value of prehabilitation. Emerging technologies, such as wearable devices and telemedicine, offer scalable and personalized solutions for delivering prehabilitation, particularly in resource-limited settings. Future research should prioritize refining protocols, exploring long-term outcomes, and addressing the unique needs of high-risk populations. By emphasizing a proactive approach to perioperative care, this review aims to highlight the potential of nutritional prehabilitation as a foundational component of multimodal strategies designed to optimize surgical resilience, empower patients, and transform surgical recovery into a proactive and patient-centered journey.
Collapse
Affiliation(s)
| | - Dhanraj Ganapathy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Deepankumar Shanmugamprema
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Shaikh RQ, Das S, Chaurasiya A, Ashtamy MG, Sheikh AB, Fernandes M, Tiwari S, Unnikrishnan AG, Kulkarni MJ. Discovery of Free Glycated Amines and Glycated Urea in Diabetic Plasma: Potential Implications in Diabetes. ACS OMEGA 2024; 9:24907-24915. [PMID: 38882103 PMCID: PMC11171088 DOI: 10.1021/acsomega.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
The role of protein glycation in the pathogenesis of diabetes has been well established. Akin to proteins, free amino acids and other small-molecule amines are also susceptible to glycation in hyperglycemic conditions and may have a role in the pathogenesis of the disease. However, information about glycation of free amino acids and other small-molecule amines is relatively obscure. In the quest to discover small-molecule glycated amines in the plasma, we have synthesized glycated amino acids, glycated creatine, and glycated urea, and by using a high-resolution accurate mass spectrometer, a mass spectral library was developed comprising the precursor and predominant fragment masses of glycated amines. Using this information, we report the discovery of the glycation of free lysine, arginine, and leucine/isoleucine from the plasma of diabetic patients. This has great physiological significance as glycation of these amino acids may create their deficiency and affect vital physiological processes such as protein synthesis, cell signaling, and insulin secretion. Also, these glycated amino acids could serve as potential markers of diabetes and its complications. While other amines, such as creatinine and urea, accumulate in the plasma and act as biomarkers of diabetic nephropathy. For the first time, we report the detection of glycated urea in diabetic plasma, which is confirmed by matching the precursor and fragment masses with the in vitro synthesized glycated urea by using 12C6 and 13C6-glucose. Further, we quantified glycated urea detected in two forms, monoglycated urea (MGU) and diglycated urea (DGU), by a targeted mass spectrometric approach in the plasma of healthy, diabetic, and diabetic nephropathy subjects. Both MGU and DGU showed a positive correlation with clinical parameters, such as blood glucose and HbA1c. Given that urea gets converted to glycated urea in hyperglycemic conditions, it is crucial to quantify MGU and DGU along with the urea for the diagnosis of diabetic nephropathy and study their physiological role in diabetes.
Collapse
Affiliation(s)
- Rashdajabeen Q Shaikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sancharini Das
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | - Murali G Ashtamy
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Amreen B Sheikh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Moneesha Fernandes
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Shalbha Tiwari
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Ambika G Unnikrishnan
- Department of Diabetes and Endocrine Research, Chellaram Diabetes Institute, Pune 411021, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
3
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Ogagayere LO, Naiho AO, Emojevwe V, Igweh JC. Quercetin flavonoid and vitamin C recuperate kidney functions in potassium bromate-induced renal dysfunction in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3789-3796. [PMID: 37341785 DOI: 10.1007/s00210-023-02571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Studies into the functions and mechanisms of action of quercetin may be able to help dispel the negative effects of toxicants on renal toxicity due to its anti-inflammatory potential, as well as provide a simple, low-cost alternative for treating renal toxicity in developing nations. Therefore, the present study evaluated the ameliorative and renal protective activities of quercetin dihydrate in potassium bromate-induced, renal-toxic Wistar rats. Forty-five (45) mature female Wistar rats (180-200 g) were randomly grouped into nine (9) (n = 5). Group A served as general control. Nephrotoxicity was induced in groups B to I with the administration of potassium bromate. While group B served as a negative control, groups C-E received graded doses of quercetin (40, 60, and 80 mg/kg, respectively). Group F received 2.5 mg/kg/day of vitamin C, while groups G-I received vitamin C (2.5 mg/kg/day) and co-administration of a graded dose of quercetin (40, 60, and 80 mg/kg, respectively). Daily urine levels and final blood samples by retro-orbital techniques were collected for GFR, urea, and creatinine level assessment. The collected data were subjected to ANOVA and Tukey's post hoc test, and the results were presented as mean SEM with a p < 0.05 level considered significant. Body and organ weight and GFR were significantly reduced (p < 0.05), while serum and urine creatinine and urea were decreased in renotoxic animals. However, treatment with QCT reversed the renotoxic effects. We, therefore, concluded that quercetin administered alone or with vitamin C conferred renal protection by reversing KBrO3-induced renal toxicity in rats. Further studies to corroborate the present findings are recommended.
Collapse
Affiliation(s)
- Lucky Omamuzo Ogagayere
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, Achievers University, Owo, Ondo State, Nigeria
| | - Alexander Obidike Naiho
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - John Chukwuka Igweh
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
de Lemos Vasconcelos Silva E, de Jesus Oliveira AC, de Carvalho Moreira LMC, Silva-Filho EC, Wanderley AG, de La Roca Soares MF, Soares-Sobrinho JL. Insulin-loaded nanoparticles based on acetylated cashew gum/chitosan complexes for oral administration and diabetes treatment. Int J Biol Macromol 2023; 242:124737. [PMID: 37148931 DOI: 10.1016/j.ijbiomac.2023.124737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.
Collapse
Affiliation(s)
- Eliadna de Lemos Vasconcelos Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Monica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
7
|
Zupančič B, Umek N, Ugwoke CK, Cvetko E, Horvat S, Grdadolnik J. Application of FTIR Spectroscopy to Detect Changes in Skeletal Muscle Composition Due to Obesity with Insulin Resistance and STZ-Induced Diabetes. Int J Mol Sci 2022; 23:ijms232012498. [PMID: 36293355 PMCID: PMC9603871 DOI: 10.3390/ijms232012498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Age, obesity, and diabetes mellitus are pathophysiologically interconnected factors that significantly contribute to the global burden of non-communicable diseases. These metabolic conditions are associated with impaired insulin function, which disrupts the metabolism of carbohydrates, lipids, and proteins and can lead to structural and functional changes in skeletal muscle. Therefore, the alterations in the macromolecular composition of skeletal muscle may provide an indication of the underlying mechanisms of insulin-related disorders. The aim of this study was to investigate the potential of Fourier transform infrared (FTIR) spectroscopy to reveal the changes in macromolecular composition in weight-bearing and non-weight-bearing muscles of old, obese, insulin-resistant, and young streptozotocin (STZ)-induced diabetic mice. The efficiency of FTIR spectroscopy was evaluated by comparison with the results of gold-standard histochemical techniques. The differences in biomolecular phenotypes and the alterations in muscle composition in relation to their functional properties observed from FTIR spectra suggest that FTIR spectroscopy can detect most of the changes observed in muscle tissue by histochemical analyses and more. Therefore, it could be used as an effective alternative because it allows for the complete characterization of macromolecular composition in a single, relatively simple experiment, avoiding some obvious drawbacks of histochemical methods.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| | | | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Chair for Genetics, Biotechnology and Immunology, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| |
Collapse
|
8
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
9
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Heidari H, Azizi Y, Maleki-Ravasan N, Tahghighi A, Khalaj A, Pourhamzeh M. Nature׳s gifts to medicine: The metabolic effects of extracts from cocoons of Larinus hedenborgi (Coleoptera: Curculionidae) and their host plant Echinops cephalotes (Asteraceae) in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114762. [PMID: 34678415 DOI: 10.1016/j.jep.2021.114762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trehala manna (TM), the edible cocoons of several weevil species, e.g. Larinus hedenborgi Boheman, 1845 (Coleoptera: Curculionidae) and their host plant, i.e. Echinops cephalotes DC. (EC) (Asteraceae), are traditionally used to treat pain, inflammation, infectious diseases, as well as respiratory, renal, reproductive and metabolic disorders. AIM OF THE STUDY This study investigated the metabolic effects of aqueous extracts from TM and EC on diabetic male Wistar albino rats. MATERIALS AND METHODS Animals were orally gavaged with the extracts (75, 150, and 300 mg/kg), normal saline, and glibenclamide (Glbn), for 28 days. The serum levels of glucose, insulin, lipid profile, and hepatic enzymes, plus the body weight of rats were measured at the beginning and the end of study. The proximate composition of the extracts was determined, additionally. The antioxidant and cytotoxic potency of the extracts were evaluated by radical scavenging/ferric reducing and viability assays, respectively. RESULTS Treatment of diabetic rats with the extracts significantly altered metabolic biomarkers compared with diabetic, control and Glbn-treated groups, but not in a dose-dependent manner. However, the antihyperglycemic effects of TM75/EC300, the antiobesity effects of EC150, and the hepatoprotective effects of TM150/EC150 were even stronger than those of Glbn. TM/EC-treated groups represented normal cell architecture in the pancreatic and renal tissues. Nutrient analysis displayed that TM is rich in sugar and magnesium, whereas EC is abundant in protein, sodium, potassium, and calcium. The extracts showed no antioxidant and cytotoxic effects, as compared to the control groups. CONCLUSIONS The findings suggest that active ingredients in the extracts evaluated are responsible for the metabolic effects by lowering blood sugar and restoring the damaged islets of Langerhans. The close trophic relationship of the TM-producing beetle with the host thistle justifies the overlaps of the bioactivity of the TM and EC extracts.
Collapse
Affiliation(s)
- Hamid Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Azar Tahghighi
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Khalaj
- Department of Physiology and Pharmacology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Schisandrae chinensis Fructus Extract Ameliorates Muscle Atrophy in Streptozotocin-Induced Diabetic Mice by Downregulation of the CREB-KLF15 and Autophagy-Lysosomal Pathways. Cells 2021; 10:cells10092283. [PMID: 34571935 PMCID: PMC8469055 DOI: 10.3390/cells10092283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease caused by the destruction of pancreatic beta cells. Many patients with type 1 diabetes experience skeletal muscle wasting. Although the link between type 1 diabetes and muscle wasting is not clearly known, insulin insufficiency and hyperglycemia may contribute to decreased muscle mass. In this study, we investigated the therapeutic effect of the ethanolic extract of Schisandrae chinensis Fructus (SFe) on muscle wasting in streptozotocin (STZ)-induced diabetic mice. STZ-diabetic C57BL/6 mice (blood glucose level ≥300 mg/dL) were orally administered SFe (250 or 500 mg/kg/day) for 6 weeks. We observed that SFe administration did not change blood glucose levels but increased gastrocnemius muscle weight, cross-sectional area, and grip strength in STZ-induced diabetic mice. Administration of SFe (500 mg/kg) decreased the expression of atrophic factors, such as MuRF1 and atrogin-1, but did not alter the expression of muscle synthetic factors. Further studies showed that SFe administration decreased the expression of KLF15 and p-CREB, which are upstream molecules of atrophic factors. Examination of the expression of molecules involved in autophagy–lysosomal pathways (e.g., p62/SQSTM1, Atg7, Beclin-1, ULK-1, LC3-I, and LC3-II) revealed that SFe administration significantly decreased the expression of p62/SQSTM1, LC3-I, and LC3-II; however, no changes were observed in the expression of Atg7, Beclin-1, or ULK-1. Our results suggest that SFe ameliorated muscle wasting in STZ-induced diabetic mice by decreasing protein degradation via downregulation of the CREB-KLF15-mediated UPS system and the p62/SQSTM1-mediated autophagy–lysosomal pathway.
Collapse
|
13
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
14
|
Cai Y, Zhan H, Weng W, Wang Y, Han P, Yu X, Shao M, Sun H. Niclosamide ethanolamine ameliorates diabetes-related muscle wasting by inhibiting autophagy. Skelet Muscle 2021; 11:15. [PMID: 34107998 PMCID: PMC8188694 DOI: 10.1186/s13395-021-00272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
Background Diabetes-related muscle wasting is one of the devastating complications of diabetes, which is associated with muscle autophagy due to insulin-mediated glucose starvation. However, treatment for diabetes-related muscle wasting is limited. Our previous study already found that niclosamide ethanolamine salt has the therapeutic effects on insulin deficiency of type 1 diabetes mice and muscle wasting induced by doxorubicin. Therefore, we aim to investigate the therapeutic effects of niclosamide ethanolamine salt on diabetes-induced muscle wasting and to explore whether the mechanism is associated with muscle autophagy. Methods Type 1 diabetes mice were induced by intraperitoneal injection of streptozotocin, then were fed with regular diet supplemented with 10 g/kg niclosamide ethanolamine salt. The whole experiment lasted for 8 weeks. At the end of the study, grip strength, weights of tibialis anterior, gastrocnemius, soleus, and extensor digitorum longus muscle were measured. Tibialis anterior muscles stained with PAS were used for evaluating the fiber cross sectional area. Immunofluorescence analysis of myosin heavy chain expression in extensor digitorum longus and soleus muscle was used for determining the composition of the muscle fiber type. Electronic microscopy was applied to observe the autophagy in the atrophied muscle. Serum insulin levels and fasting blood glucose were also measured. Tissues of gastrocnemius muscle were used for detecting the expression of the proteins related to autophagy. Results In this study, we found that niclosamide ethanolamine salt could ameliorate muscle atrophy in the type 1 diabetes mice as well, such as enhancing the declined grip strength, improving limb weight and increasing the numbers of glycolytic muscle fiber. Electron microscopy also confirmed that there did exist abundant autophagic vacuoles in the atrophied muscle of the type 1 diabetes mice. Specifically, niclosamide ethanolamine salt could reduce the over expression of autophagy-related proteins, including p-AMPK (Thr172), FoxO3a, p-ULK1 (Ser555), LC3B II, and p-p38 in gastrocnemius muscle of the type 1 diabetes mice. Conclusion Niclosamide ethanolamine salt could ameliorate muscle wasting. The mechanisms underlying might be associated with inhibition of muscle autophagy.
Collapse
Affiliation(s)
- Yuchun Cai
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Hongyue Zhan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.,Department of Critical Care Medicine, Shantou Hospital of Traditional Chinese Medicine, Shantou, China
| | - Wenci Weng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Yao Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
15
|
Yu Y, Zhang J, Yao S, Pan L, Luo G, Xu N. Apolipoprotein M overexpression through adeno-associated virus gene transfer improves insulin secretion and insulin sensitivity in Goto-Kakizaki rats. J Diabetes Investig 2020; 11:1150-1158. [PMID: 32243104 PMCID: PMC7477524 DOI: 10.1111/jdi.13261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/01/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS/OBJECTIVE The development of type 2 diabetes is a result of insulin resistance in various tissues, including skeletal muscle and liver. Apolipoprotein M (ApoM) plays an important role in the function of high-density lipoprotein, and also affects hepatic lipid and glucose metabolism. In this study, we aimed to investigate whether ApoM overexpression modulates glucose metabolism and improves insulin sensitivity. MATERIALS AND METHODS The Goto-Kakizaki (GK) rats were transfected with adeno-associated virus (AAV) encoding rat ApoM gene or control blank. The oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp (HEC) experiment were used to assess the insulin sensitivity of GK rats. RESULTS The results show that ApoM messenger ribonucleic acid and protein were significantly overexpressed in the pancreatic tissues. Overexpression of ApoM decreased fasting blood glucose and random blood glucose, improved glucose tolerance, and increased bodyweight and insulin levels in GK rats. The glucose infusion rate of rats in the AAV encoding rat ApoM gene group during HEC test was 1.04-, 1.23- and 1.95-fold higher than that in the AAV control blank group at 1-3 weeks after injection of AAV, respectively. A Wes-ProteinSimple assay and quantification was carried out to assess phosphorylated protein kinase B/protein kinase B protein levels in the muscle tissues of ApoM-overexpressing GK rats, and they were found to be higher than those of the control group at the seventh week after AAV injection. CONCLUSIONS ApoM overexpression through adeno-associated virus gene transfer might improve insulin secretion and insulin sensitivity in GK rats.
Collapse
Affiliation(s)
- Yang Yu
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Jun Zhang
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Shuang Yao
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Lili Pan
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Guanghua Luo
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Ning Xu
- Section of Clinical Chemistry and PharmacologyInstitute of Laboratory MedicineLunds UniversityLundSweden
| |
Collapse
|
16
|
Fujita N, Goto N, Nakamura T, Nino W, Ono T, Nishijo H, Urakawa S. Hyperbaric Normoxia Improved Glucose Metabolism and Decreased Inflammation in Obese Diabetic Rat. J Diabetes Res 2019; 2019:2694215. [PMID: 31828157 PMCID: PMC6885850 DOI: 10.1155/2019/2694215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
Hyperbaric treatment improves hyperglycemia and hyperinsulinemia in type 2 diabetes associated with obesity. However, its mode of action is unknown. The purpose of the present study was to investigate the influences of regular hyperbaric treatment with normal air at 1.3 atmospheres absolute (ATA) on glucose tolerance in type 2 diabetes with obesity. The focus was directed on inflammatory cytokines in the adipose tissue and skeletal muscle. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as models of type 2 diabetes with obesity and Long-Evans Tokushima Otsuka (LETO) rats served as healthy controls. The rats were randomly assigned to untreated or hyperbaric treatment groups exposed to 1.3 ATA for 8 h d-1 and 5 d wk-1 for 16 wks. Glucose levels were significantly higher in the diabetic than in the healthy control rats. Nevertheless, glucose levels at 30 and 60 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Insulin levels at fasting and 120 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Hyperbaric treatment also increased interleukin-10 (IL-10) expression in the skeletal muscle and decreased tumor necrosis factor α (TNFα) expression in adipose tissue. These results suggested that TNFα downregulation and IL-10 upregulation in diabetic rats subjected to hyperbaric treatment participate in the crosstalk between the adipose and skeletal muscle tissues and improve glucose intolerance.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Natsuki Goto
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Nakamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Wataru Nino
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
17
|
Meex RCR, Blaak EE, van Loon LJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev 2019; 20:1205-1217. [PMID: 31240819 PMCID: PMC6852205 DOI: 10.1111/obr.12862] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Insulin resistance and muscle mass loss often coincide in individuals with type 2 diabetes. Most patients with type 2 diabetes are overweight, and it is well established that obesity and derangements in lipid metabolism play an important role in the development of insulin resistance in these individuals. Specifically, increased adipose tissue mass and dysfunctional adipose tissue lead to systemic lipid overflow and to low-grade inflammation via altered secretion of adipokines and cytokines. Furthermore, an increased flux of fatty acids from the adipose tissue may contribute to increased fat storage in the liver and in skeletal muscle, resulting in an altered secretion of hepatokines, mitochondrial dysfunction, and impaired insulin signalling in skeletal muscle. Recent studies suggest that obesity and lipid derangements in adipose tissue can also lead to the development of muscle atrophy, which would make insulin resistance and muscle atrophy two sides of the same coin. Unfortunately, the exact relationship between lipid accumulation, type 2 diabetes, and muscle atrophy remains largely unexplored. The aim of this review is to discuss the relationship between type 2 diabetes and muscle loss and to discuss some of the joint pathways through which lipid accumulation in organs may affect peripheral insulin sensitivity and muscle mass.
Collapse
Affiliation(s)
- Ruth C R Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Kazemi F. Myostatin alters with exercise training in diabetic rats; possible interaction with glycosylated hemoglobin and inflammatory cytokines. Cytokine 2019; 120:99-106. [PMID: 31054482 DOI: 10.1016/j.cyto.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 12/28/2022]
Abstract
The role of myostatin (MSTN) in the regulation of energy homeostasis has been known and that MSTN inhibition can attenuate the development of diabetes. However, the response of MSTN to exercise in type 1 diabetes (T1DM) is unknown. This study aimed to investigate the alteration of MSTN following aerobic exercise training in diabetic rats and its possible interaction with glycosylated hemoglobin (HbA1c) and inflammatory cytokines. Forty-eight male Wistar rats were divided into non-diabetic untrained, non-diabetic trained, diabetic untrained and diabetic trained groups. To induce T1DM, rats received an intraperitoneal injection of STZ (60 mg·kg-1). Treadmill exercise was performed for six weeks, five days/week. HbA1c was estimated, MSTN mRNA expression in skeletal muscle was measured, and plasma MSTN and inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were determined. Results revealed a significant decrease of HbA1c and plasma inflammatory cytokines (IL-6, TNF-α and IL-1β) followed by a significant decrease of plasma and skeletal muscle MSTN in diabetic trained rats versus non-diabetic untrained and diabetic untrained rats after the experimental period. Moreover, in diabetic untrained and diabetic trained rats, a significantly positive correlation (change versus change) of plasma MSTN with HbA1c and plasma IL-6, TNF-α and IL-1β was found. In conclusion, this study indicated that aerobic exercise training by a decrease of HbA1c and plasma IL-6, TNF-α and IL-1β could decrease MSTN levels in plasma and skeletal muscle in T1DM. Furthermore, the effective influence of exercise may be reflected by changes of MSTN in diabetic rats.
Collapse
Affiliation(s)
- Fahimeh Kazemi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
19
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
20
|
Liu HW, Chang SJ. Moderate Exercise Suppresses NF-κB Signaling and Activates the SIRT1-AMPK-PGC1α Axis to Attenuate Muscle Loss in Diabetic db/db Mice. Front Physiol 2018; 9:636. [PMID: 29896118 PMCID: PMC5987703 DOI: 10.3389/fphys.2018.00636] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
The clear mechanism of moderate exercise training (Ex) in attenuating muscle loss remains elusive in diabetes. We investigated the effects of moderate exercise training on diabetes-induced nuclear factor-κB (NF-κB) activation and mitochondrial dysfunction. Skeletal muscle size and atrophy signaling pathways were examined in type 2 diabetic db/db mice with or without moderate exercise training (5.2 m/min, 1 h/day, and 5 days/week for a total of 8 weeks). Exercise training decreased serum leptin, MCP-1, and resistin levels in db/db+Ex mice, but it did not reduce symptoms of insulin resistance including hyperglycemia, hyperinsulinemia, and impaired glucose tolerance. Moderate exercise training prevented the loss of muscle mass of tibialis anterior and gastrocnemius muscles in db/db+Ex mice. The average cross-sectional area of tibialis anterior muscle was increased significantly in db/db+Ex mice compared with untrained mice (830.6 vs. 676.5 μm2). Inhibition of MuRF-1 and K48-linked polyubiquitination was observed in db/db+Ex mice. Exercise training reduced activation of IκBα/NF-κB pathway and lowered IL-6, TNFα, F4/80 (macrophage marker) at mRNA level in db/db+Ex mice compared with untrained mice. Exercise training did not influence FoxO3a phosphorylation and its upstream regulator Akt. Exercise training increased SIRT1 and PGC1α expression and AMPKα and mitochondrial complex IV activities and upregulated genes involved in mitochondrial biogenesis/function including Nrf1, Tfam, and mitochondrial complexes I-V. In conclusion, moderate exercise training inhibits NFκB signaling and activates SIRT1-AMPKα-PGC1α axis, thereby attenuating type 2 diabetes-related muscle atrophy.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Martins CEC, Lima VBDS, Schoenfeld BJ, Tirapegui J. Effects of leucine supplementation and resistance training on myopathy of diabetic rats. Physiol Rep 2018; 5:e13273. [PMID: 28536139 PMCID: PMC5449559 DOI: 10.14814/phy2.13273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Leucine supplementation and resistance training positively influence the protein translation process and the cell signaling mTOR (mammalian target of rapamycin) pathway that regulates muscle protein balance and muscle remodeling, and thus may be therapeutic to diabetic myopathy. However, the effect of a combined intervention has not been well studied. Forty male Wistar rats were divided into five groups, control (C), diabetic control (D), diabetic + trained (DT), diabetic + L-leucine (DL), diabetic + L-leucine + trained (DLT). The supplementation of 5% leucine in chow, and resistance training were conducted for 8 weeks postweaning of rats. The extensor digitorum longus was used to assess signaling proteins involved in muscle protein synthesis, and the gastrocnemius and soleus were used for determination of muscle weight. Blood samples were collected for biochemical assays. Strength and ambulation tests were employed to evaluate motor performance. Results showed that both leucine supplementation and resistance training elevated the activity of mTOR-p70S6K in diabetic rats (P < 0.05). Moreover, though leucine supplementation in combination with resistance training demonstrated synergistic effects on p70S6K (P < 0.05), both treatments were capable of recovering motor performance (P < 0.05). In conclusion, 5% leucine supplementation combined with resistance training has the potential to attenuate muscle loss and motor performance decrements in diabetic rats, at least in part through increased protein synthesis.
Collapse
Affiliation(s)
- Carlos Eduardo C Martins
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa B de S Lima
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julio Tirapegui
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Pourfarjam Y, Rezagholizadeh L, Nowrouzi A, Meysamie A, Ghaseminejad S, Ziamajidi N, Norouzi D. Effect of Cichorium intybus L. seed extract on renal parameters in experimentally induced early and late diabetes type 2 in rats. Ren Fail 2017; 39:211-221. [PMID: 27846769 PMCID: PMC6014526 DOI: 10.1080/0886022x.2016.1256317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/11/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Blood and urine biochemistry screening tests are important for initial detection of diabetes, determination of severity of its complications, and monitoring of therapy. We evaluated the effects of aqueous chicory seed extract (CSE), on renal biochemical parameters, histology, and Na+/glucose cotansporters, SGLT1 and SGLT2 expression levels using metformin, and aspirin as controls. Late stage type 2 diabetes (LT2D; FBS, >300 mg/dl) and early stage type 2 diabetes (ET2D; FBS, 140-220 mg/dl) were induced in rats by streptozotocin (STZ group) and a combination of STZ and niacinamide (NIA/STZ group), respectively. A non-diabetic group was included as control. Treatment included daily intraperitoneal injections of either CSE (125 mg/kg b.w.) or metformin (100 mg/kg b.w.) and oral aspirin (120 mg/kg b.w.) for 21 days. At the end, blood and 24 h urine samples were collected; and kidneys were saved at -80 ˚C. CSE reduced urinary α1-microgobulin excretion in ET2D (p = .043), and serum uric acid (p = .045), and glomerular diameter (p < .01) in LT2D. Metformin appeared to be more effective in LT2D with respect to serum uric acid, urea, and BUN (< .05). Both CSE and metformin improved histology. Aspirin improved several blood and urine variables, but appeared to aggravate morphological damages to the kidney tissue. The absolute values of albumin, α1-microglobulin or total protein in urine rather than their creatinine ratios seemed more useful in the detection of early kidney damage; CSE was able to repair the kidney damage and α1-microglobulin was sensitive enough to allow monitoring of the improvements caused by the treatment.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Rezagholizadeh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Alipasha Meysamie
- Department of Community & Preventive Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Ghaseminejad
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Norouzi
- Department of Public Relations, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Le Bacquer O, Combe K, Montaurier C, Salles J, Giraudet C, Patrac V, Domingues-Faria C, Guillet C, Louche K, Boirie Y, Sonenberg N, Moro C, Walrand S. Muscle metabolic alterations induced by genetic ablation of 4E-BP1 and 4E-BP2 in response to diet-induced obesity. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Kristell Combe
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | - Jérôme Salles
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | | | | | | | - Katie Louche
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | - Yves Boirie
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
- CHU Clermont-Ferrand; Service Nutrition Clinique; Clermont Ferrand France
| | - Nahum Sonenberg
- Department of Biochemistry; McGill University; Montreal QC Canada
| | - Cédric Moro
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | | |
Collapse
|
24
|
Ryan AS, Li G, Hafer-Macko C, Ivey FM. Resistive Training and Molecular Regulators of Vascular-Metabolic Risk in Chronic Stroke. J Stroke Cerebrovasc Dis 2016; 26:962-968. [PMID: 27955950 DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC-1α) gene and Sirtuin-1 (SIRT-1) respond to physiological stimuli and regulate insulin resistance. Inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and the soluble forms of intracellular adhesion molecule (sICAM-1) and vascular CAM-1 (sVCAM-1) are associated with increased risk of diabetes and coronary heart disease. Resistive training (RT) reduces hyperinsulinemia and improves insulin action in chronic stroke. Yet, the molecular mechanisms for this are unknown. This study will determine the effects of RT on skeletal muscle PGC-1α and SIRT-1 mRNA expression and inflammatory and vascular markers. METHODS Stroke survivors (50-76 years) underwent a fasting blood draw for measurement of TNF-α, IL-6, CRP, serum amyloid A, sICAM-1, sVCAM-1, and bilateral vastus lateralis biopsies before and after RT. Participants were also assessed using bilateral multislice thigh computed tomography scans from the knee to the hip, a total body scan by dual-energy X-ray absorptiometry, and 1-repetition maximum strength testing. Subjects performed 2 sets of 3 lower extremity RT exercises 3 times per week for 12 weeks. RESULTS Bilateral leg press and leg extension strength increased ~30-50% with RT (P < .001). Body weight, total body fat mass, and fat-free mass did not change. Thigh muscle area and volume increased in both legs (P < .05). Nonparetic muscle PGC-1α mRNA expression increased 14% (P < .05) after RT and SIRT-1 mRNA decreased 24% (P < .05) and 31% (P < .01) in paretic and nonparetic muscles. There were no significant changes in plasma inflammation with training. DISCUSSION RT in chronic stroke induces changes in key skeletal muscle regulators of metabolism, without effecting circulating inflammation.
Collapse
Affiliation(s)
- Alice S Ryan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; GRECC, MERCE, Baltimore, Maryland.
| | - Guoyan Li
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; GRECC, MERCE, Baltimore, Maryland
| | - Charlene Hafer-Macko
- GRECC, MERCE, Baltimore, Maryland; Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Frederick M Ivey
- GRECC, MERCE, Baltimore, Maryland; Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol 2016; 7:361. [PMID: 27610086 PMCID: PMC4997013 DOI: 10.3389/fphys.2016.00361] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as “simple” atrophy) and insulin resistance are “non-pathological” events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear—especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state “anabolic resistance.” While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic “marker” studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.
Collapse
Affiliation(s)
- Supreeth S Rudrappa
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Daniel J Wilkinson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Paul L Greenhaff
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Kenneth Smith
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Iskandar Idris
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| |
Collapse
|
26
|
Tamura Y, Fujito H, Kawao N, Kaji H. Vitamin D deficiency aggravates diabetes-induced muscle wasting in female mice. Diabetol Int 2016; 8:52-58. [PMID: 30603307 DOI: 10.1007/s13340-016-0278-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022]
Abstract
We recently reported that vitamin D deficiency aggravates diabetic bone loss in mice. Although vitamin D affects both muscle and bone, the role of the vitamin D state in diabetic muscle loss and muscle-bone relationships remains unclear. In the present study, we examined the effects of vitamin D deficiency on muscle mass, muscle differentiation and muscle-derived humoral factors linking muscle to bone in diabetic female mice. Diabetes was induced in mice by streptozotocin (STZ) injection after feeding with a normal or vitamin D-deficient diet for 6 weeks. Quantitative computed tomography analysis showed that tibial muscle mass was significantly decreased in diabetic mice compared with control mice 4 weeks after induction of diabetes. Vitamin D deficiency accelerated muscle loss in diabetic mice. Vitamin D deficiency augmented the decreases in Pax7 mRNA levels and the increases in muscle RING-Finger Protein-1 and atrogin-1 mRNA levels induced by diabetes in the gastrocnemius muscle of mice. Moreover, vitamin D deficiency decreased the mRNA levels of insulin-like growth factor-1, fibroblast growth factor-2 and osteoglycin in muscle of diabetic mice. In conclusion, we demonstrated that vitamin D deficiency aggravates muscle loss induced by diabetes in female mice. Vitamin D may exert significant effects on the maintenance of the musculoskeletal system partly through the muscle-bone relationships in diabetic state.
Collapse
Affiliation(s)
- Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 Japan
| | - Haruko Fujito
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 Japan
| |
Collapse
|
27
|
Naylor RJ, Piercy RJ. Development of a clonal equine myoblast cell line capable of terminal differentiation into mature myotubes in vitro. Am J Vet Res 2016; 76:608-14. [PMID: 26111090 DOI: 10.2460/ajvr.76.7.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To produce a clonal equine myoblast cell line that retains the ability to divide for multiple passages and differentiate into multinucleated myotubes during specific conditions. SAMPLE Cultured primary equine skeletal muscle-derived cells from a healthy Thoroughbred. PROCEDURES Cell cultures were transfected by electroporation with a plasmid (pNIT) that expresses the temperature-sensitive simian vacuolating virus 40 large T antigen (TAg), which can be controlled by a doxycycline-responsive promoter. Cells that stably integrated the TAg were selected and expanded to passage 25. For each passage, differentiation and fusion properties of the cells were determined and immunocytochemical analyses were performed to evaluate expression of TAg and other muscle-specific proteins. Optimum conditions that led to cell differentiation into myotubes were also determined. RESULTS Compared with nontransfected control cells, myogenic, desmin-positive cells expressed the TAg when incubated at 33°C and could be maintained in culture for numerous passages. Reduced expression of TAg was identified in cells incubated at 37°C or when incubated with doxycycline at 33°C. Expression of TAg was not detected when cells were incubated with doxycycline at 37°C, and when serum was withdrawn from the culture medium, those clones differentiated into a pure population of multinucleated myotubes. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that production of an immortalized clonal equine skeletal muscle cell line was possible. A clonal equine skeletal muscle cell line will be a valuable in vitro tool for use in equine physiology and disease research.
Collapse
|
28
|
Sjakste T, Paramonova N, Osina K, Dokane K, Sokolovska J, Sjakste N. Genetic variations in the PSMA3, PSMA6 and PSMC6 genes are associated with type 1 diabetes in Latvians and with expression level of number of UPS-related and T1DM-susceptible genes in HapMap individuals. Mol Genet Genomics 2015; 291:891-903. [PMID: 26661414 DOI: 10.1007/s00438-015-1153-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin-proteasome system (UPS), a key player of proteostasis network in the body, was implicated in type 1 diabetes mellitus (T1DM) pathogenesis. Polymorphisms in genes encoding proteasome subunits may potentially affect system efficiency. However, data in this field are still limited. To fulfil this gap, single nucleotide polymorphisms in the PSMB5 (rs11543947), PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) genes were genotyped on susceptibility to T1DM in Latvians. The rs11543947 was found to be neutral and other loci manifested disease susceptibility, with rs1048990 and rs2348071 being the most significantly associated (P < 0.001; OR 2.042 [1.376-3.032] and OR 2.096 [1.415-3.107], respectively). Risk effect was associated with female phenotype for rs2277460 and family history for rs2277460, rs2295826 and rs2295827. Five-locus genotypes being at risk simultaneously at any two or more loci showed strong (P < 0.0001) T1DM association. The T1DM protective effects (P < 0.001) were shown for five-locus genotype and haplotype homozygous on common alleles and composed of common alleles, respectively. Using SNPexp data set, correlations have been revealed between the rs1048990, rs2295826, rs2295827 and rs2348071 T1DM risk genotypes and expression levels of 14 genes related to the UPS and 42 T1DM-susceptible genes encoding proteins involved in innate and adaptive immunity, antiviral response, insulin signalling, glucose-energy metabolism and other pathways implicated in T1DM pathogenesis. Genotype-phenotype and genotype-genotype clusterings support genotyping results. Our results provide evidence on new T1DM-susceptible loci in the PSMA3, PSMA6 and PSMC6 proteasome genes and give a new insight into the T1DM pathogenesis.
Collapse
Affiliation(s)
- Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia.
| | - Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Kristine Osina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Kristine Dokane
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | | | | |
Collapse
|
29
|
Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 2015; 5:14241. [PMID: 26384018 PMCID: PMC4585597 DOI: 10.1038/srep14241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is characterized by disrupted glucose homeostasis due to loss or dysfunction of insulin-producing beta cells. In this work, we characterize pancreatic islet development and function in zebrafish mutant for pdx1, a gene which in humans is linked to genetic forms of diabetes and is associated with increased susceptibility to Type 2 diabetes. Pdx1 mutant zebrafish have the key diabetic features of reduced beta cells, decreased insulin and elevated glucose. The hyperglycemia responds to pharmacologic anti-diabetic treatment and, as often seen in mammalian diabetes models, beta cells of pdx1 mutants show sensitivity to nutrient overload. This unique genetic model of diabetes provides a new tool for elucidating the mechanisms behind hyperglycemic pathologies and will allow the testing of novel therapeutic interventions in a model organism that is amenable to high-throughput approaches.
Collapse
Affiliation(s)
- Robin A. Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stefan Dobler
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | - Julia Freudenblum
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Bankir L, Roussel R, Bouby N. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. Am J Physiol Renal Physiol 2015; 309:F2-23. [DOI: 10.1152/ajprenal.00614.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
A single protein-rich meal (or an infusion of amino acids) is known to increase the glomerular filtration rate (GFR) for a few hours, a phenomenon known as “hyperfiltration.” It is important to understand the factors that initiate this upregulation because it becomes maladaptive in the long term. Several mediators and paracrine factors have been shown to participate in this upregulation, but they are not directly triggered by protein intake. Here, we explain how a rise in glucagon and in vasopressin secretion, directly induced by protein ingestion, might be the initial factors triggering the hepatic and renal events leading to an increase in the GFR. Their effects include metabolic actions in the liver and stimulation of sodium chloride reabsorption in the thick ascending limb. Glucagon is not only a glucoregulatory hormone. It is also important for the excretion of nitrogen end products by stimulating both urea synthesis in the liver (along with gluconeogenesis from amino acids) and urea excretion by the kidney. Vasopressin allows the concentration of nitrogenous end products (urea, ammonia, etc.) and other protein-associated wastes in a hyperosmotic urine, thus allowing a very significant water economy characteristic of all terrestrial mammals. No hyperfiltration occurs in the absence of one or the other hormone. Experimental results suggest that the combined actions of these two hormones, along with the complex intrarenal handling of urea, lead to alter the composition of the tubular fluid at the macula densa and to reduce the intensity of the signal activating the tubuloglomerular feedback control of GFR, thus allowing GFR to raise. Altogether, glucagon, vasopressin, and urea contribute to set up the best compromise between efficient urea excretion and water economy.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
| | - Ronan Roussel
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
- Diabétologie Endocrinologie Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France
| | - Nadine Bouby
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
| |
Collapse
|
31
|
Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, Sun K, Sun H, Wang H, Zhang Z, Zhang BT, Sheng C, Wang H, Hu P. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 2015; 25:655-73. [PMID: 25976405 PMCID: PMC4456625 DOI: 10.1038/cr.2015.58] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022] Open
Abstract
Muscle stem cells (MuSCs, satellite cells) are the major contributor to muscle regeneration. Like most adult stem cells, long-term expansion of MuSCs in vitro is difficult. The in vivo muscle regeneration abilities of MuSCs are quickly lost after culturing in vitro, which prevents the potential applications of MuSCs in cell-based therapies. Here, we establish a system to serially expand MuSCs in vitro for over 20 passages by mimicking the endogenous microenvironment. We identified that the combination of four pro-inflammatory cytokines, IL-1α, IL-13, TNF-α, and IFN-γ, secreted by T cells was able to stimulate MuSC proliferation in vivo upon injury and promote serial expansion of MuSCs in vitro. The expanded MuSCs can replenish the endogenous stem cell pool and are capable of repairing multiple rounds of muscle injuries in vivo after a single transplantation. The establishment of the in vitro system provides us a powerful method to expand functional MuSCs to repair muscle injuries.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuning Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jie Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kun Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Sheng
- Shanghai Normal University, Guilin Road, Shanghai 200234, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
32
|
Fahrmann J, Grapov D, Yang J, Hammock B, Fiehn O, Bell GI, Hara M. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia. Am J Physiol Endocrinol Metab 2015; 308:E978-89. [PMID: 25852003 PMCID: PMC4451288 DOI: 10.1152/ajpendo.00019.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
Abstract
Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D.
Collapse
Affiliation(s)
- Johannes Fahrmann
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California
| | - Dmitry Grapov
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California
| | - Jun Yang
- Department of Entomology and Cancer Center, University of California Davis, Davis, California; and
| | - Bruce Hammock
- Department of Entomology and Cancer Center, University of California Davis, Davis, California; and
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California
| | - Graeme I Bell
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Reversal of muscle atrophy by Zhimu-Huangbai herb-pair via Akt/mTOR/FoxO3 signal pathway in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e100918. [PMID: 24968071 PMCID: PMC4072704 DOI: 10.1371/journal.pone.0100918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is one of the serious complications of diabetes. Zhimu-Huangbai herb-pair (ZB) is widely used in Chinese traditional medicine formulas for treating Xiaoke (known as diabetes) and its complications. However, the effect of ZB on reversal of muscle atrophy and the underlying mechanisms remain unknown. In this research, we investigated the effect and possible mechanisms of ZB on skeletal muscle atrophy in diabetic mice. Animal model of diabetic muscle atrophy was developed by high fat diet (HFD) feeding plus streptozotocin (STZ) injection. After oral adminstration of ZB for 6 weeks, the effects of ZB on reversal of muscle atrophy and the underlying mechanisms were evaluated by biochemical, histological and western blot methods. The skeletal muscle weight, strength, and cross-sectional area of diabetic mice were significantly increased by ZB treatment. Biochemical results showed that ZB treatment reduced the serum glucose level, and elevated the serum insulin-like growth factor 1 (IGF-1) and insulin levels significantly compared with untreated diabetic group. The western blot results showed that ZB activated the mTOR signal pathway, shown as increased phosphorylations (p-) of Akt, mTOR, Raptor, S6K1 and reduced Foxo3 expression compared with the model group. ZB could reverse muscle atrophy in diabetic mice. This may be through activation of mTOR signaling pathway that promotes protein synthesis, and inactivation foxo3 protein that inhibits protein degradation. These findings suggested that ZB may be considered as a potential candidate drug in treatment of diabetic muscle atrophy.
Collapse
|
34
|
Decrease of muscle volume in chronic kidney disease: the role of mitochondria in skeletal muscle. Kidney Int 2014; 85:1258-60. [DOI: 10.1038/ki.2013.539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|