1
|
Mao S. Emerging role and the signaling pathways of uncoupling protein 2 in kidney diseases. Ren Fail 2024; 46:2381604. [PMID: 39090967 PMCID: PMC11299446 DOI: 10.1080/0886022x.2024.2381604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES Uncoupling protein 2 (UCP2) was involved in the pathogenesis and development of kidney diseases. Many signaling pathways and factors regulate the expression of UCP2. We aimed to investigate the precise role of UCP2 and its signaling pathways in kidney diseases. METHODS We summarized the available evidence to yield a more detailed conclusion of the signal transduction pathways of UCP2 and its role in the development and progression of kidney diseases. RESULTS UCP2 could interact with 14.3.3 family proteins, mitochondrial phospholipase iPLA2γ, NMDAR, glucokinase, PPARγ2. There existed a signaling pathway between UCP2 and NMDAR, PPARγ. UCP2 can inhibit the ROS production, inflammatory response, and apoptosis, which may protect against renal injury, particularly AKI. Meanwhile UCP2 can decrease ATP production and inhibit the secretion of insulin, which may alleviate chronic renal damages, such as diabetic nephropathy and kidney fibrosis. CONCLUSIONS Homeostasis of UCP2 is helpful for kidney health. UCP2 may play different roles in different kinds of renal injury.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
3
|
Yin S, Li J, Chen J, Zhou Q, Duan DBP, Lai M, Zhong J, He J, Chen D, Zeng Z, Su L, Luo L, Dong C, Zheng Z. LdCyPA attenuates MAPK pathway to assist Leishmania donovani immune escape in host cells. Acta Trop 2024; 251:107114. [PMID: 38190929 DOI: 10.1016/j.actatropica.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.
Collapse
Affiliation(s)
- Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Deng Bin Pei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng Lai
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China.
| |
Collapse
|
4
|
Bekkar A, Isorce N, Snäkä T, Claudinot S, Desponds C, Kopelyanskiy D, Prével F, Reverte M, Xenarios I, Fasel N, Teixeira F. Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response. Front Cell Infect Microbiol 2022; 12:941888. [PMID: 35992159 PMCID: PMC9386148 DOI: 10.3389/fcimb.2022.941888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)–dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow–derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.
Collapse
Affiliation(s)
- Amel Bekkar
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Florence Prével
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| | - Filipa Teixeira
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| |
Collapse
|
5
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
6
|
Varotto-Boccazzi I, Epis S, Arnoldi I, Corbett Y, Gabrieli P, Paroni M, Nodari R, Basilico N, Sacchi L, Gramiccia M, Gradoni L, Tranquillo V, Bandi C. Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans. Pharmacol Res 2020; 161:105288. [PMID: 33160070 DOI: 10.1016/j.phrs.2020.105288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.
Collapse
Affiliation(s)
- Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy.
| | - Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy; Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Yolanda Corbett
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Moira Paroni
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, 20133, Italy
| | - Luciano Sacchi
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Marina Gramiccia
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Luigi Gradoni
- Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Vito Tranquillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Bergamo, 24125, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| |
Collapse
|
7
|
Ratna A, Arora SK. Leishmania recombinant antigen modulates macrophage effector function facilitating early clearance of intracellular parasites. Trans R Soc Trop Med Hyg 2018; 110:610-619. [PMID: 27941165 DOI: 10.1093/trstmh/trw068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/05/2016] [Accepted: 11/29/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Immunmodulation combined with chemotherapy has emerged as an alternative to treat infections. The study evaluates immunomodulatory properties of a Leishmania recombinant protein (rA6) in activating macrophages and clearing intracellular parasites. METHODS The rA6 from a previously identified cDNA clone was analyzed for inducing the production of nitric oxide (NO) and reactive oxygen species (ROS) in macrophages, post and prior to infection with promastigotes by Griess method and flow cytometry. Phagocytosis and killing by treated macrophages was evaluated using Staphylococcus aureus as an index organism. Intracellular clearance of PKH67-labeled parasites from treated macrophages was assessed flowcytometrically. Combined effect of rA6 with miltefosine/AmBisome in reducing intracellular amastigotes was examined microscopically. RESULTS Treatment with rA6 post infection caused increased production of NO with increased number of macrophages producing NO and ROS coupled with enhanced phagocytic and killing capacity. Antigen stimulated macrophages expressed high level of iNOS and TNF-α mRNA. It synergized with miltefosine and AmBisome and facilitated early clearance of intracellular amastigotes at sub-optimal drug doses. CONCLUSION The study demonstrates immunomodulatory potential of rA6 and presents first evidence on synergism between rA6 and anti-leishmanial drugs, thus placing it as a promising candidate for adjunct therapy.
Collapse
Affiliation(s)
- Anuradha Ratna
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
8
|
Schedel M, Michel S, Gaertner VD, Toncheva AA, Depner M, Binia A, Schieck M, Rieger MT, Klopp N, von Berg A, Bufe A, Laub O, Rietschel E, Heinzmann A, Simma B, Vogelberg C, Genuneit J, Illig T, Kabesch M. Polymorphisms related to ORMDL3 are associated with asthma susceptibility, alterations in transcriptional regulation of ORMDL3, and changes in TH2 cytokine levels. J Allergy Clin Immunol 2015; 136:893-903.e14. [PMID: 25930191 DOI: 10.1016/j.jaci.2015.03.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chromosome 17q21, harboring the orosomucoid 1-like 3 (ORMDL3) gene, has been consistently associated with childhood asthma in genome-wide association studies. OBJECTIVE We investigated genetic variants in and around ORMDL3 that can change the function of ORMDL3 and thus contribute to asthma susceptibility. METHODS We performed haplotype analyses and fine mapping of the ORMDL3 locus in a cross-sectional (International Study of Asthma and Allergies in Childhood Phase II, n = 3557 total subjects, n = 281 asthmatic patients) and case-control (Multicenter Asthma Genetics in Childhood Study/International Study of Asthma and Allergies in Childhood Phase II, n = 1446 total subjects, n = 763 asthmatic patients) data set to identify putative causal single nucleotide polymorphisms (SNPs) in the locus. Top asthma-associated polymorphisms were analyzed for allele-specific effects on transcription factor binding and promoter activity in vitro and gene expression in PBMCs after stimulation ex vivo. RESULTS Two haplotypes (H1 and H2) were significantly associated with asthma in the cross-sectional (P = 9.9 × 10(-5) and P = .0035, respectively) and case-control (P = 3.15 × 10(-8) and P = .0021, respectively) populations. Polymorphisms rs8076131 and rs4065275 were identified to drive these effects. For rs4065275, a quantitative difference in transcription factor binding was found, whereas for rs8076131, changes in upstream stimulatory factor 1 and 2 transcription factor binding were observed in vitro by using different cell lines and PBMCs. This might contribute to detected alterations in luciferase activity paralleled with changes in ORMDL3 gene expression and IL-4 and IL-13 cytokine levels ex vivo in response to innate and adaptive stimuli in an allele-specific manner. Both SNPs were in strong linkage disequilibrium with asthma-associated 17q21 SNPs previously related to altered ORMDL3 gene expression. CONCLUSION Polymorphisms in a putative promoter region of ORMDL3, which are associated with childhood asthma, alter transcriptional regulation of ORMDL3, correlate with changes in TH2 cytokines levels, and therefore might contribute to the childhood asthma susceptibility signal from 17q21.
Collapse
Affiliation(s)
- Michaela Schedel
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sven Michel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Vincent D Gaertner
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Antoaneta A Toncheva
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Depner
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aristea Binia
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Nestlé Research Centre, Nutrition & Health Department, Lausanne, Switzerland
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie T Rieger
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Norman Klopp
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Andrea von Berg
- Research Institute for the Prevention of Allergic Diseases, Children's Department, Marien-Hospital, Wesel, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University, Bochum, Germany
| | - Otto Laub
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ernst Rietschel
- University Children's Hospital, University of Cologne, Cologne, Germany
| | - Andrea Heinzmann
- University Children's Hospital, Albert Ludwigs University, Freiburg, Germany
| | - Burkard Simma
- Children's Department, Feldkirch Hospital, Feldkirch, Austria
| | | | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Thomas Illig
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
10
|
Mukherjee M, Basu Ball W, Das PK. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. Int J Biochem Cell Biol 2014; 55:196-208. [PMID: 25218172 DOI: 10.1016/j.biocel.2014.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/11/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Collapse
Affiliation(s)
- Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|