1
|
Zhang J, Li Q, Sun Q, Wang B, Cui Y, Lou C, Yao Y, Zhang Y. Epigenetic modifications inhibit the expression of MARVELD1 and in turn tumorigenesis by regulating the Wnt/β-catenin pathway in pan-cancer. J Cancer 2022; 13:225-242. [PMID: 34976185 PMCID: PMC8692698 DOI: 10.7150/jca.63608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
MARVEL domain-containing 1 (MARVELD1) is one of the MARVEL domain-containing proteins. Expression of MARVELD1 in tumor and non-tumor tissues, the relationship between its expression and cancer prognosis, and upstream regulation of MARVELD1 were examined using pan-cancer data from The Cancer Genome Atlas. MARVELD1 expression was significantly downregulated in tissues used for pan-cancer analysis compared to that in normal tissues. Low expression of MARVELD1 was associated with poor disease outcomes in pan-cancer. Colon cancer patients with low expression of MARVELD1 had worse progression free survival and overall survival than those with high expression levels in our cohort. Hypermethylation and histone modification in the MARVELD1 promoter locus synergistically affected its expression in pan-cancer. The function of MARVELD1 in colon cancer remains to be studied. Gene Ontology enrichment analysis revealed that MARVELD1 may modulate processes associated with inhibition of tumorigenesis in colon cancer. Both upstream transcription factors and downstream functional enrichment of MARVELD1 were related to the Wnt/β-catenin signaling pathway. Overexpression of MARVELD1 inhibited the expression of β-catenin and its entry into the nucleus. MARVELD1 also inhibited the proliferation, migration, and invasion of colon cancer cells. With Wnt/β-catenin activator LiCl treatment, rescue experiments demonstrated that the role of MARVELD1 in colon cancer progression was dependent on the Wnt/β-catenin pathway. These results indicate that MARVELD1 acts as a tumor suppressor and inhibits tumorigenesis via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jingchun Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qinliang Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Ying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Rambout X, Maquat LE. The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing. Genes Dev 2021; 34:1113-1127. [PMID: 32873578 PMCID: PMC7462061 DOI: 10.1101/gad.339986.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Rambout and Maquat discuss known roles of the nuclear cap-binding complex (CBC) during the transcription of genes that encode proteins, stitching together past studies from diverse groups to describe the continuum of CBC-mediated checks and balances in eukaryotic cells. The largely nuclear cap-binding complex (CBC) binds to the 5′ caps of RNA polymerase II (RNAPII)-synthesized transcripts and serves as a dynamic interaction platform for a myriad of RNA processing factors that regulate gene expression. While influence of the CBC can extend into the cytoplasm, here we review the roles of the CBC in the nucleus, with a focus on protein-coding genes. We discuss differences between CBC function in yeast and mammals, covering the steps of transcription initiation, release of RNAPII from pausing, transcription elongation, cotranscriptional pre-mRNA splicing, transcription termination, and consequences of spurious transcription. We describe parameters known to control the binding of generic or gene-specific cofactors that regulate CBC activities depending on the process(es) targeted, illustrating how the CBC is an ever-changing choreographer of gene expression.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
3
|
MARVELD1 interacting with catalase regulates reactive oxygen species metabolism and mediates the sensitivity to chemotherapeutic drugs in epithelial tumors of the reproductive system. Mol Carcinog 2019; 58:1410-1426. [DOI: 10.1002/mc.23024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
|
4
|
MARVELD1 depletion leads to dysfunction of motor and cognition via regulating glia-dependent neuronal migration during brain development. Cell Death Dis 2018; 9:999. [PMID: 30250269 PMCID: PMC6155261 DOI: 10.1038/s41419-018-1027-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
Abstract
The establishment of functional neuronal connectivity is dependent on the neuronal migration and the accurate positioning of neurons in the developing brain. Abnormal neuronal migration can trigger neuronal maturation defects and apoptosis. However, many genetic bases remain unclear in neuronal migration disorders during brain development. In this study, we reported that MARVELD1-defected mice displayed motor and cognitive dysfunction resulting from aberrant neuronal migration during brain development. The laminar organization of the cerebral cortex and cerebellum in MARVELD1 knockout (KO) mice is disrupted, indicating impaired radial neuronal migration. Furthermore, we used the cerebellum as a model to explore the radial neuronal migration processes, and the results demonstrated that the proper neuronal migration depended on MARVELD1 expression in glial cells of the developing brain. MARVELD1 suppressed the expression of ITGB1 and FAK Tyr397 phosphorylation in glia-dependent manner. The inhibition of the MARVELD1/ITGB1/FAK signalling pathway in MARVELD1 KO mice could reverse the defects in neuronal migration in vitro. Our findings revealed that MARVELD1 regulated neuronal migration by mediating the formation of glial fibres and ITGB1/FAK signalling pathway. The depletion of MARVELD1 during mouse brain development led to the abnormity of motor and cognition functions.
Collapse
|
5
|
Liu X, Gao J, Sun Y, Zhang D, Liu T, Yan Q, Yang X. Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells. Biol Chem 2017; 398:1119-1126. [DOI: 10.1515/hsz-2016-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Abstract
Epithelial cell adhesion molecule (EpCAM) expression is elevated in breast cancer tissue, and correlates with the cancer metastasis and cell adhesion. Although EpCAM glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its function remains unclear. Here we analyzed cell adhesion ability of EpCAM in breast cancer cells. The results showed that EpCAM expression was associated with cell adhesion and N-glycosylation mutation of EpCAM decreased adhesion capacity. N-glycosylation mutation of EpCAM was correlated with lower levels of integrin β1 and fibronectin. We also found that effect of N-glycosylation of EpCAM on cell adhesion was regulated via FAK/Akt/Gsk-3β/β-catenin signaling pathway, which further adjusted MMP2/9 expression and activities. Our studies identified the characteristics and function of EpCAM glycosylation sites on breast cancer cell adhesion. These data could potentially clarify molecular regulation of EpCAM by N-glycosylation and intensify our understanding of the utility of glycosylated EpCAM as a target for breast cancer therapy.
Collapse
|
6
|
Chen Y, Zhang H, Han F, Yue L, Qiao C, Zhang Y, Dou P, Liu W, Li Y. The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion. J Cell Physiol 2017; 233:2257-2269. [PMID: 28708243 DOI: 10.1002/jcp.26098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
The placenta is a remarkable organ, it serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (p < 0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migrate and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4 during placenta development.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chunxiao Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Dou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Abstract
Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also evaluated in this review. We show that targeting TLRs in cancer immunotherapy is a promising strategy for cancer therapy, and the specific TLR ligands, either alone or combination, exhibit antitumor potential.
Collapse
|
8
|
Yao Y, Shi M, Liu S, Li Y, Guo K, Ci Y, Liu W, Li Y. MARVELD1 modulates cell surface morphology and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Mol Carcinog 2015; 55:1714-1727. [PMID: 26509557 DOI: 10.1002/mc.22421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022]
Abstract
Integrins have been known to play pivotal roles in malignant progression and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC). We previously demonstrated that MARVELD1, a potential tumor suppressor, is epigenetically silenced in multiple cancer cells. In this study, we found MARVELD1 silencing altered cell surface ultrastructure of NSCLC cells and inhibited the formation of punctate integrin β1/β4 cluster in microvillus, whereas MARVELD1 overexpression suppressed TGF-β1-induced EMT. Remarkably, the balance of integrin β1 and β4 was modulated by MARVELD1. MARVELD1 silencing led to imbalance of integrin β1/β4 and significantly reduced microvillus length, furthermore affected the localization of β1/β4 at microvilli tips. TGF-β1-induced EMT was promoted by MARVELD1 silencing, while rebalance of integrin β1/β4 partly rescued the epithelial phenotype of MARVELD1-silenced cells. Mechanistically, we demonstrate that MARVELD1-mediated balance of integrin β1 and β4 regulates cell surface ultrastructure and EMT phenotype of NSCLC cells, suggesting MARVELD1 has a potential to be developed as a therapeutic target for NSCLC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shanshan Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kexin Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
9
|
Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, Nie H, Su J, Wang Z, Yue L, Cao J, Li Y. Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Sci Rep 2014; 4:7545. [PMID: 25520033 PMCID: PMC4269892 DOI: 10.1038/srep07545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 01/20/2023] Open
Abstract
Epigenetic silence in cancer frequently altered signal-transduction pathways during the early stages of tumor development. Recent progress in the field of cancer epigenetics has led to new opportunities for diagnosis and treatment of cancer. We previously demonstrated that novel identified nuclear factor MARVELD1 was widely expressed in human tissues, but down-regulated by promoter methylation in multiple cancers. This study was carried out to determine the biological and clinical significance of MARVELD1 gene silencing in lung cancer. Here, we found the reduced MARVELD1 expression significantly correlated with diagnostic histopathology and malignant degree of lung cancers. DNA hypermethylation and histone deacetylation synergistically inactivated MARVELD1 gene in lung cancer cells. Moreover, MARVELD1 modulated the efficiency of nonsense-mediated mRNA decay (NMD) through interaction with NMD core factor SMG1. The decreased MARVELD1 level in lung cancer reduces NMD efficiency through diminishing the association between NMD complex component UPF1/SMG1 and premature termination codons containing mRNA (PTC-mRNA). The results suggested that MARVELD1 silencing is an appealing diagnostic biomarker for lung cancer and epigenetic silencing of MARVELD1 gene links with the regulatory mechanism of NMD pathway in lung cancer, which may be required for tumorigenesis.
Collapse
Affiliation(s)
- Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Su
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zeyu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|