1
|
Moronge D, Godley H, Ayulo V, Mellott E, Elgazzaz M, Cooper G, Mohamed R, Ogbi S, Gillis E, Faulkner JL, Sullivan JC. Persistent subclinical renal injury in female rats following renal ischemia-reperfusion injury. Clin Sci (Lond) 2025; 139:CS20241851. [PMID: 39902555 DOI: 10.1042/cs20241851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The incidence of acute kidney injury (AKI) continues to rise in both men and women. Although creatinine levels return to normal quicker in females following AKI than in males, it remains unclear whether subclinical renal injury persists in young females post-AKI. This study tested the hypothesis that AKI results in subclinical renal injury in females despite plasma creatinine returning to sham levels. For the present study, 12-13-week-old female Sprague-Dawley (SD) rats were randomized to sham or 45-minute warm bilateral ischemia-reperfusion surgery as an experimental model of ischemic AKI. Rats were euthanized 1, 3, 7, 14, or 30 days post-AKI/sham. Plasma creatinine, cystatin C, kidney injury molecule 1 (KIM-1), and NGAL were quantified via assay kits or immunoblotting. Kidneys were processed for histological analysis to assess tubular injury and fibrosis, and for electron microscopy to examine mitochondrial morphology. Immunoblots on kidney homogenates were performed to determine oxidative stress and apoptosis. Plasma creatinine levels were increased 24 hours post-AKI but returned to sham control levels three days post-AKI. However, cystatin C, KIM-1, and NGAL were increased 30 days post-AKI compared with sham. Tubular injury, tubulointerstitial fibrosis, and mitochondrial dysfunction were all increased in 30-day post-AKI rats compared with sham. Additionally, 30-day post-AKI rats had higher p-JNK expression and lower antioxidant enzyme glutathione peroxidase and catalase levels compared with sham. AKI resulted in higher expression of cleaved caspase 3, TUNEL+ cells, and caspase 9 than sham. Despite the normalization of creatinine levels, our data support the hypothesis that subclinical renal injury persists following ischemia-reperfusion injury in young female rats.
Collapse
Affiliation(s)
- Desmond Moronge
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Hannah Godley
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Victor Ayulo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Mona Elgazzaz
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Gibson Cooper
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Riyaz Mohamed
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Safia Ogbi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Ellen Gillis
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
2
|
Boima V, Agyekum AB, Ganatra K, Agyekum F, Kwakyi E, Inusah J, Ametefe EN, Adu D. Advances in kidney disease: pathogenesis and therapeutic targets. Front Med (Lausanne) 2025; 12:1526090. [PMID: 40027896 PMCID: PMC11868101 DOI: 10.3389/fmed.2025.1526090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney disease (CKD) is a global public health issue characterized by progressive loss of kidney function, of which end-stage kidney disease (ESKD) is the last stage. The global increase in the prevalence of CKD is linked to the increasing prevalence of traditional risk factors, including obesity, hypertension, and diabetes mellitus, as well as metabolic factors, particularly insulin resistance, dyslipidemia, and hyperuricemia. Mortality and comorbidities, such as cardiovascular complications, rise steadily as kidney function deteriorates. Patients who progress to ESKD require long-term kidney replacement therapy, such as transplantation or hemodialysis/peritoneal dialysis. It is currently understood that a crucial aspect of CKD involves persistent, low-grade inflammation. In addition, increased oxidative and metabolic stress, endothelial dysfunction, vascular calcification from poor calcium and phosphate metabolism, and difficulties with coagulation are some of the complex molecular pathways underlying CKD-related and ESKD-related issues. Novel mechanisms, such as microbiome dysbiosis and apolipoprotein L1 gene mutation, have improved our understanding of kidney disease mechanisms. High kidney disease risk of Africa has been linked to APOL1 high-risk alleles. The 3-fold increased risk of ESKD in African Americans compared to European Americans is currently mainly attributed to variants in the APOL1 gene in the chromosome 22q12 locus. Additionally, the role of new therapies such as SGLT2 inhibitors, mineralocorticoid receptor antagonists, and APOL1 channel function inhibitors offers new therapeutic targets in slowing down the progression of chronic kidney disease. This review describes recent molecular mechanisms underlying CKD and emerging therapeutic targets.
Collapse
Affiliation(s)
- Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Alex Baafi Agyekum
- National Cardio-Thoracic Center, KorleBu Teaching Hospital, Accra, Ghana
| | - Khushali Ganatra
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Francis Agyekum
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Edward Kwakyi
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jalil Inusah
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Elmer Nayra Ametefe
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Science, University of Ghana, Accra, Ghana
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Jung CH, Lee YJ, Cho EH, Lee GE, Kim ST, Sung KS, Kim D, Kim DH, Son YS, Ahn JH, Han D, Kwon YT. The N-degron pathway mediates the autophagic degradation of cytosolic mitochondrial DNA during sterile innate immune responses. Cell Rep 2025; 44:115094. [PMID: 39709605 DOI: 10.1016/j.celrep.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
The human body reacts to tissue damage by generating damage-associated molecular patterns (DAMPs) that activate sterile immune responses. To date, little is known about how DAMPs are removed to avoid excessive immune responses. Here, we show that proteasomal dysfunction induces the release of mitochondrial DNA (mtDNA) as a DAMP that activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway and is subsequently degraded through the N-degron pathway. In the resolution phase of sterile immune responses, DNA-dependent protein kinase (DNA-PK) senses cytosolic mtDNA and activates N-terminal (Nt-) arginylation by ATE1 R-transferases. The substrates of Nt-arginylation include the molecular chaperone BiP/GRP78 retrotranslocated from the endoplasmic reticulum (ER). R-BiP, the Nt-arginylated species of BiP, is associated with cytosolic mtDNA to accelerate its targeting to autophagic membranes for lysosomal degradation. Thus, cytosolic mtDNA activates the N-degron pathway to facilitate its own degradation and form a negative feedback loop, by which the cell can turn off sterile immune responses at the right time.
Collapse
Affiliation(s)
- Chan Hoon Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yoon Jee Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Eun Hye Cho
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Gee Eun Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Tae Kim
- Regeners, Inc., BVC 112, 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ki Sa Sung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daeho Kim
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dong Hyun Kim
- Cancer Metastasis Brach, Division of Cancer Biology, National Cancer Center, Goyang-si Gyeonggi-do 10408, Republic of Korea
| | - Yeon Sung Son
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea; Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; AUTOTAC Bio, Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| |
Collapse
|
4
|
Cortinovis M, Perico N, Remuzzi G. Tubulointerstitial injury in proteinuric chronic kidney diseases. Front Med (Lausanne) 2024; 11:1478697. [PMID: 39529801 PMCID: PMC11550959 DOI: 10.3389/fmed.2024.1478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Proteinuria is an independent risk factor for chronic kidney disease progression and cardiovascular diseases. Apart from its prognostic role, the load of proteins that pass across the disrupted glomerular capillary wall trigger multiple pathophysiologic processes. These include, among others, intratubular complement activation and excessive proximal tubular reabsorption of filtered proteins, especially albumin and albumin-bound free fatty acids, which can set off several pathways of cellular damage. The activation of these pathways can cause apoptosis of proximal tubular cells and paracrine effects that incite the development of interstitial inflammation and fibrosis, ultimately leading to irreversible kidney injury. In this review, we provide a comprehensive overview of the current understanding on the mechanisms underlying the tubular toxicity of ultrafiltered proteins in the setting of proteinuric chronic kidney diseases. The acquired knowledge is expected to be instrumental for the development of novel therapeutic classes of medications to be tested on top of standard of care with optimized renin-angiotensin-aldosterone blockade and sodium-glucose cotransporter-2 inhibition, in order to further improve the clinical outcomes of patients with proteinuric chronic kidney diseases.
Collapse
Affiliation(s)
- Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
5
|
Jiang Y, Xu Y, Wang Q, Chen Z, Liu C. Significance of serum NLRP3 as a potential predictor of 5-year death in hemodialysis patients: A prospective observational cohort study. Medicine (Baltimore) 2024; 103:e39185. [PMID: 39093762 PMCID: PMC11296485 DOI: 10.1097/md.0000000000039185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) is involved in inflammatory response. This study was done to explore the role of serum NLRP3 as a predictive biomarker of death after hemodialysis. In this prospective observational study of 331 patients undergoing maintenance hemodialysis, serum NLRP3 levels were measured. Univariate analysis and multivariate analysis were sequentially performed to determine predictors of 5-year death after hemodialysis. Age, major adverse cardiac and cerebral events (MACCE), and serum NLRP3 levels independently predicted 5-year mortality and overall survival (all P < .05). No interactions were found between serum NLRP3 levels and other variables, such as age, gender, hypertension, diabetes mellitus, primary renal diseases, and MACCE (all P interaction > .05). Serum NLRP3 levels were linearly correlated with risk of death and overall survival under restricted cubic spline (both P > .05) and substantially discriminated patients at risk of death under receiver operating characteristic curve (P < .001). Two models, in which age, MACCE, and serum NLRP3 were combined, were built to predict 5-year mortality and overall survival. The mortality prediction model had significantly higher predictive ability than age, AMCCE, and serum NLRP3 alone under receiver operating characteristic curve (all P < .05). The models, which were graphically represented by nomograms, performed well under calibration curve and decision curve. Serum NLRP3 levels are independently related to 5-year mortality and overall survival of patients after hemodialysis, suggesting that serum NLRP3 may be a potential prognostic biomarker of hemodialysis patients.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Nephrology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yandan Xu
- Department of Nephrology, Quzhou KeCheng People’s Hospital, Quzhou, China
| | - Qiuli Wang
- Traditional Chinese Medicine Department, Quzhou Hospital of Zhejiang Medical and Health Group, Quzhou, China
| | - Zhiwei Chen
- Department of Nephrology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Chunya Liu
- Department of Nephrology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
6
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
7
|
Wu M, Pei Z, Long G, Chen H, Jia Z, Xia W. Mitochondrial antiviral signaling protein: a potential therapeutic target in renal disease. Front Immunol 2023; 14:1266461. [PMID: 37901251 PMCID: PMC10602740 DOI: 10.3389/fimmu.2023.1266461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a key innate immune adaptor on the outer mitochondrial membrane that acts as a switch in the immune signal transduction response to viral infections. Some studies have reported that MAVS mediates NF-κB and type I interferon signaling during viral infection and is also required for optimal NLRP3 inflammasome activity. Recent studies have reported that MAVS is involved in various cancers, systemic lupus erythematosus, kidney diseases, and cardiovascular diseases. Herein, we summarize the structure, activation, pathophysiological roles, and MAVS-based therapies for renal diseases. This review provides novel insights into MAVS's role and therapeutic potential in the pathogenesis of renal diseases.
Collapse
Affiliation(s)
- Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyin Pei
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D, Zhang F. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol 2023; 54:313-327. [PMID: 37341818 DOI: 10.1007/s10735-023-10135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
As an essential factor in the prognosis of Systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease (ESRD). Proteinuria due to decreased glomerular filtration rate following podocyte injury is LN's most common clinical manifestation. Podocyte pyroptosis and related inflammatory factors in its process can promote lupus to involve kidney cells and worsen the occurrence and progression of LN, but its regulatory mechanism remains unknown. Accumulating evidence has shown that upstream stimulatory factor 2 (USF2) plays a vital role in the pathophysiology of kidney diseases. In this research, multiple experiments were performed to investigate the role of USF2 in the process of LN. USF2 was abnormally highly expressed in MRL/lpr mice kidney tissues. Renal function impairment and USF2 mRNA levels were positively correlated. Silencing of USF2 in MRL/lpr serum-stimulated cells significantly reduced serum-induced podocyte pyroptosis. USF2 enhanced NLRP3 expression at the transcriptional level. Silencing of USF2 in vivo attenuated kidney injury in MRL/lpr mice, which suggests that USF2 is important for LN development and occurrence.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Wenli Deng
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Nan Nan
- Department of Pathology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Gong
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Peilei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Daolin Cui
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Wang Y, Song D, Tang L. Mitophagy, Inflammasomes and Their Interaction in Kidney Diseases: A Comprehensive Review of Experimental Studies. J Inflamm Res 2023; 16:1457-1469. [PMID: 37042016 PMCID: PMC10083013 DOI: 10.2147/jir.s402290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Mitophagy is an important mechanism for mitochondrial quality control by regulating autophagosome-specific phagocytosis, degradation and clearance of damaged mitochondria, and involved in cell damage and diseases. Inflammasomes are important inflammation-related factors newly discovered in recent years, which are involved in cell innate immunity and inflammatory response, and play an important role in kidney diseases. Based on the current studies, we reviewed the progress of mitophagy, inflammasomes and their interaction in kidney diseases.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Dongxu Song
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Lin Tang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450052, People’s Republic of China
- Correspondence: Lin Tang, Department of Nephrology, Zhengzhou University First Affiliated Hospital, 1 Jianshe Road, Zhengzhou, Henan, 450052, People’s Republic of China, Email
| |
Collapse
|
11
|
The Role of NLRP3 Inflammasome in IgA Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010082. [PMID: 36676706 PMCID: PMC9866943 DOI: 10.3390/medicina59010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease worldwide today. The NLRP3 inflammasome is a polyprotein complex and an important participant in inflammation. Accumulating studies have shown that the NLRP3 inflammasome participates in a variety of kidney diseases, including IgAN. This review focuses on the role of the NLRP3 inflammasome in IgAN and summarizes multiple involved pathways, which may provide novel treatments for IgAN treatment.
Collapse
|
12
|
Bai J, Pu X, Zhang Y, Dai E. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Ren Fail 2022; 44:966-986. [PMID: 35713363 PMCID: PMC9225740 DOI: 10.1080/0886022x.2022.2081579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The present study identified novel renal tubular biomarkers that may influence the diagnosis and treatment of focal segmental glomerulosclerosis (FSGS) based on immune infiltration. METHODS Three FSGS microarray datasets, GSE108112, GSE133288 and GSE121211, were downloaded from the Gene Expression Omnibus (GEO) database. The R statistical software limma package and the combat function of the sva package were applied for preprocessing and to remove the batch effects. Differentially expressed genes (DEGs) between 120 FSGS and 15 control samples were identified with the limma package. Disease Ontology (DO) pathway enrichment analysis was conducted with statistical R software to search for related diseases. Gene set enrichment analysis (GSEA) was used to interpret the gene expression data and it revealed many common biological pathways. A protein-protein interaction (PPI) network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes were identified by the Cytoscape (version 3.7.2) plug-in CytoHubba. The plug-in Molecular Complex Detection (MCODE) was used to screen hub modules of the PPI network in Cytoscape, while functional analysis of the hub genes and hub nodes involved in the submodule was performed by ClusterProfiler. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analysis were used to screen characteristic genes and build a logistic regression model. Receiver operating characteristic (ROC) curve analyses were used to investigate the logistic regression model and it was then validated by an external dataset GSE125779, which contained 8 FSGS samples and 8 healthy subjects. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to calculate the immune infiltration of FSGS samples. RESULTS We acquired 179 DEGs, 79 genes with downregulated expression (44.1%) and 100 genes with upregulated expression (55.9%), in the FSGS samples. The DEGs were significantly associated with arteriosclerosis, kidney disease and arteriosclerotic cardiovascular disease. GSEA revealed that these gene sets were significantly enriched in allograft rejection signaling pathways and activation of immune response in biological processes. Fifteen genes were demonstrated to be hub genes by PPI, and three submodules were screened by MCODE linked with FSGS. Analysis by machine learning methodologies identified nuclear receptor subfamily 4 group A member 1 (NR4A1) and dual specificity phosphatase 1 (DUSP1) as sensitive tubular renal biomarkers in the diagnosis of FSGS, and they were selected as hub genes, as well as hub nodes which were enriched in the MAPK signaling pathway. Immune cell infiltration analysis revealed that the genetic biomarkers were both correlated with activated mast cells, which may amplify FSGS biological processes. CONCLUSION DUSP1 and NR4A1 were identified as sensitive potential biomarkers in the diagnosis of FSGS. Activated mast cells have a decisive effect on the occurrence and development of FSGS through tubular lesions and tubulointerstitial inflammation, and they are expected to become therapeutic targets in FSGS.
Collapse
Affiliation(s)
- JunYuan Bai
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - XiaoWei Pu
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - YunXia Zhang
- Medical College of Integrated Chinese and Western Medicine, GanSu University of Traditional Chinese Medicine, GanSu, China
| | - Enlai Dai
- Department of Anesthesiology and Surgery, GanSu University of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
13
|
IL-18 deficiency ameliorates the progression from AKI to CKD. Cell Death Dis 2022; 13:957. [PMID: 36379914 PMCID: PMC9666542 DOI: 10.1038/s41419-022-05394-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Inflammation is an important factor in the progression from acute kidney injury (AKI) to chronic kidney disease (CKD). The role of interleukin (IL)-18 in this progression has not been examined. We aimed to clarify whether and how IL-18 limits this progression. In a folic acid induced renal injury mouse model, we studied the time course of kidney injury and renal IL-18 expression. In wild-type mice following injection, renal IL-18 expression increased. In parallel, we characterized other processes, including at day 2, renal tubular necroptosis assessed by receptor-interacting serine/threonine-protein kinase1 (RIPK1) and RIPK3; at day 14, transdifferentiation (assessed by transforming growth factor β1, vimentin and E-cadherin); and at day 30, fibrosis (assessed by collagen 1). In IL-18 knockout mice given folate, compared to wild-type mice, tubular damage and necroptosis, transdifferentiation, and renal fibrosis were attenuated. Importantly, IL-18 deletion decreased numbers of renal M1 macrophages and M1 macrophage cytokine levels at day 14, and reduced M2 macrophages numbers and macrophage cytokine expression at day 30. In HK-2 cells, IL-18 knockdown attenuated necroptosis, transdifferentiating and fibrosis.In patients with tubulointerstitial nephritis, IL-18 protein expression was increased on renal biopsies using immunohistochemistry. We conclude that genetic IL-18 deficiency ameliorates renal tubular damage, necroptosis, cell transdifferentiation, and fibrosis. The renoprotective role of IL-18 deletion in the progression from AKI to fibrosis may be mediated by reducing a switch in predominance from M1 to profibrotic M2 macrophages during the process of kidney repair.
Collapse
|
14
|
Frąk W, Kućmierz J, Szlagor M, Młynarska E, Rysz J, Franczyk B. New Insights into Molecular Mechanisms of Chronic Kidney Disease. Biomedicines 2022; 10:2846. [PMID: 36359366 PMCID: PMC9687691 DOI: 10.3390/biomedicines10112846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem with a developing incidence and prevalence. As a consequence of the growing number of patients diagnosed with renal dysfunction leading to the development of CKD, it is particularly important to explain the mechanisms of its underlying causes. In our paper, we discuss the molecular mechanisms of the development and progression of CKD, focusing on oxidative stress, the role of the immune system, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinases. Moreover, growing evidence shows the importance of the role of the gut-kidney axis in the maintenance of normal homeostasis and of the dysregulation of this axis in CKD. Further, we discuss the therapeutic potential and highlight the future research directions for the therapeutic targeting of CKD. However, additional investigation is crucial to improve our knowledge of CKD progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Szlagor
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
15
|
Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11071356. [PMID: 35883847 PMCID: PMC9311633 DOI: 10.3390/antiox11071356] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
Collapse
|
16
|
Kasprzak Ł, Twardawa M, Formanowicz P, Formanowicz D. The Mutual Contribution of 3-NT, IL-18, Albumin, and Phosphate Foreshadows Death of Hemodialyzed Patients in a 2-Year Follow-Up. Antioxidants (Basel) 2022; 11:antiox11020355. [PMID: 35204237 PMCID: PMC8868576 DOI: 10.3390/antiox11020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Patients with chronic kidney disease (CKD), especially those who are hemodialyzed (HD), are at significantly high risk of contracting cardiovascular disease and having increased mortality. This study aimed to find potential death predictors, the measurement of which may reflect increased mortality in HD patients, and then combine the most promising ones in frames of a simple death risk assessment model. For this purpose, HD patients (n=71) with acute myocardial infarction in the last year (HD group) and healthy people (control group) as a comparative group (n=32) were included in the study. Various laboratory determinations and non-invasive cardiovascular tests were performed. Next, patients were followed for two years, and data on cardiovascular (CV) deaths were collected. On this basis, two HD groups were formed: patients who survived (HD-A, n=51) and patients who died (HD-D, n=20). To model HD mortality, 21 out of 90 potential variables collected or calculated from the raw data were selected. The best explanatory power (95.5%) was reached by a general linear model with four variables: interleukin 18, 3-nitrotyrosine, albumin, and phosphate. The interplay between immuno-inflammatory processes, nitrosative and oxidative stress, malnutrition, and calcium-phosphate disorders has been indicated to be essential in predicting CV-related mortality in studied HD patients. ClinicalTrials.gov Identifier: NCT05214872.
Collapse
Affiliation(s)
- Łukasz Kasprzak
- Department of Nephrology with Dialysis Unit, Provincial Hospital in Leszno, 64-100 Leszno, Poland;
| | - Mateusz Twardawa
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (M.T.); (P.F.)
- ICT Security Department, Poznan Supercomputing and Networking Center Affiliated to the Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-139 Poznan, Poland
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (M.T.); (P.F.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence:
| |
Collapse
|
17
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
18
|
Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cells pyroptosis in culture involved in ROS/NLRP3/Caspase-1 signaling. Free Radic Res 2022; 56:40-52. [DOI: 10.1080/10715762.2022.2032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Xia Zou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Gang Xu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Yunchang Cao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| |
Collapse
|
19
|
Role of SIRT1 in Hepatic Encephalopathy: In Vivo and In Vitro Studies Focusing on the NLRP3 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522708. [PMID: 34676022 PMCID: PMC8526203 DOI: 10.1155/2021/5522708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder resulting from acute or chronic liver failure. This study is aimed at investigating the therapeutic effects and mechanisms of SIRT1 in thioacetamide- (TAA-) induced rat HE models. A selective activator (CAY10602) and inhibitor (EX527) of SIRT1 were used in this study. All male rats were separated into control, TAA, CAY10602+TAA, and EX527+TAA groups. Histological damage, liver function, serum ammonia, behavioral changes, and brain oxidative stress were measured in each group. Western blotting was used to measure SIRT1, NLRP3, ASC, and IL-1β protein expression. The results showed that CAY10602 alleviated liver injury, improved neurological decline, reduced microglial activation and brain oxidative stress, and improved the survival rates of HE rats. Moreover, CAY10602 inhibited activation of the NLRP3 inflammasome in microglia of the brain cortex in HE rats. Next, cell experiments confirmed that CAY10602 inhibited activation of the NLRP3 inflammasome in BV2 microglial cells. However, inhibition of SIRT1 by EX527 or lentivirus could enhance activation of the NLRP3 inflammasome in this process. Finally, CAY10602 reduced the neurotoxicity induced by high levels of ammonia in HT22 cells. Taken together, CAY10602 alleviates TAA-induced HE by suppressing microglial activation and the NLRP3 inflammasome and reducing the neurotoxicity of NH4Cl in HT22 cells. A pharmacologic activator of SIRT1 may be a promising approach for the treatment of HE.
Collapse
|
20
|
Shi L, Meng J, Zhang B, Chen J, Chen J, Zhang J. Elevated Serum Levels of Carbohydrate Antigen 72-4 in Diabetic Kidney Disease. Exp Clin Endocrinol Diabetes 2021; 130:400-405. [PMID: 34607374 DOI: 10.1055/a-1532-4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to determine whether carbohydrate antigen 72-4 (CA72-4) is elevated in diabetic kidney disease (DKD), and examine the association between urinary albumin-to-creatinine ratio (UACR) and CA72-4 in patients with type 2 diabetes mellitus (T2DM). Non-dialysis patients with T2DM (n=296) and 90 healthy controls were recruited in this study. CA72-4 level was measured by electrochemiluminescence immunoassay. DKD was defined as UACR≥ 30 mg/g in the absence of a urinary infection or other renal diseases. We found that patients with DKD had significantly higher serum CA72-4 levels compared to those with normoalbuminuria and healthy controls. Positive rates of CA72-4 increased gradually and markedly from normoalbuminuria to microalbuminuria and to macroalbuminuria in diabetic patients (7.5, 11.2, and 17.4%, respectively; P for trend< 0.05). CA72-4 also showed a positive correlation with UACR (r=0.288, P< 0.01). Logistic regression analysis revealed the association of increased UACR with an increased odds ratio of elevation of CA72-4 levels (P for trend< 0.05) after multivariable adjustment. In conclusion, serum levels of CA72-4 increase abnormally with the increase in urinary albumin excretion, which affects the specificity of diagnosis of malignancies. An appropriate interpretation of CA72-4 is essential to prevent unnecessary and even hazardous diagnostic procedures in patients with T2DM.
Collapse
Affiliation(s)
- Lei Shi
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzhong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Pan Q, Chen Y, Wang S, Xu YZ, Liu HF. Commentary on "The Role of Mitochondria in Systemic Lupus Erythematosus: A Glimpse of Various Pathogenetic Mechanisms" by Prof. Yang et al., Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China, Curr. Med. Chem., 2020, 27(20), 3346-3361. Curr Med Chem 2021; 28:2077-2079. [PMID: 34011253 DOI: 10.2174/092986732810210416082734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yong-Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
23
|
Yue H, Yang Z, Ou Y, Liang S, Deng W, Chen H, Zhang C, Hua L, Hu W, Sun P. Tanshinones inhibit NLRP3 inflammasome activation by alleviating mitochondrial damage to protect against septic and gouty inflammation. Int Immunopharmacol 2021; 97:107819. [PMID: 34098486 DOI: 10.1016/j.intimp.2021.107819] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, the active ingredients derived from the roots of Salvia miltiorrhiza, have been widely used as traditional medicinal herbs for treating human diseases. Although tanshinones showed anti-inflammatory effects in many studies, large knowledge gaps remain regarding their underlying mechanisms. Here, we identified 15 tanshinones that suppressed the activation of NLRP3 inflammasome and studied their structure-activity relationships. Three tanshinones (tanshinone IIA, isocryptotanshinone, and dihydrotanshinone I) reduced mitochondrial reactive-oxygen species production in lipopolysaccharide (LPS)/nigericin-stimulated macrophages and correlated with altered mitochondrial membrane potentials, mitochondria complexes activities, and adenosine triphosphate and protonated-nicotinamide adenine dinucleotide production. The tanshinones may confer mitochondrial protection by promoting autophagy and the AMP-activated protein kinase pathway. Importantly, our findings demonstrate that dihydrotanshinone I improved the survival of mice with LPS shock and ameliorated inflammatory responses in septic and gouty animals. Our results suggest a potential pharmacological mechanism whereby tanshinones can effectively treat inflammatory diseases, such as septic and gouty inflammation.
Collapse
Affiliation(s)
- Hu Yue
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhongjin Yang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yitao Ou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shuli Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenmin Deng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Hao Chen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Cheng Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Lei Hua
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wenhui Hu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Ping Sun
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
24
|
Chen Y, Que R, Lin L, Shen Y, Liu J, Li Y. Inhibition of oxidative stress and NLRP3 inflammasome by Saikosaponin-d alleviates acute liver injury in carbon tetrachloride-induced hepatitis in mice. Int J Immunopathol Pharmacol 2021; 34:2058738420950593. [PMID: 32816567 PMCID: PMC7444099 DOI: 10.1177/2058738420950593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NLRP3 inflammasome activation results in severe liver inflammation and injury. Saikosaponin-d (SSd) possesses anti-inflammatory and hepatoprotective effects. This study aimed to determine the protective effects of SSd on carbon tetrachloride (CCl4)-induced acute liver injury in mice, and whether oxidative stress and NLRP3 inflammasome activation participate in the process. The CCl4 mice model and controls were induced. The mice were treated with SSd at 1, 1.5, or 2.0 mg/kg in a total volume of 100 µl/25 g of body weight. Liver injury was assessed by histopathology. Oxidative stress was determined using mitochondrial superoxide production (MSP), malondialdehyde (MDA) content, and superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities. NLRP3, ASC, and Caspase 1 were determined by real-time PCR and western blot. IL-1β and IL-18 levels were determined by ELISA. Significantly elevated oxidative stress was induced in the liver by CCl4, as demonstrated by histopathology and increases of MDA and MSP levels and decreases of SOD, GPx, and CAT activities (all P < 0.01). SSd significantly decreased the MDA and MSP levels and increased the activities of SOD, GPx, and CAT (all P < 0.05). The mRNA expression of NLRP3, ASC, and Caspase 1, and the protein expression of Caspase 1-p10, NLRP3, ASC, IL-1β, and IL-18 were significantly increased after CCl4 induction (all P < 0.01). These changes were reversed by SSd (all P < 0.05). Suppression of the oxidative stress and NLRP3 inflammasome activation were involved in SSd-alleviated acute liver injury in CCl4-induced hepatitis.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renye Que
- Department of Gastroenterology, Shanghai TCM Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinkai Liu
- Department of Hepatic Surgery I, Eastern Hepatobiliary Surgery Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Mathew RO, Rosenson RS, Lyubarova R, Chaudhry R, Costa SP, Bangalore S, Sidhu MS. Concepts and Controversies: Lipid Management in Patients with Chronic Kidney Disease. Cardiovasc Drugs Ther 2021; 35:479-489. [PMID: 32556851 DOI: 10.1007/s10557-020-07020-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains an important contributor of morbidity and mortality in patients with chronic kidney disease (CKD). CKD is recognized as an important risk enhancer that identifies patients as candidates for more intensive low-density lipoprotein (LDL) cholesterol lowering. However, there is controversy regarding the efficacy of lipid-lowering therapy, especially in patients on dialysis. Among patients with CKD, not yet on dialysis, there is clinical trial evidence for the use of statins with or without ezetimibe to reduce ASCVD events. Newer cholesterol lowering agents have been introduced for the management of hyperlipidemia to reduce ASCVD, but these therapies have not been tested in the CKD population except in secondary analyses of patients with primarily CKD stage 3. This review summarizes the role of hyperlipidemia in ASCVD and treatment strategies for hyperlipidemia in the CKD population.
Collapse
Affiliation(s)
- Roy O Mathew
- Columbia V.A. Health Care System, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
- University of South Carolina School of Medicine, Columbia, SC, USA.
| | | | | | | | | | | | - Mandeep S Sidhu
- Albany Medical College and Albany Medical Center, Albany, NY, USA
| |
Collapse
|
26
|
Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis 2021; 12:523. [PMID: 34021126 PMCID: PMC8140121 DOI: 10.1038/s41419-021-03813-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Tubulointerstitial inflammation plays a key role in the pathogenesis of diabetic nephropathy (DN). Interleukin-1β (IL-1β) is the key proinflammatory cytokine associated with tubulointerstitial inflammation. The NLRP3 inflammasome regulates IL-1β activation and secretion. Reactive oxygen species (ROS) represents the main mediator of NLRP3 inflammasome activation. We previously reported that CD36, a class B scavenger receptor, mediates ROS production in DN. Here, we determined whether CD36 is involved in NLRP3 inflammasome activation and explored the underlying mechanisms. We observed that high glucose induced-NLRP3 inflammasome activation mediate IL-1β secretion, caspase-1 activation, and apoptosis in HK-2 cells. In addition, the levels of CD36, NLRP3, and IL-1β expression (protein and mRNA) were all significantly increased under high glucose conditions. CD36 knockdown resulted in decreased NLRP3 activation and IL-1β secretion. CD36 knockdown or the addition of MitoTempo significantly inhibited ROS production in HK-2 cells. CD36 overexpression enhanced NLRP3 activation, which was reduced by MitoTempo. High glucose levels induced a change in the metabolism of HK-2 cells from fatty acid oxidation (FAO) to glycolysis, which promoted mitochondrial ROS (mtROS) production after 72 h. CD36 knockdown increased the level of AMP-activated protein kinase (AMPK) activity and mitochondrial FAO, which was accompanied by the inhibition of NLRP3 and IL-1β. The in vivo experimental results indicate that an inhibition of CD36 could protect diabetic db/db mice from tubulointerstitial inflammation and tubular epithelial cell apoptosis. CD36 mediates mtROS production and NLRP3 inflammasome activation in db/db mice. CD36 inhibition upregulated the level of FAO-related enzymes and AMPK activity in db/db mice. These results suggest that NLRP3 inflammasome activation is mediated by CD36 in renal tubular epithelial cells in DN, which suppresses mitochondrial FAO and stimulates mtROS production.
Collapse
Affiliation(s)
- Yanjuan Hou
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- grid.477944.dDepartment of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yiliang Chen
- grid.280427.b0000 0004 0434 015XBlood Research Institute, Blood Center of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Xi Qiao
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Wen Y, Yan HR, Wang B, Liu BC. Macrophage Heterogeneity in Kidney Injury and Fibrosis. Front Immunol 2021; 12:681748. [PMID: 34093584 PMCID: PMC8173188 DOI: 10.3389/fimmu.2021.681748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney macrophages are central in kidney disease pathogenesis and have therapeutic potential in preventing tissue injury and fibrosis. Recent studies highlighted that kidney macrophages are notably heterogeneous immune cells that fulfill opposing functions such as clearing deposited pathogens, maintaining immune tolerance, initiating and regulating inflammatory responses, promoting kidney fibrosis, and degrading the extracellular matrix. Macrophage origins can partially explain macrophage heterogeneity in the kidneys. Circulating Ly6C+ monocytes are recruited to inflammatory sites by chemokines, while self-renewed kidney resident macrophages contribute to kidney repair and fibrosis. The proliferation of resident macrophages or infiltrating monocytes provides an alternative explanation of macrophage accumulation after kidney injury. In addition, dynamic Ly6C expression on infiltrating monocytes accompanies functional changes in handling kidney inflammation and fibrosis. Mechanisms underlying kidney macrophage heterogeneity, either by recruiting monocyte subpopulations, regulating macrophage polarization, or impacting distinctive macrophage functions, may help develop macrophage-targeted therapies for kidney diseases.
Collapse
Affiliation(s)
- Yi Wen
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong-Ru Yan
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
28
|
Wlazlo E, Mehrad B, Morel L, Scindia Y. Iron Metabolism: An Under Investigated Driver of Renal Pathology in Lupus Nephritis. Front Med (Lausanne) 2021; 8:643686. [PMID: 33912577 PMCID: PMC8071941 DOI: 10.3389/fmed.2021.643686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Nephritis is a common manifestation of systemic lupus erythematosus, a condition associated with inflammation and iron imbalance. Renal tubules are the work horse of the nephron. They contain a large number of mitochondria that require iron for oxidative phosphorylation, and a tight control of intracellular iron prevents excessive generation of reactive oxygen species. Iron supply to the kidney is dependent on systemic iron availability, which is regulated by the hepcidin-ferroportin axis. Most of the filtered plasma iron is reabsorbed in proximal tubules, a process that is controlled in part by iron regulatory proteins. This review summarizes tubulointerstitial injury in lupus nephritis and current understanding of how renal tubular cells regulate intracellular iron levels, highlighting the role of iron imbalance in the proximal tubules as a driver of tubulointerstitial injury in lupus nephritis. We propose a model based on the dynamic ability of iron to catalyze reactive oxygen species, which can lead to an accumulation of lipid hydroperoxides in proximal tubular epithelial cells. These iron-catalyzed oxidative species can also accentuate protein and autoantibody-induced inflammatory transcription factors leading to matrix, cytokine/chemokine production and immune cell infiltration. This could potentially explain the interplay between increased glomerular permeability and the ensuing tubular injury, tubulointerstitial inflammation and progression to renal failure in LN, and open new avenues of research to develop novel therapies targeting iron metabolism.
Collapse
Affiliation(s)
- Ewa Wlazlo
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States.,Division of Nephrology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Hirooka Y, Nozaki Y. Interleukin-18 in Inflammatory Kidney Disease. Front Med (Lausanne) 2021; 8:639103. [PMID: 33732720 PMCID: PMC7956987 DOI: 10.3389/fmed.2021.639103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-18, a member of the IL-1 superfamily, is a pro-inflammatory cytokine that is structurally similar to IL-1β. IL-18 promotes the production of interferon gamma (IFN-γ) and strongly induces a Th1 response. IL-18 drives the same myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway as IL-1β. In physiological conditions, IL-18 is regulated by the endogenous inhibitor IL-18 binding protein (IL-18BP), and the activity of IL-18 is balanced. It is reported that in several inflammatory diseases, the IL-18 activity is unbalanced, and IL-18 neutralization by IL-18BP is insufficient. IL-18 acts synergistically with IL-12 to induce the production of IFN-γ as a Th1 cytokine, and IL-18 acts alone to induce the production of Th2 cytokines such as IL-4 and IL-13. In addition, IL-18 alone enhances natural killer (NK) cell activity and FAS ligand expression. The biological and pathological roles of IL-18 have been studied in many diseases. Here we review the knowledge regarding IL-18 signaling and the role of IL-18 in inflammatory kidney diseases. Findings on renal injury in coronavirus disease 2019 (COVID-19) and its association with IL-18 will also be presented.
Collapse
Affiliation(s)
- Yasuaki Hirooka
- Department of Rheumatology, Kindai University Nara Hospital, Nara, Japan
| | - Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Yang SR, Hua KF, Takahata A, Wu CY, Hsieh CY, Chiu HW, Chen CH, Mukhopadhyay D, Suzuki Y, Ka SM, Huang HS, Chen A. LCC18, a benzamide-linked small molecule, ameliorates IgA nephropathy in mice. J Pathol 2021; 253:427-441. [PMID: 33373038 DOI: 10.1002/path.5609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
IgA nephropathy (IgAN), an immune complex-mediated process and the most common primary glomerulonephritis, can progress to end-stage renal disease in up to 40% of patients. Accordingly, a therapeutic strategy targeting a specific molecular pathway is urgently warranted. Aided by structure characterisation and target identification, we predicted that a novel ring-fused 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (LCC18) targets the NLRP3 inflammasome, which participates in IgAN pathogenesis. We further developed biomarkers for the disease. We used two complementary IgAN models in C57BL/6 mice, involving TEPC-15 hybridoma-derived IgA, and in gddY mice. Moreover, we created specific cell models to validate therapeutic effects of LCC18 on IgAN and to explain its underlying mechanisms. IgAN mice benefited significantly from treatment with LCC18, showing dramatically improved renal function, including greatly reduced proteinuria and renal pathology. Mechanistic studies showed that the mode of action specifically involved: (1) blocking of the MAPKs/COX-2 axis-mediated priming of the NLRP3 inflammasome; (2) inhibition of ASC oligomerisation and NLRP3 inflammasome assembly by inhibiting NLRP3 binding to PKR, NEK7 and ASC; and (3) activation of autophagy. LCC18 exerts therapeutic effects on murine IgAN by differentially regulating NLRP3 inflammasome activation and autophagy induction, suggesting this new compound as a promising drug candidate to treat IgAN. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
31
|
Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, Yin D, Liu H, Tang RN, Crowley SD, Lv LL, Liu BC. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. SCIENCE ADVANCES 2020; 6:eaaz0748. [PMID: 32851154 PMCID: PMC7423360 DOI: 10.1126/sciadv.aaz0748] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/26/2020] [Indexed: 05/07/2023]
Abstract
Recently, extracellular vesicles (EVs) have been attracting strong research interest for use as natural drug delivery systems. We report an approach to manufacturing interleukin-10 (IL-10)-loaded EVs (IL-10+ EVs) by engineering macrophages for treating ischemic acute kidney injury (AKI). Delivery of IL-10 via EVs enhanced not only the stability of IL-10, but also its targeting to the kidney due to the adhesive components on the EV surface. Treatment with IL-10+ EVs significantly ameliorated renal tubular injury and inflammation caused by ischemia/reperfusion injury, and potently prevented the transition to chronic kidney disease. Mechanistically, IL-10+ EVs targeted tubular epithelial cells, and suppressed mammalian target of rapamycin signaling, thereby promoting mitophagy to maintain mitochondrial fitness. Moreover, IL-10+ EVs efficiently drove M2 macrophage polarization by targeting macrophages in the tubulointerstitium. Our study demonstrates that EVs can serve as a promising delivery platform to manipulate IL-10 for the effective treatment of ischemic AKI.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Di Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- Corresponding author. (B.-C.L.); (L.-L.L.)
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- Corresponding author. (B.-C.L.); (L.-L.L.)
| |
Collapse
|
32
|
Menini S, Iacobini C, Vitale M, Pugliese G. The Inflammasome in Chronic Complications of Diabetes and Related Metabolic Disorders. Cells 2020; 9:E1812. [PMID: 32751658 PMCID: PMC7464565 DOI: 10.3390/cells9081812] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) ranks seventh as a cause of death worldwide. Chronic complications, including cardiovascular, renal, and eye disease, as well as DM-associated non-alcoholic fatty liver disease (NAFLD) account for most of the morbidity and premature mortality in DM. Despite continuous improvements in the management of late complications of DM, significant gaps remain. Therefore, searching for additional strategies to prevent these serious DM-related conditions is of the utmost importance. DM is characterized by a state of low-grade chronic inflammation, which is critical in the progression of complications. Recent clinical trials indicate that targeting the prototypic pro-inflammatory cytokine interleukin-1β (IL-1 β) improves the outcomes of cardiovascular disease, which is the first cause of death in DM patients. Together with IL-18, IL-1β is processed and secreted by the inflammasomes, a class of multiprotein complexes that coordinate inflammatory responses. Several DM-related metabolic factors, including reactive oxygen species, glyco/lipoxidation end products, and cholesterol crystals, have been involved in the pathogenesis of diabetic kidney disease, and diabetic retinopathy, and in the promoting effect of DM on the onset and progression of atherosclerosis and NAFLD. These metabolic factors are also well-established danger signals capable of regulating inflammasome activity. In addition to presenting the current state of knowledge, this review discusses how the mechanistic understanding of inflammasome regulation by metabolic danger signals may hopefully lead to novel therapeutic strategies targeting inflammation for a more effective treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| |
Collapse
|
33
|
Salti T, Khazim K, Haddad R, Campisi-Pinto S, Bar-Sela G, Cohen I. Glucose Induces IL-1α-Dependent Inflammation and Extracellular Matrix Proteins Expression and Deposition in Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Front Immunol 2020; 11:1270. [PMID: 32733443 PMCID: PMC7358427 DOI: 10.3389/fimmu.2020.01270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is linked with metabolic stress that induces cellular damage and can provoke renal inflammation and fibrotic responses that eventually lead to chronic kidney disease. Because the inflammasome, interleukin 1 (IL-1), IL-1α/IL-β, and IL-1R are central elements of kidney inflammation and pharmacological IL-1R antagonist (IL-1Ra) was shown to prevent or even reverse diabetic nephropathy (DN) in animal models, we explored the intrinsic expression of IL-1 molecules in kidney tissue of DN patients as regulators of renal inflammation. We used biopsies taken from DN patients and controls and show a high level of IL-1α expression in renal tubular epithelial cells, whereas both IL-1 agonistic molecules (i.e., IL-1α and IL-1β) were devoid of the glomeruli. Human proximal tubular kidney HK-2 cells exposed to high glucose (HG) gradually increase the expression of IL-1α but not IL-1β and induce the expression and deposition of extracellular matrix (ECM) proteins. We further demonstrate that in vitro ectopic addition of recombinant IL-1α in low glucose concentration leads to a similar effect as in HG, while supplementing excess amounts of IL-1Ra in HG significantly attenuates the ECM protein overexpression and deposition. Accordingly, inhibition of IL-1α cleaving protease calpain, but not caspapse-1, also strongly reduces ECM protein production by HK-2 cells. Collectively, we demonstrate that IL-1α and not IL-1β, released from renal tubular cells is the key inflammatory molecule responsible for the renal inflammation in DN. Our result suggests that the clinical use of IL-1Ra in DN should be promoted over the individual neutralization of IL-1α or IL-1β in order to achieve better blocking of IL-1R signaling.
Collapse
Affiliation(s)
- Talal Salti
- Galilee Medical Center, Research Institute, Nahariya, Israel
| | - Khaled Khazim
- Galilee Medical Center, Research Institute, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Rami Haddad
- Galilee Medical Center, Research Institute, Nahariya, Israel
| | | | - Gil Bar-Sela
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Cancer Center, Emek Medical Center, Afula, Israel
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula, Israel
| |
Collapse
|
34
|
Wu CY, Hua KF, Hsu WH, Suzuki Y, Chu LJ, Lee YC, Takahata A, Lee SL, Wu CC, Nikolic-Paterson DJ, Ka SM, Chen A. IgA Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:202-212. [PMID: 32482710 DOI: 10.4049/jimmunol.1900284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disorder, has a relatively poor prognosis yet lacks a pathogenesis-based treatment. Compound K (CK) is a major absorbable intestinal bacterial metabolite of ginsenosides, which are bioactive components of ginseng. The present study revealed promising therapeutic effects of CK in two complementary IgAN models: a passively induced one developed by repeated injections of IgA immune complexes and a spontaneously occurring model of spontaneous grouped ddY mice. The potential mechanism for CK includes 1) inhibiting the activation of NLRP3 inflammasome in renal tissues, macrophages and bone marrow-derived dendritic cells, 2) enhancing the induction of autophagy through increased SIRT1 expression, and 3) eliciting autophagy-mediated NLRP3 inflammasome inhibition. The results support CK as a drug candidate for IgAN.
Collapse
Affiliation(s)
- Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 333, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung 830, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
35
|
Zheng Y, Guan H, Zhou X, Xu Y, Fu C, Xiao J, Ye Z. The association of renal tubular inflammatory and injury markers with uric acid excretion in chronic kidney disease patients. Int Urol Nephrol 2020; 52:923-932. [PMID: 32232720 DOI: 10.1007/s11255-020-02447-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
Abstract
AIM To investigate the correlation of renal tubular inflammatory and injury markers with renal uric acid excretion in chronic kidney disease (CKD) patients. METHODS Seventy-three patients with CKD were enrolled. Fasting blood and morning urine sample were collected for routine laboratory measurements. At the same time, 24 h of urine was collected for urine biochemistry analyses, and 10 ml was extracted from the 24-h urine sample to further detect renal tubular inflammatory and injury markers, including interleukin-18 (IL-18), interleukin 1β (IL-1β), neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). The patients were divided into three tertile groups according to their 24-h urinary uric acid (24-h UUA) levels (UUA1: 24-h UUA ≤ 393.12 mg; UUA2: 393.12 < 24-h UUA ≤ 515.76 mg; UUA3: 24-h UUA > 515.76 mg). The general clinical and biochemical indexes were compared. Multivariable linear regression models were used to test the association of IL-18/Urinary creatinine concentration (IL-18/CR), IL-1β/CR, NGAL/CR and KIM-1/CR with renal uric acid excretion indicators. RESULTS All of tested renal tubular inflammation- and injury-related urinary markers were negatively associated with 24-h UUA and UEUA, and the negative correlation still persisted after adjusting for multiple influencing factors including urinary protein and eGFR. Further group analyses showed that these makers were significantly higher in the UUA1 than in the UUA3 group. CONCLUSIONS Our findings suggest that markers of urinary interstitial inflammation and injury in CKD patients are significantly correlated with 24-h UUA and Urinary excretion of uric acid (UEUA), and those with high 24-h UUA have lower levels of these markers. Renal uric acid excretion may also reflect the inflammation and injury of renal tubules under certain conditions.
Collapse
Affiliation(s)
- Yuqi Zheng
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China
| | - Haochen Guan
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China
| | - Xun Zhou
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China
| | - Ying Xu
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, P.R. China.
| |
Collapse
|
36
|
Huang JH, Lan CC, Hsu YT, Tsai CL, Tzeng IS, Wang P, Kuo CY, Hsieh PC. Oridonin Attenuates Lipopolysaccharide-Induced ROS Accumulation and Inflammation in HK-2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9724520. [PMID: 32184902 PMCID: PMC7063205 DOI: 10.1155/2020/9724520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Renal tubulointerstitial inflammation plays an important role in chronic kidney disease (CKD). Inflammation reduction is a good strategy to combat CKD. Oridonin, an ent-kaurane diterpenoid isolated from Rabdosia rubescens (Donglingcao), is considered as an effective natural candidate for the treatment of anti-inflammatory, antiviral, and antibacterial activities, including liver fibrosis and many tumors; however, no study has demonstrated its effect on lipopolysaccharide- (LPS-) induced renal inflammation. To investigate the anti-inflammatory effects of oridonin on human renal proximal tubular epithelial cells (HK-2 cells), the expression levels of c-Jun N-terminal kinase (JNK) and reactive oxygen species (ROS) were evaluated by Western blot analysis and 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, respectively. The level of intracellular ROS increased in a dose-dependent manner following LPS treatment, whereas oridonin inhibited this effect, suggestive of its ability to prevent ROS accumulation. As the mitogen-activated protein kinase (MAPK) family of enzymes plays an important role in physiological responses, we examined the activation of JNK by Western blotting and found that oridonin attenuated LPS-induced JNK phosphorylation. Oridonin also attenuated RAW 264.7 cell chemotaxis towards LPS-treated HK-2 cells. Taken together, oridonin protected against LPS-induced inflammation including ROS accumulation, JNK activation, NF-κB nuclear translocation in HK-2 cells, and functionally blocked macrophage chemotaxis towards LPS-treated HK-2 cells. Oridonin may exhibit therapeutic potential by the anti-inflammation effect in LPS-treated HK-2 cells.
Collapse
Affiliation(s)
- Jen-Hsuan Huang
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Hsu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Lin Tsai
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po Wang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
37
|
Xiang H, Zhu F, Xu Z, Xiong J. Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways. Front Cell Dev Biol 2020; 8:106. [PMID: 32175320 PMCID: PMC7056742 DOI: 10.3389/fcell.2020.00106] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes, multiprotein complex induced by harmful factors in the body, play a crucial role in innate immunity. Activation of inflammasomes lead to the activation of casepase-1 and then the secretion of inflammatory cytokines, including IL-1β and IL-18, subsequently leading to a type of cell death called pyroptosis. There are two types of signaling pathways involved in the process of inflammasome activation: the canonical and the non-canonical signaling pathway. The canonical signaling pathway is mainly dependent on casepase-1; the non-canonical signal pathway, which was recently discovered, is mainly dependent on caspase-11, but is also meditated by caspase-4, caspase-5, and caspase-8. Kidney inflammation is basically associated with inflammatory factor exudation and inflammatory cell infiltration. Several studies have showed that inflammasomes are closely related to kidney diseases, especially the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, which play a role in regulating kidney inflammation and fibrosis. In this review, we focus on the relationship between inflammasomes and kidney diseases, especially the role of the NLRP3 inflammasome in different kinds of kidney disease via both canonical and non-canonical signal pathways.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifeng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 2020; 146:45-58. [PMID: 31704373 DOI: 10.1016/j.freeradbiomed.2019.11.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death and physical disability worldwide. Mitochondrial dysfunction has been considered as one of the hallmarks of ischemic stroke and contributes to the pathology of ischemia and reperfusion. Mitochondria is essential in promoting neural survival and neurological improvement following ischemic stroke. Therefore, mitochondria represent an important drug target for stroke treatment. This review discusses the mitochondrial molecular mechanisms underlying cerebral ischemia and involved in reactive oxygen species generation, mitochondrial electron transport dysfunction, mitochondria-mediated regulation of inflammasome activation, mitochondrial dynamics and biogenesis, and apoptotic cell death. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic target for stroke treatment and provide valuable insights for clinical strategies. A better understanding of the roles of mitochondria in ischemia-induced cell death and protection may provide a rationale design of novel therapeutic interventions in the ischemic stroke.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacy, Luohe Medical College, Luohe, 462000, China
| | - Niya Ning
- Department of Obstetrics and Gynecology, Shaoling District People's Hospital of Luohe City, Luohe, 462300, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
39
|
Abstract
Inflammation has long been proven to engage in tumor initiation and progression. Inflammasome, as a member of innate immunity-induced host defense inflammation, also plays critical roles in cancer. Inflammasome is a multiprotein complex responding to pathogen-associated molecular patterns and damage-associated molecular patterns. It is composed of receptors such as NOD-like receptors and AIM2-like receptors, adaptor protein ASC, and effector caspase-1, which can process proinflammatory cytokines interleukin (IL)-1β and IL-18. It has been reported that upregulated inflammasome activity is correlated to various types of cancers including breast cancer, gastric cancer, brain tumor, and malignant prostate, while inflammasomes also have a protective role in colitis-associated cancer. Autophagy, an intracellular recycling process for maintaining homeostasis, is deemed to contribute to the underlying mechanism of its dual roles in cancer. It has been found that distinct tumor stages and different isotypes of caspases involved in the inflammasome pathway can affect the roles of inflammasome in cancer. In this review, we update the latest evidence of inflammasome roles in cancer and novel inflammasome pathway-targeting agents for immunotherapy and discuss future research directions of inflammasome-based target therapy.
Collapse
Affiliation(s)
- Xinyu Cao
- Queen Mary College, Medical school of Nanchang University, Nanchang, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Li L, Tang W, Yi F. Role of Inflammasome in Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:407-421. [DOI: 10.1007/978-981-13-8871-2_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
An Y, Xing H, Zhang Y, Jia P, Gu X, Teng X. The evaluation of potential immunotoxicity induced by environmental pollutant ammonia in broilers. Poult Sci 2019; 98:3165-3175. [DOI: 10.3382/ps/pez135] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
|
42
|
Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection. J Hypertens 2019; 36:1129-1146. [PMID: 29278547 DOI: 10.1097/hjh.0000000000001651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The simultaneous presence of cardiac and renal diseases is a pathological condition that leads to increased morbidity and mortality. Several lines of evidence have suggested that lipid dysmetabolism and mitochondrial dysfunction are pathways involved in the pathological processes affecting the heart and kidney. In the salt-loaded spontaneously hypertensive stroke-prone rat (SHRSP), a model of cardiac hypertrophy and nephropathy that shows mitochondrial alterations in the myocardium, we evaluated the cardiorenal effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist that acts by modulating mitochondrial and peroxisomal fatty acid oxidation. METHODS Male SHRSPs aged 6-7 weeks were divided in three groups: standard diet (n = 6), Japanese diet with vehicle (n = 6), and Japanese diet with fenofibrate 150 mg/kg/day (n = 6) for 5 weeks. Cardiac and renal functions were assessed in vivo by MRI, ultrasonography, and biochemical assays. Mitochondria were investigated by transmission electron microscopy, succinate dehydrogenase (SDH) activity, and gene expression analysis. RESULTS Fenofibrate attenuated cardiac hypertrophy, as evidenced by histological and MRI analyses, and protected the kidneys, preventing morphological alterations, changes in arterial blood flow velocity, and increases in 24-h proteinuria. Cardiorenal inflammation, oxidative stress, and cellular senescence were also inhibited by fenofibrate. In salt-loaded SHRSPs, we observed severe morphological mitochondrial alterations, reduced SDH activity, and down-regulation of genes regulating mitochondrial fatty-acid oxidation (i.e. PPARα, SIRT3, and Acadm). These changes were counteracted by fenofibrate. In vitro, a direct protective effect of fenofibrate on mitochondrial membrane potential was observed in albumin-stimulated NRK-52E renal tubular epithelial cells. CONCLUSION The results suggest that the cardiorenal protective effects of fenofibrate in young male salt-loaded SHRSPs are explained by its capacity to preserve mitochondrial function.
Collapse
|
43
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
44
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|
45
|
Xu Y, Wang J, Xu W, Ding F, Ding W. Prohibitin 2-mediated mitophagy attenuates renal tubular epithelial cells injury by regulating mitochondrial dysfunction and NLRP3 inflammasome activation. Am J Physiol Renal Physiol 2019; 316:F396-F407. [PMID: 30539655 DOI: 10.1152/ajprenal.00420.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence demonstrates that mitochondrial dysfunction and inflammasome activation play a critical role in the pathogenesis of renal tubular injury through the production of reactive oxygen species and cytokines. Prohibitin 2 (PHB2) is a newly identified intracellular receptor of mitophagy (a type of autophagy) that mediates selective removal of damaged mitochondria, and it could possibly play a renoprotective role in kidney disease. In this study, we confirmed that autophagy is activated in tubular epithelial cells treated with angiotensin II and that inhibition of autophagy results in tubular cell injury. Strikingly, PHB2 knockdown reduced the level of mitophagy and augmented cell death, while overexpression of PHB2 provided protection against pyrin domain-containing protein 3 (NLRP3)-induced inflammatory pathways through amelioration of mitochondrial dysfunction. Our research is the first to experimentally demonstrate the role of PHB2 in renal proximal tubular cells and thereby to provide a better understanding of how autophagy modulates inflammation in renal tubules. These data highlight PHB2 as a therapeutic target in the future treatment of CKD.
Collapse
Affiliation(s)
- Yao Xu
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingjing Wang
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wangjie Xu
- Laboratory Animal Center of Instrumental Analysis Center, Shanghai JiaoTong University, Shanghai, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
46
|
Liu BC, Tang TT, Lv LL. How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:233-252. [PMID: 31399968 DOI: 10.1007/978-981-13-8871-2_11] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including ischemia, proteinuria, toxins, and metabolic disorders. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and secrete varieties of bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the TECs also aggravate immune responses. Necroinflammation, an auto-amplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs also play an active role in progressive renal injury via mechanisms associated with the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives AKI and CKD is necessary for the development of therapeutics to halt the progression of CKD.
Collapse
Affiliation(s)
- Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
47
|
Liu D, Lv LL. New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:487-500. [PMID: 31399981 DOI: 10.1007/978-981-13-8871-2_24] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteinuria is identified as an important marker and risk factor of progression in chronic kidney disease. However, the precise mechanism of action in the progress of chronic kidney disease is still unclear. Mesangial toxicity from specific filtered compounds such as albumin-bound fatty acids and transferrin/iron, tubular overload and hyperplasia, and induction of proinflammatory molecules such as MCP-1 and inflammatory cytokines are some of the proposed mechanisms. Reversing intraglomerular hypertension with protein restriction or antihypertensive therapy may be beneficial both by diminishing hemodynamic injury to the glomeruli and by reducing protein filtration. Therefore, understanding proteinuria and its role in renal tubular interstitial inflammation and fibrosis is of great significance for the study of renal protective therapy, such as antiproteinuric treatments, and delaying the progression of chronic renal disease.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
48
|
Mejias NH, Martinez CC, Stephens ME, de Rivero Vaccari JP. Contribution of the inflammasome to inflammaging. JOURNAL OF INFLAMMATION-LONDON 2018; 15:23. [PMID: 30473634 PMCID: PMC6240324 DOI: 10.1186/s12950-018-0198-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023]
Abstract
Background Inflammation is a natural part of the aging process. This process is referred to as inflammaging. Inflammaging has been associated with deleterious outcomes in the aging brain in diseases such as Alzheimer’s disease and Parkinson’s disease. The inflammasome is a multi-protein complex of the innate immune response involved in the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. We have previously shown that the inflammasome plays a role in the aging process in the brain. In this study, we analyzed the brain of young (3 months old) and aged (18 months old) mice for the expression of inflammasome proteins. Results Our findings indicate that the inflammasome proteins NLRC4, caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and IL-18 are elevated in the cytosol of cortical lysates in aged mice when compared to young. In addition, in the cytosolic fraction of hippocampal lysates in aged mice, we found an increase in NLRC4, caspase-1, caspase-11, ASC and IL-1β. Moreover, we found higher levels of ASC in the mitochondrial fraction of aged mice when compared to young, consistent with higher levels of the substrate of pyroptosis gasdermin-D (GSDM-D) and increased pyroptosome formation (ASC oligomerization). Importantly, in this study we obtained fibroblasts from a subject that donated his cells at three different ages (49, 52 and 64 years old (y/o)) and found that the protein levels of caspase-1 and ASC were higher at 64 than at 52 y/o. In addition, the 52 y/o cells were more susceptible to oxidative stress as determined by lactose dehydrogenase (LDH) release levels. However, this response was ameliorated by inhibition of the inflammasome with Ac-Tyr-Val-Ala-Asp-Chloromethylketone (Ac-YVAD-CMK). In addition, we found that the protein levels of ASC and IL-18 are elevated in the serum of subjects over the age of 45 y/o when compared to younger subjects, and that ASC was higher in Caucasians than Blacks and Hispanics, whereas IL-18 was higher in Caucasians than in blacks, regardless of age. Conclusions Taken together, our data indicate that the inflammasome contributes to inflammaging and that the inflammasome-mediated cell death mechanism of pyroptosis contributes to cell demise in the aging brain.
Collapse
Affiliation(s)
- Nancy H Mejias
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Camila C Martinez
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Marisa E Stephens
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| |
Collapse
|
49
|
Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis 2018; 9:1126. [PMID: 30425237 PMCID: PMC6233178 DOI: 10.1038/s41419-018-1157-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Renal fibrosis, especially tubulointerstitial fibrosis, is the inevitable outcome of all progressive chronic kidney diseases (CKDs) and exerts a great health burden worldwide. For a long time, interests in renal fibrosis have been concentrated on fibroblasts and myofibroblasts. However, in recent years, growing numbers of studies have focused on the role of tubular epithelial cells (TECs). TECs, rather than a victim or bystander, are probably a neglected mediator in renal fibrosis, responding to a variety of injuries. The maladaptive repair mechanisms of TECs may be the key point in this process. In this review, we will focus on the role of TECs in tubulointerstitial fibrosis. We will follow the fate of a tubular cell and depict the intracellular changes after injury. We will then discuss how the repair mechanism of tubular cells becomes maladaptive, and we will finally discuss the intercellular crosstalk in the interstitium that ultimately proceeds tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China
- Shanghai Medical College, Fudan University, 200032, Shanghai, P.R. China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, P. R. China.
- Shanghai Key Laboratory of Organ Transplantation, 200032, Shanghai, P. R. China.
| |
Collapse
|
50
|
Kim SM, Kim YG, Kim DJ, Park SH, Jeong KH, Lee YH, Lim SJ, Lee SH, Moon JY. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury. Front Immunol 2018; 9:2563. [PMID: 30483252 PMCID: PMC6240646 DOI: 10.3389/fimmu.2018.02563] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
The NOD-like receptor family, pyrin domain containing-3 (NLRP3) inflammasome has been implicated in renal inflammation and fibrosis. However, the biological function of inflammasome-independent NLRP3 in non-immune cells is still unclear. We evaluated the role of inflammasome-independent NLRP3 in renal tubular cells and assessed the value of NLRP3 as a therapeutic target for acute kidney injury (AKI). Various renal tubular cell lines and primary cultured tubular cells from NLRP3 knockout (KO) mice were used for in vitro studies. We also tested the role of tubular NLRP3 in AKI with a unilateral ureter obstruction model (UUO). Hypoxia induced significant increase of NLRP3 independent of ASC, caspase-1, and IL-1β. NLRP3 in renal tubular cells relocalized from the cytosol to the mitochondria during hypoxia and bound to mitochondrial antiviral signal protein (MAVS). The deletion of NLRP3 or MAVS in renal tubular cells attenuated mitochondrial reactive oxygen species (ROS) production and depolarization of the mitochondrial membrane potentials under hypoxia. In response to UUO, NLRP3 KO mice showed less fibrosis, apoptosis, and ROS injury than wild type (WT) mice. Compared with WT kidney, mitophagy was up-regulated in NLRP3 KO kidney relative to the baseline and it was protective against AKI. Our results indicate that inflammasome-independent NLRP3 in renal tubular cells plays important role in mitochondrial ROS production and injury by binding to MAVS after hypoxic injury. This mitochondrial regulation in the absence of NLRP3 increases autophagy and attenuates apoptosis after UUO. We suggest that inflammasome-independent NLRP3 could be a therapeutic target of AKI to prevent the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Seon Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| | - Sung Jig Lim
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sang-Ho Lee
- Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, South Korea
| |
Collapse
|