1
|
Kireeva TN, Zhigalina DI, Skryabin NA. Cystic fibrosis therapy: from symptoms to the cause of the disease. Vavilovskii Zhurnal Genet Selektsii 2025; 29:279-289. [PMID: 40297296 PMCID: PMC12036567 DOI: 10.18699/vjgb-25-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 04/30/2025] Open
Abstract
Cystic fibrosis (CF) is a disease with a broad clinical and genetic spectrum of manifestations, significantly impacting the quality and duration of life of patients. At present, a diagnosis of CF enables the disease to be identified at the earliest stages of its development. The accelerated advancement of scientific knowledge and contemporary research techniques has transformed the methodology employed in the treatment of CF, encompassing a spectrum of approaches from symptomatic management to pathogenetic therapies. Pathogenetic therapy represents an approach to treatment that aims to identify methods of restoring the function of the CFTR gene. The objective of this review was to analyse and summarize the available scientific data on the pathogenetic therapy of CF. This paper considers various approaches to the pathogenetic therapy of CF that are based on the use of targeted drugs known as CFTR modulators. The article presents studies employing gene therapy techniques for CF, which are based on the targeted delivery of a normal copy of the CFTR gene cDNA to the respiratory tract via viral or non-viral vectors. Some studies have demonstrated the efficacy of RNA therapeutic interventions in restoring splicing, promoting the production of mature RNA, and increasing the functional expression of the CFTR protein. The review also analyzes literature data that consider methods of etiotropic therapy for CF, which consists of targeted correction of the CFTR gene using artificial restriction enzymes, the CRISPR/Cas9 system and a complex of peptide-nucleic acids. In a prospective plan, the use of cell therapy methods in the treatment of lung damage in CF is considered.
Collapse
Affiliation(s)
- T N Kireeva
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D I Zhigalina
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
2
|
Upadhyay K, Nigam N, Gupta S, Tripathi SK, Jain A, Puri B. Current and future therapeutic approaches of CFTR and airway dysbiosis in an era of personalized medicine. J Family Med Prim Care 2024; 13:2200-2208. [PMID: 39027867 PMCID: PMC11254065 DOI: 10.4103/jfmpc.jfmpc_1085_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 07/20/2024] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder caused by mutations in the CFTR gene. This leads to a defective protein that impairs chloride transport, resulting in thick mucus buildup and chronic inflammation in the airways. The review discusses current and future therapeutic approaches for CFTR dysfunction and airway dysbiosis in the era of personalized medicine. Personalized medicine has revolutionized CF treatment with the advent of CFTR modulator therapies that target specific genetic mutations. These therapies have significantly improved patient outcomes, slowing disease progression, and enhancing quality of life. It also highlights the growing recognition of the airway microbiome's role in CF pathogenesis and discusses strategies to modulate the microbiome to further improve patient outcomes. This review discusses various therapeutic approaches for cystic fibrosis (CFTR) mutations, including adenovirus gene treatments, nonviral vectors, CRISPR/cas9 methods, RNA replacement, antisense-oligonucleotide-mediated DNA-based therapies, and cell-based therapies. It also introduces airway dysbiosis with CF and how microbes influence the lungs. The review highlights the importance of understanding the cellular and molecular causes of CF and the development of personalized medicine to improve quality of life and health outcomes.
Collapse
Affiliation(s)
- Kirti Upadhyay
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Nitu Nigam
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surbhi Gupta
- Cytogenetics Lab, Centre for Advance Research, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant Tripathi
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Bipin Puri
- King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
5
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
6
|
McNicholas CM. Beyond cystic fibrosis transmembrane conductance regulator (CFTR) single channel kinetics: implications for therapeutic intervention. J Physiol 2018; 595:1015-1016. [PMID: 28198020 DOI: 10.1113/jp273675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carmel M McNicholas
- Department of Cell, Developmental and Integrative Biology and The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Muimo R, Alothaid HM, Mehta A. NM23 proteins: innocent bystanders or local energy boosters for CFTR? J Transl Med 2018; 98:272-282. [PMID: 29251738 DOI: 10.1038/labinvest.2017.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.
Collapse
Affiliation(s)
- Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Hani Mm Alothaid
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Anil Mehta
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
8
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, CNR. Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
9
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
10
|
Schmidt BZ, Haaf JB, Leal T, Noel S. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives. Clin Pharmacol 2016; 8:127-140. [PMID: 27703398 PMCID: PMC5036583 DOI: 10.2147/cpaa.s100759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.
Collapse
Affiliation(s)
- Béla Z Schmidt
- Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven
| | - Jérémy B Haaf
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Sabrina Noel
- Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Pollock NL, Satriano L, Zegarra-Moran O, Ford RC, Moran O. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein–detergent complexes. J Struct Biol 2016; 194:102-11. [DOI: 10.1016/j.jsb.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
12
|
Hildebrandt E, Mulky A, Ding H, Dai Q, Aleksandrov AA, Bajrami B, Diego PA, Wu X, Ray M, Naren AP, Riordan JR, Yao X, DeLucas LJ, Urbatsch IL, Kappes JC. A stable human-cell system overexpressing cystic fibrosis transmembrane conductance regulator recombinant protein at the cell surface. Mol Biotechnol 2015; 57:391-405. [PMID: 25577540 PMCID: PMC4405497 DOI: 10.1007/s12033-014-9830-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTR(FLAG)-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTR(FLAG)-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment future CF drug discovery efforts, including biophysical and structural studies.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Alok Mulky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrei A. Aleksandrov
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Bekim Bajrami
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Pamela Ann Diego
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Xing Wu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marjorie Ray
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - John R. Riordan
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Lawrence J. DeLucas
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233
| |
Collapse
|
13
|
Baroni D, Zegarra-Moran O, Moran O. Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS. Cell Mol Life Sci 2015; 72:1363-75. [PMID: 25274064 PMCID: PMC11113906 DOI: 10.1007/s00018-014-1747-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to the ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. To investigate the conformation of the CFTR in the membrane, we applied the small-angle x-ray scattering (SAXS) technique on microsomal membranes extracted from NIH/3T3 cells permanentely transfected with wild-type (WT) CFTR and with CFTR carrying the ΔF508 mutation. The electronic density profile of the membranes was calculated from the SAXS data, assuming the lipid bilayer electronic density to be composed by a series of Gaussian shells. The data indicate that membranes in the microsome vesicles, that contain mostly endoplasmic reticulum membranes, are oriented in the outside-out conformation. Phosphorylation does not change significantly the electronic density profile, while dephosphorylation produces a significant modification in the inner side of the profile. Thus, we conclude that the CFTR and its associated protein complex in microsomes are mostly phosphorylated. The electronic density profile of the ΔF508-CFTR microsomes is completely different from WT, suggesting a different assemblage of the proteins in the membranes. Low-temperature treatment of cells rescues the ΔF508-CFTR protein, resulting in a conformation that resembles the WT. Differently, treatment with the corrector VX-809 modifies the electronic profile of ΔF508-CFTR membrane, but does not recover completely the WT conformation. To our knowledge, this is the first report of a direct physical measurement of the structure of membranes containing CFTR in its native environment and in different functional and pharmacological conditions.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| | | | - Oscar Moran
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
14
|
Belmonte L, Moran O. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study. Biochimie 2015; 111:19-29. [DOI: 10.1016/j.biochi.2015.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
|
15
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|