1
|
Meng K, Zhao Z, Gao Y, Wu K, Liu W, Wang X, Zheng Y, Zhao W, Wang B. The synergistic effects of anoikis-related genes and EMT-related genes in the prognostic prediction of Wilms tumor. Front Mol Biosci 2024; 11:1469775. [PMID: 39351154 PMCID: PMC11439783 DOI: 10.3389/fmolb.2024.1469775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Wilms tumor (WT) is the most common type of malignant abdominal tumor in children; it exhibits a high degree of malignancy, grow rapidly, and is prone to metastasis. This study aimed to construct a prognosis model based on anoikis-related genes (ARGs) and epithelial-mesenchymal transition (EMT)-related genes (ERGs) for WT patients; we assessed the characteristics of the tumor microenvironment and treatment efficacy, as well as identifying potential therapeutic targets. To this end, we downloaded transcriptome sequencing data and clinical data for WT and normal renal cortices and used R to construct and validate the prognostic model based on ARGs and ERGs. Additionally, we performed clinical feature analysis, nomogram construction, mutation analysis, drug sensitivity analysis, Connectivity Map (cMAP) analysis, functional enrichment analysis, and immune infiltration analysis. Finally, we screened the hub gene using the STRING database and validated it via experiments. In this way, we constructed a model with good accuracy and robustness, which was composed of seven anoikis- and EMT-related genes. Paclitaxel and mesna were selected as potential chemotherapeutic drugs and adjuvant chemotherapeutic drugs for the WT high-risk group by using the Genomics of Drug Sensitivity in Cancer (GDSC) and cMAP compound libraries, respectively. We proved the existence of a strong correlation between invasive immune cells and prognostic genes and risk scores. Next, we selected NTRK2 as the hub gene, and in vitro experiments confirmed that its inhibition can significantly inhibit the proliferation and migration of tumor cells and promote late apoptosis. In summary, we screened out the potential biomarkers and chemotherapeutic drugs that can improve the prognosis of patients with WT.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Zerui Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yaqing Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Keliang Wu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bei Wang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| |
Collapse
|
2
|
Linazi G, Maimaiti A, Abulaiti Z, Shi H, Zhou Z, Aisa MY, Kang Y, Abulimiti A, Dilimulati X, Zhang T, Wusiman P, Wang Z, Abulaiti A. Prognostic value of anoikis-related genes revealed using multi-omics analysis and machine learning based on lower-grade glioma features and tumor immune microenvironment. Heliyon 2024; 10:e36989. [PMID: 39286119 PMCID: PMC11402926 DOI: 10.1016/j.heliyon.2024.e36989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background The investigation explores the involvement of anoikis-related genes (ARGs) in lower-grade glioma (LGG), seeking to provide fresh insights into the disease's underlying mechanisms and to identify potential targets for therapy. Methods We applied unsupervised clustering techniques to categorize LGG patients into distinct molecular subtypes based on ARGs with prognostic significance. Additionally, various machine learning algorithms were employed to pinpoint genes most strongly correlated with patient outcomes, which were then used to develop and assess risk profiles. Results Our analysis identified two distinct molecular subtypes of LGG, each with significantly different prognoses. Patients in Cluster 2 had a median survival of 2.036 years, markedly shorter than the 7.994 years observed in Cluster 1 (P < 0.001). We also constructed a six-gene ARG signature that efficiently classified patients into two risk categories, showing median survival durations of 4.084 years for the high-risk group and 10.304 years for the low-risk group (P < 0.001). Significantly, the immune profiles, tumor mutation characteristics, and drug sensitivity varied greatly among these risk groups. The high-risk group was characterized by a "cold" tumor microenvironment (TME), a lower IDH1 mutation rate (61.7 % vs. 91.4 %), a higher TP53 mutation rate (53.7 % vs. 38.9 %), and greater sensitivity to targeted therapies such as QS11 and PF-562271. Furthermore, our nomogram, integrating risk scores with clinicopathological features, demonstrated strong predictive accuracy for clinical outcomes in LGG patients, with an AUC of 0.903 for the first year. The robustness of this prognostic model was further validated through internal cross-validation and across three external cohorts. Conclusions The evidence from our research suggests that ARGs could potentially serve as reliable indicators for evaluating immunotherapy effectiveness and forecasting clinical results in patients with LGG.
Collapse
Affiliation(s)
- Gu Linazi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hui Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zexin Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Mizhati Yimiti Aisa
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yali Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Ayguzaili Abulimiti
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Xierzhati Dilimulati
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Tiecheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Patiman Wusiman
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
3
|
Meng WJ, Guo JM, Huang L, Zhang YY, Zhu YT, Tang LS, Wang JL, Li HS, Liu JY. Anoikis-Related Long Non-Coding RNA Signatures to Predict Prognosis and Immune Infiltration of Gastric Cancer. Bioengineering (Basel) 2024; 11:893. [PMID: 39329635 PMCID: PMC11428253 DOI: 10.3390/bioengineering11090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Anoikis is a distinct type of programmed cell death and a unique mechanism for tumor progress. However, its exact function in gastric cancer (GC) remains unknown. This study aims to investigate the function of anoikis-related lncRNA (ar-lncRNA) in the prognosis of GC and its immunological infiltration. The ar-lncRNAs were derived from RNA sequencing data and associated clinical information obtained from The Cancer Genome Atlas. Pearson correlation analysis, differential screening, LASSO and Cox regression were utilized to identify the typical ar-lncRNAs with prognostic significance, and the corresponding risk model was constructed, respectively. Comprehensive methods were employed to assess the clinical characteristics of the prediction model, ensuring the accuracy of the prediction results. Further analysis was conducted on the relationship between immune microenvironment and risk features, and sensitivity predictions were made about anticancer medicines. A risk model was built according to seven selected ar-lncRNAs. The model was validated and the calibration plots were highly consistent in validating nomogram predictions. Further analyses revealed the great accuracy of the model and its ability to serve as a stand-alone GC prognostic factor. We subsequently disclosed that high-risk groups display significant enrichment in pathways related to tumors and the immune system. Additionally, in tumor immunoassays, notable variations in immune infiltrates and checkpoints were noted between different risk groups. This study proposes, for the first time, that prognostic signatures of ar-lncRNA can be established in GC. These signatures accurately predict the prognosis of GC and offer potential biomarkers, suggesting new avenues for basic research, prognosis prediction and personalized diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Wen-Jun Meng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| | - Jia-Min Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
- West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yao-Yu Zhang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yue-Ting Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| | - Jia-Ling Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| | - Hong-Shuai Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (W.-J.M.)
| |
Collapse
|
4
|
Zou Y, Xu L, Wang W, Zhu X, Lin J, Li H, Chen J, Xu W, Gao H, Wu X, Yin Z, Wang Q. Muscone restores anoikis sensitivity in TMZ-resistant glioblastoma cells by suppressing TOP2A via the EGFR/Integrin β1/FAK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155714. [PMID: 38723526 DOI: 10.1016/j.phymed.2024.155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin β1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin β1, FAK, β-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin β1, β-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin β1/FAK pathway. CONCLUSION We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin β1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.
Collapse
Affiliation(s)
- Yuheng Zou
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wanyu Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaqi Lin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huazhao Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haiqiong Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Wu Z, Zhang R, Bao J, Yin M, Wang X. Development of a biomarker signature associated with anoikis to predict prognosis and immunotherapy response in melanoma. Arch Dermatol Res 2024; 316:219. [PMID: 38787413 DOI: 10.1007/s00403-024-03085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Skin cutaneous melanoma (SKCM) is malignant cancer known for its high aggressiveness and unfavorable prognosis, particularly in advanced tumors. Anoikis is a specific pattern of programmed cell death associated with tumor regeneration, migration, and metastasis. Nevertheless, limited research has been conducted to investigate the function of anoikis in SKCM. Anoikis-related genes (ARGs) were extracted from Genecards to identify SKCM subtypes and to explore the immune microenvironment between the different subtypes. Prognostic models of SKCM were developed by LASSO COX regression analysis. Subsequently, the predictive value of risk scores in SKCM and the association with immunotherapy were further explored. Finally, the expression of 6 ARGs involved in the model construction was detected by immunohistochemistry and PCR. This study identified 20 ARGs significantly associated with SKCM prognosis and performed disease subtype analysis of samples based on these genes, different subtypes exhibited significantly different clinical features and tumor immune microenvironment (TIME) landscapes. The risk score prognostic model was generated by further screening and identification of the six ARGs. The model exhibited a high degree of sensitivity and specificity to predict the prognosis of individuals with SKCM. These high- and low-risk populations showed different immune statuses and drug sensitivity. Further immunohistochemical and PCR experiments identified significant differential expression of the six ARGs in tumor and normal samples. Anoikis-based features may serve as novel prognostic biomarkers for SKCM and may provide important new insights for survival prediction and individualized treatment development.
Collapse
Affiliation(s)
- Zhixuan Wu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Rongrong Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Jingxia Bao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China
| | - Mengqi Yin
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, People's Republic of China.
| | - Xiaowu Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, People's Republic of China.
| |
Collapse
|
6
|
Zhao H, Huang Y, Tong G, Wu W, Ren Y. Identification of a Novel Oxidative Stress- and Anoikis-Related Prognostic Signature and Its Immune Landscape Analysis in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:16188. [PMID: 38003378 PMCID: PMC10671784 DOI: 10.3390/ijms242216188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to identify a kind of prognostic signature based on oxidative stress- and anoikis-related genes (OARGs) for predicting the prognosis and immune landscape of NSCLC. Initially, We identified 47 differentially expressed OARGs that primarily regulate oxidative stress and epithelial cell infiltration through the PI3K-Akt pathway. Subsequently, 10 OARGs related to prognosis determined two potential clusters. A cluster was associated with a shorter survival level, lower immune infiltration, higher stemness index and tumor mutation burden. Next, The best risk score model constructed by prognostic OARGs was the Random Survival Forest model, and it included SLC2A1, LDHA and PLAU. The high-risk group was associated with cluster A and poor prognosis, with a higher tumor mutation burden, stemness index and proportion of M0-type macrophages, and a lower immune checkpoint expression level, immune function score and IPS score. The calibration curve and decision-making curve showed that the risk score combined with clinical pathological characteristics could be used to construct a nomogram for guiding the clinical treatment strategies. Finally, We found that all three hub genes were highly expressed in tumor tissues, and LDHA expression was mainly regulated by has-miR-338-3p, has-miR-330-5p and has-miR-34c-5p. Altogether, We constructed an OARG-related prognostic signature to reveal potential relationships between the signature and clinical characteristics, TME, stemness, tumor mutational burden, drug sensitivity and immune landscape in NSCLC patients.
Collapse
Affiliation(s)
| | | | | | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (H.Z.); (Y.H.); (G.T.)
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (H.Z.); (Y.H.); (G.T.)
| |
Collapse
|
7
|
Jiang X, Gao YL, Li JY, Tong YY, Meng ZY, Yang SG, Zhu CT. An anoikis-related lncRNA signature is a useful tool for predicting the prognosis of patients with lung adenocarcinoma. Heliyon 2023; 9:e22200. [PMID: 38053861 PMCID: PMC10694177 DOI: 10.1016/j.heliyon.2023.e22200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Background Anoikis-related long non-coding RNAs (ARLs) play a critical role in tumor metastasis and progression, suggesting that they may serve as risk markers for cancer. This study aimed to investigate the prognostic value of ARLs in patients with lung adenocarcinoma (LUAD). Methods Clinical data, RNA sequencing (RNA-seq) data, and mutation data from the LUAD project were obtained from The Cancer Genome Atlas (TCGA) database. The Molecular Signatures Database (MSigDB) and the GeneCard database were used to collect an anoikis-related gene (ARG) set. Pearson correlation analysis was performed to identify ARLs. LASSO and Cox regression were then used to establish a prognostic risk signature for ARLs. The median risk score served as the basis for categorizing patients into high and low-risk groups. Kaplan-Meier analysis was utilized to compare the prognosis between these two groups. The study also examined the associations between risk scores and prognosis, clinicopathological characteristics, immune status, tumor mutation burden (TMB), and chemotherapeutic agents. LncRNA expression was assessed using quantitative real-time PCR (qRT-PCR). Results A total of 480 RNA expression profiles, 501 ARGs, and 2698 ARLs were obtained from the database. A prognostic ARL signature for LUAD was established, consisting of 9 lncRNAs. Patients in the low-risk group exhibited significantly better prognosis compared to those in the high-risk group (P < 0.001). The 9 lncRNAs from the ARL signature were identified as independent prognostic factors (P < 0.001). The signature demonstrated high accuracy in predicting LUAD prognosis, with area under the curve values exceeding 0.7. The risk scores for ARLs showed strong negative correlations with stroma score (P = 5.9E-07, R = -0.23), immune score (P = 9.7E-09, R = -0.26), and microenvironment score (P = 8E-11, R = -0.29). Additionally, the low-risk group exhibited significantly higher TMB compared to the high-risk group (P = 4.6E-05). High-risk status was significantly associated with lower half-maximal inhibitory concentrations for most chemotherapeutic drugs. Conclusion This newly constructed signature based on nine ARLs is a useful instrument for the risk stratification of LUAD patients. The signature has potential clinical significance for predicting the prognosis of LUAD patients and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Xin Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yu-lu Gao
- Department of Laboratory Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Jia-yan Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying-ying Tong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao-yang Meng
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shi-gui Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chang-tai Zhu
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
8
|
Yang X, Zhu Z, Liang T, Lei X. Comprehensive analysis of anoikis-related genes in prognosis and immune infiltration of gastric cancer based on bulk and single-cell RNA sequencing data. J Cancer Res Clin Oncol 2023; 149:13163-13173. [PMID: 37474682 DOI: 10.1007/s00432-023-05157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Accumulating evidence suggests that anoikis resistance is a key process in cancer cell metastasis, making it an attractive therapeutic target. Therefore, anoikis may become a new treatment for gastric cancer. METHODS We used the univariate Cox regression method to screen gastric cancer-related anoikis genes, and a prognostic risk model was established. We analyzed differences between high- and low-risk groups in terms of tumor infiltrating immune cells, gene mutation signatures, and treatment of gastric cancer. Analysis of model associated genes at single-cell resolution was performed. RESULTS We filtered to 12 anoikis-related genes and built a prognostic risk model using seven of them, which performed well in multiple datasets. Patients with CCDC178 mutations had a worse prognosis. We also found that patients at low risk were more likely to benefit from chemotherapy and immunotherapy. ERBB2 was found to be highly expressed in epithelial cells and fibroblasts. Our analysis also indicated that gastric cancer samples with high infiltration of iCAFs had a worse prognosis. CONCLUSION Seven anoikis-related genes were selected to establish a risk model. The model can be used to predict the prognosis of patients and guide the drug treatment, which provides a new idea for the evaluation and treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Xiaobo Yang
- Center for General Practice Medicine, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, Zhejiang, China, 310014
| | - Zheng Zhu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang road 158, Hangzhou, Zhejiang, China, 310014
| | - Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang road 158, Hangzhou, Zhejiang, China, 310014.
| | - Xiaoju Lei
- Center for General Practice Medicine, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou, Zhejiang, China, 310014.
| |
Collapse
|
9
|
Zhang D, Wang Y, Zhou H, Han X, Hou L, Lv Z, Xue X. The study of an anoikis-related signature to predict glioma prognosis and immune infiltration. J Cancer Res Clin Oncol 2023; 149:12659-12676. [PMID: 37450027 DOI: 10.1007/s00432-023-05138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Gliomas are the most common highly aggressive primary malignant brain tumors in adults with different biological behaviors and clinically heterogeneous features. About the extremely poor prognosis of gliomas, the search for potential therapeutic modalities and targets is crucial. METHOD We extracted the anoikis-related genes (ARG) from GeneCards and obtained differentially expressed genes in normal and glioma tissues from the GSE4290 dataset to obtain intersect differentially expressed ARG in gliomas by differential analysis. KEGG and GO analyses were used to evaluate the potential pathways and molecular processes of these genes. Based on The Cancer Genome Atlas (TCGA) training cohort, we performed the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Cox regression to construct an ARG prognostic model and validated them in the TCGA testing cohort and the Chinese Glioma Genome Atlas (CGGA) validation cohort. Subsequently, we further explored the differences in clinical characteristics, tumor mutation burden (TMB), and the immune microenvironment in the high- and low-risk groups. Univariate and multifactorial regression analyses and nomogram construction were also performed. Moreover, we evaluated the expression levels of key genes via public databases, qPCR analysis and IHC staining, and further assessed the clinical prognostic value. RESULTS The regulatory model based on quantitative ARG prognostic models showed that patients in the high-risk group were associated with poorer survival prognosis, poorer clinical characteristics, and higher TMB levels. Moreover, the high-risk group had high levels of immune infiltration and upregulated immune checkpoint gene expression. The ARG prognostic model and the Nomogram showed good predictive performance. Expression and survival analysis of five prognostic ARG signatures (ETV4, HMOX1, MYC, NFE2L2, and UBE2C) showed that these genes have potential prognostic value. CONCLUSION Our constructed ARG prognostic risk model provides a potential therapeutic target and theoretical basis for predicting the prognosis of glioma patients and guiding individualized immunotherapy.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Yu Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
10
|
Shi J, Peng B, Zhou X, Wang C, Xu R, Lu T, Chang X, Shen Z, Wang K, Xu C, Zhang L. An anoikis-based gene signature for predicting prognosis in malignant pleural mesothelioma and revealing immune infiltration. J Cancer Res Clin Oncol 2023; 149:12089-12102. [PMID: 37421452 DOI: 10.1007/s00432-023-05128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor. Anoikis is a particular type of programmed apoptosis brought on by the separation of cell-cell or extracellular matrix (ECM). Anoikis has been recognized as a crucial element in the development of tumors. However, few studies have comprehensively examined the role of anoikis-related genes (ARGs) in malignant mesothelioma. METHODS ARGs were gathered from the GeneCard database and the Harmonizome portals. We obtained differentially expressed genes (DEGs) using the GEO database. Univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to select ARGs associated with the prognosis of MPM. We then developed a risk model, and time-dependent receiver operating characteristic (ROC) analysis and calibration curves were employed to confirm the ability of the model. The patients were divided into various subgroups using consensus clustering analysis. Based on the median risk score, patients were divided into low- and high-risk groups. Functional analysis and immune cell infiltration analysis were conducted to estimate molecular mechanisms and the immune infiltration landscape of patients. Finally, drug sensitivity analysis and tumor microenvironment landscape were further explored. RESULTS A novel risk model was constructed based on the six ARGs. The patients were successfully divided into two subgroups by consensus clustering analysis, with a striking difference in the prognosis and landscape of immune infiltration. The Kaplan-Meier survival analysis indicated that the OS rate of the low-risk group was significantly higher than the high-risk group. Functional analysis, immune cell infiltration analysis, and drug sensitivity analysis showed that high- and low-risk groups had different immune statuses and drug sensitivity. CONCLUSIONS In summary, we developed a novel risk model to predict MPM prognosis based on six selected ARGs, which could broaden comprehension of personalized and precise therapy approaches for MPM.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
11
|
Guo W, Zhao G, Liu S, Deng T, Zhang G, Zhang B. Development of the prognostic value in lung adenocarcinoma based on anoikis-related genes and initial experimental validation. J Gene Med 2023; 25:e3534. [PMID: 37259225 DOI: 10.1002/jgm.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a highly aggressive cancer in advanced stages and has the highest cancer-related death across the world. Anoikis has emerged as a specific form of apoptotic cell death that may play a vital role in the formation and development of tumors. METHODS Based on The Cancer Genome Atlas dataset, we developed a novel anoikis-related genes (ARGs) signature in LUAD and evaluated the differences between low and high-risk groups in clinical characteristics, expression patterns, immune cell infiltration, and drug sensitivity, etc. According to multivariate Cox regression analysis, the risk score was identified as a significant independent prognostic factor. The possible biological pathways of ARGs' were assessed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The immune infiltration landscape and risk score of ARGs were analyzed by ESTIMATE and CIBERSORT analysis. A nomogram grounded on six key ARGs and clinicopathological features was provided. Moreover, experiment validation of the expression patterns of six hub ARGs in lung cancer cell lines was conducted. RESULTS We identified 53 survival-related LUAD anoikis-related differentially expressed genes and finally six hub anoikis genes (LDHA, SLC2A1, SERPINB5, ITGB4, BRCA2, and PIK3R1) were selected to construct an ARG model. The risk model could efficiently cluster the patients into low- and high-risk groups which could accurately predict clinical outcomes for LUAD patients. There is evidence that the prognostic risk score is a remarkable prognostic factor in determining overall survival. Different immune statuses and drug sensitivity between low- and high-risk groups were explored according to functional analysis. On the basis of risk scores and LUAD clinicopathological features, a novel nomogram was developed. Ultimately, all six key genes except for PIK3R1 were proved to be upregulated in LUAD tissues and cell lines by bioinformatics analysis and experimental validation. CONCLUSIONS The result of the present study suggest that ARGs could be carcinogenic to LUAD and could be used as an effective stratification factor to customize therapies and forecast the survival rate in LUAD patients.
Collapse
Affiliation(s)
- Wenwei Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Cardiothoracic Surgery, Ji 'an Central People's Hospital, Ji'an, China
| | - Guang Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suping Liu
- Department of Rehabilitation Medicine, Ji'an Central People's Hospital, Ji'an, China
| | - Tao Deng
- Department of Pain, Ji 'an Central People's Hospital, Ji'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Zhang G, Chen A, Fang J, Wu A, Chen G, Tai P, Chen H, Chen X, Cao K. Construction of a novel molecular typing and scoring system for anoikis distinguishes between different prognostic risks and treatment responsiveness in low-grade glioma. Front Immunol 2023; 14:1105210. [PMID: 37114037 PMCID: PMC10126347 DOI: 10.3389/fimmu.2023.1105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background The main factors responsible for low-grade glioma (LGG)s' poor prognosis and treatment effectiveness include recurrence and malignant progression. A specific type of programmed cell death, known as anoikis, which is crucial for tumor invasion and metastasis, however, has not yet been investigated in LGGs. Methods We downloaded data of 509 samples from the TCGA-LGG cohort, carried out cluster analysis for typing twice on the basis of 19 anoikis-associated genes, and the subtypes were evaluated the differences in clinicopathological and biological features. ESTIMATE and single-sample gene set enrichment analysis were employed to examine the immunological milieu of LGGs, and enrichment analysis was used to look into the underlying biological mechanisms in LGGs. Cox regression analysis and the Least Absolute Shrinkage and Selection Operator regression algorithm were used to create a prediction scoring system. The scoring system was used for classifying LGG into high- and low- anoikis riskscore (anoiS) groups. The impact of the anoiS on the prognosis, standard treatment, and immunotherapy of patients with LGG was assessed using survival analysis and drug sensitivity analysis. Cell experiments were employed for the verification of the differential expression between LGG cells and normal cells of the anoikis gene team that regard CCT5 as the core. Results Based on the expression profiles of the 19 anoikis-associated genes, all individuals with LGG were classified into four subtypes and two macrosubtypes. The different macrosubtypes had significantly different biological characteristics, and the anoirgclusterBD subtype manifested a significantly bad prognosis and a high immune level of infiltration. And subsequent secondary genotyping also showed good prognostic discrimination. We further constructed an anoikis scoring system, anoiS. LGG patients having a high anoiS had a worse prognosis in comparison to those having a low anoiS. The high anoiS group exhibited larger levels of immune infiltration and superior immunotherapy efficacy than the low anoiS group. The high anoiS group was also more susceptible to temozolomide (TMZ) than the low anoiS group, according to a drug sensitivity analysis of TMZ. Conclusion This study constructed a scoring system for predicting the prognosis of patients with LGG and their responsive to TMZ and immunotherapy.
Collapse
Affiliation(s)
- Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Anshan Wu
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ke Cao, ;
| |
Collapse
|
13
|
Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022; 13:939523. [PMID: 36091049 PMCID: PMC9452727 DOI: 10.3389/fimmu.2022.939523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most prominent and aggressive primary brain tumor in adults. Anoikis is a specific form of programmed cell death that plays a key role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance.MethodsThe non-negative matrix factorization algorithm was used for effective dimension reduction for integrated datasets. Differences in the tumor microenvironment (TME), stemness indices, and clinical characteristics between the two clusters were analyzed. Difference analysis, weighted gene coexpression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator regression were leveraged to screen prognosis-related genes and construct a risk score model. Immunohistochemistry was performed to evaluate the expression of representative genes in clinical specimens. The relationship between the risk score and the TME, stemness, clinical traits, and immunotherapy response was assessed in GBM and pancancer.ResultsTwo definite clusters were identified on the basis of anoikis-related gene expression. Patients with GBM assigned to C1 were characterized by shortened overall survival, higher suppressive immune infiltration levels, and lower stemness indices. We further constructed a risk scoring model to quantify the regulatory patterns of anoikis-related genes. The higher risk score group was characterized by a poor prognosis, the infiltration of suppressive immune cells and a differentiated phenotype, whereas the lower risk score group exhibited the opposite effects. In addition, patients in the lower risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH) mutations and a more sensitive response to immunotherapy. Drug sensitivity analysis was performed, revealing that the higher risk group may benefit more from drugs targeting the PI3K/mTOR signaling pathway.ConclusionWe revealed potential relationships between anoikis-related genes and clinical features, TME, stemness, IDH mutation, and immunotherapy and elucidated their therapeutic value.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Yongquan Zhao
- Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China
| | - Yan Wei
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chenyang Tan
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Chengwei Wang,
| |
Collapse
|
14
|
You LJ, Geng H, Yang XF, Wei GL, Zhu YD, Ge GB, Lei M, Wang DD. The comparison analysis of polyphyllin I and its analogues induced apoptosis of colon and lung cancer cells via mitochondrial dysfunction. Basic Clin Pharmacol Toxicol 2021; 129:15-25. [PMID: 33915023 DOI: 10.1111/bcpt.13596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Polyphyllin I (PPI) and its analogues, including polyphyllin II (PPII), polyphyllin VI (PPVI) and polyphyllin VII (PPVII), are major bioactive compounds isolated from the Chinese herb Chonglou. However, the susceptibilities of PPI and its analogues towards the different cell lines are diversified and the mechanisms are not fully clarified. Thus, the present study aimed to investigate the cytotoxicity of PPI and its analogues on two different cell lines, as well as to explore the underlying mechanisms of these agents via inducing mitochondrial dysfunction. The results showed that PPI and its analogues were cytotoxic agents towards both A549 and HT-29 cells, with IC50 values ranged from 1.0 to 4.5 μmol/L. Further investigations demonstrated that they decreased the mitochondrial membrane potentials of both A549 and HT-29 cells in a dose-dependent manner. Among all tested compounds, PPVI and PPI induced the most obvious changes in Ca2+ haemostasis in these two cell lines. In addition, they could induce the accumulation of ROS in cells and down-regulated the Bcl-2 expression, up-regulated the Bax expression and induced the activity of cleaved caspase-3 in cells. Collectively, our findings clearly demonstrated the cytotoxic differences and mechanisms of PPI and its analogues induced cell apoptosis and could partially explain the anticancer effects of these natural constituents in Chonglou.
Collapse
Affiliation(s)
- Li-Jiao You
- Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Geng
- Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Fang Yang
- Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Gui-Lin Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Di Zhu
- Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Görgülü K, Diakopoulos KN, Ai J, Schoeps B, Kabacaoglu D, Karpathaki AF, Ciecielski KJ, Kaya-Aksoy E, Ruess DA, Berninger A, Kowalska M, Stevanovic M, Wörmann SM, Wartmann T, Zhao Y, Halangk W, Voronina S, Tepikin A, Schlitter AM, Steiger K, Artati A, Adamski J, Aichler M, Walch A, Jastroch M, Hartleben G, Mantzoros CS, Weichert W, Schmid RM, Herzig S, Krüger A, Sainz B, Lesina M, Algül H. Levels of the Autophagy-Related 5 Protein Affect Progression and Metastasis of Pancreatic Tumors in Mice. Gastroenterology 2019; 156:203-217.e20. [PMID: 30296435 DOI: 10.1053/j.gastro.2018.09.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.
Collapse
Affiliation(s)
- Kivanc Görgülü
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kalliope N Diakopoulos
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jiaoyu Ai
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Benjamin Schoeps
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Derya Kabacaoglu
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Angeliki-Faidra Karpathaki
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Katrin J Ciecielski
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ezgi Kaya-Aksoy
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dietrich A Ruess
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexandra Berninger
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marlena Kowalska
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marija Stevanovic
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sonja M Wörmann
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Wartmann
- Klinik für Chirurgie Bereich Experimentelle Operative Medizin, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Yue Zhao
- Klinik für Chirurgie Bereich Experimentelle Operative Medizin, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Walter Halangk
- Klinik für Chirurgie Bereich Experimentelle Operative Medizin, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Svetlana Voronina
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Alexey Tepikin
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Anna Melissa Schlitter
- Institute of Pathology, Technische Universität München, Munich, Germany and German Cancer Consortium, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany and German Cancer Consortium, Munich, Germany; Comparative Experimental Pathology, Institute of Pathology, Technische Universität München, Munich, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Centre, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Centre, Helmholtz Zentrum München, Neuherberg, Germany; Institute for Diabetes and Cancer, German Center for Diabetes Research, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Götz Hartleben
- Institute for Diabetes and Cancer, German Center for Diabetes Research, Neuherberg, Germany
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, Massachusetts
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany and German Cancer Consortium, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, German Center for Diabetes Research, Neuherberg, Germany
| | - Achim Krüger
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid, Madrid, Spain
| | - Marina Lesina
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Hana Algül
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
17
|
The Mitochondrial Genes BAK1, FIS1 and SFN are Linked with Alterations in Mitochondrial Membrane Potential in Barrett's Esophagus. Int J Mol Sci 2018; 19:ijms19113483. [PMID: 30404157 PMCID: PMC6275077 DOI: 10.3390/ijms19113483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/27/2018] [Accepted: 11/03/2018] [Indexed: 01/20/2023] Open
Abstract
Barrett's esophagus and esophageal cancer lack prognostic markers that allow the tailoring of personalized medicine and biomarkers with potential to provide insight into treatment response. This study aims to characterize mitochondrial function across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett's esophagus and examines the functional effect of manipulating mitochondrial genes. Mitochondrial genes of interest were validated in in vitro cell lines across the metaplasia (QH), dysplasia (GO) and adenocarcinoma (OE33) sequence and in in vivo patient tissue samples. These genes were subsequently knocked down in QH and OE33 cells and the functional effect of siRNA-induced knockdown on reactive oxygen species production, mitochondrial mass, mitochondrial membrane potential and cellular metabolism was investigated. Three global mitochondrial genes (BAK1, FIS1 and SFN) were differentially altered across the in vivo Barrett's disease sequence. We also demonstrate that knockdown of BAK1, FIS1 and SFN in vitro resulted in significant alterations in mitochondrial membrane potential; however, no differences in reactive oxygen species or mitochondrial mass were observed. Furthermore, knockdown of these genes in esophageal adenocarcinoma cells significantly altered cellular metabolism. In conclusion, we found that differential expression of BAK1, FIS1, and SFN were altered across the Barrett's disease sequence and manipulation of these genes elicited significant effects on mitochondrial membrane potential.
Collapse
|
18
|
Klepinin A, Ounpuu L, Mado K, Truu L, Chekulayev V, Puurand M, Shevchuk I, Tepp K, Planken A, Kaambre T. The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. J Bioenerg Biomembr 2018; 50:339-354. [PMID: 29998379 PMCID: PMC6209068 DOI: 10.1007/s10863-018-9765-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that class II β-tubulin plays a key role in the regulation of oxidative phosphorylation (OXPHOS) in some highly differentiated cells, but its role in malignant cells has remained unclear. To clarify these aspects, we compared the bioenergetic properties of HL-1 murine sarcoma cells, murine neuroblastoma cells (uN2a) and retinoic acid - differentiated N2a cells (dN2a). We examined the expression and possible co-localization of mitochondrial voltage dependent anion channel (VDAC) with hexokinase-2 (HK-2) and βII-tubulin, the role of depolymerized βII-tubuline and the effect of both proteins in the regulation of mitochondrial outer membrane (MOM) permeability. Our data demonstrate that neuroblastoma and sarcoma cells are prone to aerobic glycolysis, which is partially mediated by the presence of VDAC bound HK-2. Microtubule destabilizing (colchicine) and stabilizing (taxol) agents do not affect the MOM permeability for ADP in N2a and HL-1 cells. The obtained results show that βII-tubulin does not regulate the MOM permeability for adenine nucleotides in these cells. HL-1 and NB cells display comparable rates of ADP-activated respiration. It was also found that differentiation enhances the involvement of OXPHOS in N2a cells due to the rise in their mitochondrial reserve capacity. Our data support the view that the alteration of mitochondrial affinity for ADNs is one of the characteristic features of cancer cells. It can be concluded that the binding sites for tubulin and hexokinase within the large intermembrane protein supercomplex Mitochondrial Interactosome, could be different between muscle and cancer cells.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Lyudmila Ounpuu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kati Mado
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anu Planken
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| |
Collapse
|
19
|
Flampouri E, Theodosi-Palimeri D, Kintzios S. Strobilurin fungicide kresoxim-methyl effects on a cancerous neural cell line: oxidant/antioxidant responses and in vitro migration. Toxicol Mech Methods 2018; 28:709-716. [PMID: 30064279 DOI: 10.1080/15376516.2018.1506848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper we report the effects of the complex III inhibitor, strobilurin fungicide kresoxim-methyl, on the cellular homeostasis of a mammalian cancerous neural cell line. We examined whether exposure to subcytotoxic concentrations of kresoxim-methyl induce cellular and biochemical mechanisms of toxicity on the murine neuroblastoma N2a cells. Results revealed elevation of mitochondrial superoxide generation, decrease in mitochondrial transmembrane potential, losses on GPx enzyme activity, along with increased nitrite release. Fungicide exposure also induced impaired cellular migration. Our findings suggest that kresoxim-methyl, besides targeting the mitochondria in fungi, exerts its mode of action in mammalian cancer cells. Abbreviations: CAT: catalase; DMEM: Dulbecco's modified Eagle's medium; GPx: glutathione peroxidase; KM: kresoxym-methyl; N2a: mouse neuroblastoma cells; NO: nitric oxide.
Collapse
Affiliation(s)
- Evangelia Flampouri
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| | - Dimitra Theodosi-Palimeri
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| | - Spyridon Kintzios
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| |
Collapse
|
20
|
Falone S, Santini S, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018. [PMID: 29527520 PMCID: PMC5829633 DOI: 10.3389/fpubh.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as “possible carcinogenic.” Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-National Research Council (CNR), L'Aquila, Italy
| |
Collapse
|
21
|
Lin Z, Xu HN, Wang Y, Floros J, Li LZ. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:177-181. [PMID: 30178342 PMCID: PMC6429950 DOI: 10.1007/978-3-319-91287-5_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous studies indicate that the mitochondrial redox state and its intratumor heterogeneity are associated with invasiveness and metastatic potential in human breast cancer cell models and mouse xenografts. To further study the molecular basis of redox heterogeneity, we obtained the fluorescence images of Fp (oxidized flavoproteins containing flavin adenine dinucleotide, i.e., FAD), NADH (reduced nicotinamide adenine dinucleotide), and the Fp redox ratio (FpR = Fp/(Fp + NADH)) of MDA-MB-231 xenografts by the Chance redox scanner, then isolated the intratumoral redox subpopulations by dissection according to the redox ratio image. A total of 12 subpopulations were isolated from 4 tumors (2-4 locations from each tumor). The 12 subpopulations were classified into 3 FpR groups: high FpR (HFpR, n = 4, FpR range 0.78-0.92, average 0.85), medium FpR (MFpR, n = 5, FpR range 0.39-0.68, average 0.52), and low FpR (LFpR, n = 3, FpR range 0.15-0.28, average 0.20). The RT-PCR (reverse transcription polymerase chain reaction) analysis on these redox subpopulations showed that PGC-1α is significantly upregulated in the HFpR redox group compared to the MFpR group (fold change 2.1, p = 0.008), but not significantly different between MFpR and LFpR groups, or between HFpR and LFpR groups. These results indicate that optical redox imaging (ORI)-based redox subpopulations exhibit differential expression of PGC1α gene and suggest that PGC1α might play a role in redox mediation of breast cancer progression.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He N Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunhua Wang
- Department of Pediatrics, Pennsylvania State University, Hershey, PA, USA
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University, Hershey, PA, USA
- Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Lin Z Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Li W, Cai S, Wang L, Yang C, Zhou B, Wang H. HINT2 downregulation promotes colorectal carcinoma migration and metastasis. Oncotarget 2017; 8:13521-13531. [PMID: 28088787 PMCID: PMC5355117 DOI: 10.18632/oncotarget.14587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023] Open
Abstract
Histidine triad nucleotide-binding 2 (HINT2), a member of the histidine triad proteins family, sensitizes cells to apoptosis in hepatocellular carcinoma. Here, we showed that HINT2 expression is lower in primary colorectal cancer (CRC) and metastasis tissues than in normal colorectal tissues, and that HINT2 abundance is inversely correlated with CRC tumor stage. Treating CRC cells with 5-aza-2′-deoxycytidine, a demethylating agent, upregulated HINT2, suggesting HINT2 downregulation is caused by methylation of the gene promoter. HINT2 downregulation increased tumor migration and invasion in vitro, promoted CRC cell metastasis in vivo, and increased expression of epithelial-to-mesenchymal transition (EMT) markers. Furthermore, HINT2 downregulation depended on hypoxia inducible factor (HIF)-2α-mediated transcriptional activation of zinc finger E-box-binding homeobox 1 (ZEB1). These results suggest that HINT2 downregulation promotes HIF-2α expression, which induces EMT and enhances CRC cell migration and invasion. HINT2 may thus a useful clinical indicator of CRC progression and metastasis risk.
Collapse
Affiliation(s)
- Weihua Li
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| | - Shaoxin Cai
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| | - Le Wang
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| | - Changshun Yang
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| | - Biaohuan Zhou
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| | - Huan Wang
- Department of Surgical Oncology, Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
23
|
Falone S, Santini S, Cordone V, Cesare P, Bonfigli A, Grannonico M, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci Rep 2017; 7:11470. [PMID: 28904402 PMCID: PMC5597619 DOI: 10.1038/s41598-017-11869-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
In accordance with the classification of the International Agency for Research on Cancer, extremely low frequency magnetic fields (ELF-MF) are suspected to promote malignant progression by providing survival advantage to cancer cells through the activation of critical cytoprotective pathways. Among these, the major antioxidative and detoxification defence systems might be targeted by ELF-MF by conferring cells significant resistance against clinically-relevant cytotoxic agents. We investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field was supported by improved defence towards reactive oxygen species (ROS) and xenobiotics, as well as by reduced vulnerability against both H2O2 and anti-tumor ROS-generating drug doxorubicin. ELF-MF induced a proliferative and survival advantage by activating key redox-responsive antioxidative and detoxification cytoprotective pathways that are associated with a more aggressive behavior of neuroblastoma cells. This was coupled with the upregulation of the major sirtuins, as well as with increased signaling activity of the erythroid 2-related nuclear transcription factor 2 (NRF2). Interestingly, we also showed that the exposure to 50 Hz MF as low as 100 µT may still be able to alter behavior and responses of cancer cells to clinically-relevant drugs.
Collapse
Affiliation(s)
- S Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - S Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - V Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - A Bonfigli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Grannonico
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - C Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti Scalo (CH), Italy
| | - F Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Institute of Translational Pharmacology (IFT) - CNR, L'Aquila, Italy
| |
Collapse
|
24
|
Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 2017; 247:481-491. [PMID: 28722313 DOI: 10.1002/dvdy.24553] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program reactivated by tumor cells that leads to the switch from epithelial to mesenchymal phenotype. During EMT, cells are transcriptionally regulated to decrease E-cadherin expression while expressing mesenchymal markers such as vimentin, fibronectin, and N-cadherin. Growing body of evidences suggest that cells engaged in EMT undergo a metabolic reprograming process, redirecting glucose flux toward hexosamine biosynthesis pathway (HBP), which fuels aberrant glycosylation patterns that are extensively observed in cancer cells. HBP depends on nutrient availability to produce its end product UDP-GlcNAc, and for this reason is considered a metabolic sensor pathway. UDP-GlcNAc is the substrate used for the synthesis of major types of glycosylation, including O-GlcNAc and cell surface glycans. In general, the rate limiting enzyme of HBP, GFAT, is overexpressed in many cancer types that present EMT features as well as aberrant glycosylation. Moreover, altered levels of O-GlcNAcylation can modulate cell morphology and favor EMT. In this review, we summarize some of the current knowledge that correlates glucose metabolism, aberrant glycosylation and hyper O-GlcNAcylation supported by HBP that leads to EMT activation. Developmental Dynamics 247:481-491, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Carvalho-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Shi XK, Bian XB, Huang T, Wen B, Zhao L, Mu HX, Fatima S, Fan BM, Bian ZX, Huang LF, Lin CY. Azoxystrobin Induces Apoptosis of Human Esophageal Squamous Cell Carcinoma KYSE-150 Cells through Triggering of the Mitochondrial Pathway. Front Pharmacol 2017; 8:277. [PMID: 28567017 PMCID: PMC5434151 DOI: 10.3389/fphar.2017.00277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 11/23/2022] Open
Abstract
Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX), a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC50) of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Xiao-Ke Shi
- Yunnan Minzu University-Hong Kong Baptist University, Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu UniversityKunming, China.,Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Xiao-Bo Bian
- Graduate School, New York University, New YorkNY, United States
| | - Tao Huang
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Bo Wen
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Ling Zhao
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Huai-Xue Mu
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Sarwat Fatima
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Bao-Min Fan
- Yunnan Minzu University-Hong Kong Baptist University, Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu UniversityKunming, China
| | - Zhao-Xiang Bian
- Yunnan Minzu University-Hong Kong Baptist University, Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu UniversityKunming, China.,Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China
| | - Cheng-Yuan Lin
- Yunnan Minzu University-Hong Kong Baptist University, Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu UniversityKunming, China.,Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon TongHong Kong SAR, China
| |
Collapse
|
26
|
Farris JC, Pifer PM, Zheng L, Gottlieb E, Denvir J, Frisch SM. Grainyhead-like 2 Reverses the Metabolic Changes Induced by the Oncogenic Epithelial-Mesenchymal Transition: Effects on Anoikis. Mol Cancer Res 2016; 14:528-38. [PMID: 27084311 PMCID: PMC4912396 DOI: 10.1158/1541-7786.mcr-16-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Resistance to anoikis is a prerequisite for tumor metastasis. The epithelial-to-mesenchymal transition (EMT) allows tumor cells to evade anoikis. The wound-healing regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses/reverses EMT, accompanied by suppression of the cancer stem cell (CSC) phenotype and by resensitization to anoikis. Here, the effects of GRHL2 upon intracellular metabolism in the context of reversion of the EMT/CSC phenotype, with a view toward understanding how these effects promote anoikis sensitivity, were investigated. EMT enhanced mitochondrial oxidative metabolism. Although this was accompanied by higher accumulation of superoxide, the overall level of reactive oxygen species (ROS) declined, due to decreased hydrogen peroxide. Glutamate dehydrogenase 1 (GLUD1) expression increased in EMT, and this increase, via the product α-ketoglutarate (α-KG), was important for suppressing hydrogen peroxide and protecting against anoikis. GRHL2 suppressed GLUD1 gene expression, decreased α-KG, increased ROS, and sensitized cells to anoikis. IMPLICATIONS These results demonstrate a mechanistic role for GRHL2 in promoting anoikis through metabolic alterations. Mol Cancer Res; 14(6); 528-38. ©2016 AACR.
Collapse
Affiliation(s)
- Joshua C Farris
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia
| | - Phillip M Pifer
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia
| | - Liang Zheng
- Beatson Institute for Cancer Research, Switchback Road, Glasgow, United Kingdom
| | - Eyal Gottlieb
- Beatson Institute for Cancer Research, Switchback Road, Glasgow, United Kingdom
| | - James Denvir
- Department of Biochemistry and Microbiology, Marshall University, Huntington, West Virginia
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia. Department of Biochemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
27
|
Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL, Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2394-412. [PMID: 27132995 DOI: 10.1016/j.bbamcr.2016.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- N D Amoedo
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - G Punzi
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - E Obre
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - D Lacombe
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - A De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - C L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari.
| | - R Rossignol
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France.
| |
Collapse
|
28
|
Petanidis S, Kioseoglou E, Domvri K, Zarogoulidis P, Carthy JM, Anestakis D, Moustakas A, Salifoglou A. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients. Int J Biochem Cell Biol 2016; 74:121-34. [PMID: 26916505 DOI: 10.1016/j.biocel.2016.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece.
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece.
| | - Jon M Carthy
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden.
| | - Doxakis Anestakis
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala SE-75123, Sweden.
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
29
|
Falone S, Santini S, di Loreto S, Cordone V, Grannonico M, Cesare P, Cacchio M, Amicarelli F. Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells. J Cell Physiol 2016; 231:2014-25. [PMID: 26757151 DOI: 10.1002/jcp.25310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022]
Abstract
Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia di Loreto
- Institute of Translational Pharmacology (IFT)-CNR, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marta Grannonico
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Biomedical Sciences, University "G. d'Annunzio", Via dei Vestini, Chieti Scalo (CH), Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-CNR, L'Aquila, Italy
| |
Collapse
|
30
|
Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells. Biochem J 2015; 473:703-15. [PMID: 26699902 DOI: 10.1042/bj20150645] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/22/2015] [Indexed: 01/27/2023]
Abstract
Tumours display different cell populations with distinct metabolic phenotypes. Thus, subpopulations can adjust to different environments, particularly with regard to oxygen and nutrient availability. Our results indicate that progression to metastasis requires mitochondrial function. Our research, centered on cell lines that display increasing degrees of malignancy, focused on metabolic events, especially those involving mitochondria, which could reveal which stages are mechanistically associated with metastasis. Melanocytes were subjected to several cycles of adhesion impairment, producing stable cell lines exhibiting phenotypes representing a progression from non-tumorigenic to metastatic cells. Metastatic cells (4C11+) released the highest amounts of lactate, part of which was derived from glutamine catabolism. The 4C11+ cells also displayed an increased oxidative metabolism, accompanied by enhanced rates of oxygen consumption coupled to ATP synthesis. Enhanced mitochondrial function could not be explained by an increase in mitochondrial content or mitochondrial biogenesis. Furthermore, 4C11+ cells had a higher ATP content, and increased succinate oxidation (complex II activity) and fatty acid oxidation. In addition, 4C11+ cells exhibited a 2-fold increase in mitochondrial membrane potential (ΔΨmit). Consistently, functional assays showed that the migration of cells depended on glutaminase activity. Metabolomic analysis revealed that 4C11+ cells could be grouped as a subpopulation with a profile that was quite distinct from the other cells investigated in the present study. The results presented here have centred on how the multiple metabolic inputs of tumour cells may converge to compose the so-called metastatic phenotype.
Collapse
|
31
|
Chekulayev V, Mado K, Shevchuk I, Koit A, Kaldma A, Klepinin A, Timohhina N, Tepp K, Kandashvili M, Ounpuu L, Heck K, Truu L, Planken A, Valvere V, Kaambre T. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep 2015; 4:111-125. [PMID: 29124194 PMCID: PMC5668899 DOI: 10.1016/j.bbrep.2015.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/02/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
The aim of the work was to evaluate whether or not there is glycolytic reprogramming in the neighboring cells of colorectal cancer (CRC). Using postoperative material we have compared the functional capacity of oxidative phosphorylation (OXPHOS) in CRC cells, their glycolytic activity and their inclination to aerobic glycolysis, with those of the surrounding and healthy colon tissue cells. Experiments showed that human CRC cannot be considered a hypoxic tumor, since the malignancy itself and cells surrounding it exhibited even higher rates of OXPHOS than healthy large intestine. The absence of acute hypoxia in colorectal carcinomas was also confirmed by their practically equal glucose-phosphorylating capacity as compared with surrounding non-tumorous tissue and by upregulation of VEGF family and their ligands. Studies indicated that human CRC cells in vivo exert a strong distant effect on the energy metabolism of neighboring cells, so that they acquire the bioenergetic parameters specific to the tumor itself. The growth of colorectal carcinomas was associated with potent downregulation of the creatine kinase system. As compared with healthy colon tissue, the tumor surrounding cells display upregulation of OXPHOS and have high values of basal and ADP activated respiration rates. Strong differences between the normal and CRC cells in the affinity of their mitochondria for ADP were revealed; the corresponding Km values were measured as 93.6±7.7 µM for CRC cells and 84.9±9.9 µM for nearby tissue; both these apparent Km (ADP) values were considerably (by almost 3 times) lower in comparison with healthy colon tissue cells (256±34 µM). Human colorectal cancer is not a pure hypoxic tumor of the Warburg phenotype. The total hexokinase activity of CRC cells is close to that in nearby tissues. In the tumor there is overexpression of VEGFs (A, B, and C) and their receptors. CRC has higher rates of OXPHOS as compared with healthy tissue cells. Tumor-surrounding cells cannot fuel via a lactate shunt the growth of CRC cells.
Collapse
Key Words
- AK, adenylate kinase
- ANT, adenine nucleotide translocator
- AP5A, diadenosine pentaphosphate
- ATP-synthasome
- BB-CK, – brain type creatine kinase
- BSA, bovine serum albumin
- CAT, carboxyatractyloside
- CIMP, CpG island methylator phenotype
- CK, creatine kinase
- COX, cytochrome c oxidase
- CRC, colorectal cancer
- ETC, electron transport chain
- Energy metabolism
- FDG, 18-fluorodeoxyglucose
- Glycolysis
- HK, hexokinase
- Human colorectal cancer
- Km, Michaelis–Menten constant
- MI, Mitochondrial Interactosome
- MOM, mitochondrial outer membrane
- Mitochondria
- OXPHOS
- OXPHOS, oxidative phosphorylation
- PCr, phosphocreatine
- PEP, phosphoenolpyruvate
- PET, positron emission tomography
- PYK, pyruvate kinase
- Respiration
- TMPD, N,N,N′,N′-tetramethyl-p-phenylenediamine
- V0, basal respiration level
- VDAC, voltage dependent anion channel
- VEGF, vascular endothelial growth factor
- Vm, maximal respiration rate
- qPCR, real-time quantitative PCR
- uMtCK, ubiquitous mitochondrial creatine kinase
Collapse
Affiliation(s)
- Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kati Mado
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andre Koit
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andrus Kaldma
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Lyudmila Ounpuu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Laura Truu
- Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- Competence Centre for Cancer Research, Tallinn, Estonia
| | | | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Tallinn University, Tallinn, Estonia
| |
Collapse
|
32
|
Obre E, Rossignol R. Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 2015; 59:167-81. [DOI: 10.1016/j.biocel.2014.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
|