1
|
Kinzler MN, Metzger E, Schulz R, Bankov K, Ramos-Triguero A, Schulze F, Gretser S, Abedin N, Wiegering A, Zeuzem S, Walter D, Reis H, Schüle R, Wild PJ. Overexpression of KMT9α is associated with poor outcome in cholangiocarcinoma patients. J Cancer Res Clin Oncol 2025; 151:161. [PMID: 40355770 DOI: 10.1007/s00432-025-06214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE The newly discovered histone methyltransferase KMT9 serves as an epigenetic regulator of carcinogenesis in various cancer entities. For the first time, we investigated the presence of KMT9α in cholangiocarcinoma, the association with histologic subtypes, and its impact on survival. METHODS A tissue microarray cohort of all CCA patients who underwent surgical resection with curative intent between 08/2005 and 12/2021 at the University Hospital Frankfurt was immunohistochemically analyzed with the KMT9α antibody. For overall survival, Kaplan-Meier curves and Cox-regression analyses were performed. RESULTS In total, 174 patients were suitable for IHC analysis. Of the patients, 35.1% (n = 61) overexpressed KMT9α. Kaplan-Meier curves revealed a median OS of 34.75 months (95% CI = 20.23-49.27 months) for all CCA patients positive for KMT9α in comparison to 54.21 months (95% CI = 41.78-66.63 months) for patients lacking KMT9α overexpression (p = 0.004). Subtype analysis revealed strong differences in KMT9α expression. Multivariate Cox regression analysis identified KMT9α as an independent risk factor for shorter OS in CCA. CONCLUSION This study demonstrates that a marked subset of CCA patients exhibit overexpression of KMT9α. These findings underscore the prognostic significance of KMT9α and reinforce its potential as a therapeutic target, consistent with its role in other cancer types.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Goethe University Frankfurt, University Hospital Frankfurt, Medical Clinic 1, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Freiburg, Germany
| | - Rebecca Schulz
- Goethe University Frankfurt, University Hospital Frankfurt, Medical Clinic 1, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institutes of Pathology and Human Genetics, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Falko Schulze
- Dr. Senckenberg Institutes of Pathology and Human Genetics, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Steffen Gretser
- Dr. Senckenberg Institutes of Pathology and Human Genetics, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Nada Abedin
- Goethe University Frankfurt, University Hospital Frankfurt, Medical Clinic 1, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Armin Wiegering
- Department of General, Visceral, Transplant and Thoracic Surgery, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital Frankfurt, Medical Clinic 1, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dirk Walter
- Goethe University Frankfurt, University Hospital Frankfurt, Medical Clinic 1, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institutes of Pathology and Human Genetics, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Freiburg, Germany
| | - Peter J Wild
- Dr. Senckenberg Institutes of Pathology and Human Genetics, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Wang J, Ge F, Yuan T, Qian M, Yan F, Yang B, He Q, Zhu H. The molecular mechanisms and targeting strategies of transcription factors in cholangiocarcinoma. Expert Opin Ther Targets 2022; 26:781-789. [PMID: 36243001 DOI: 10.1080/14728222.2022.2137020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cholangiocarcinoma consists of a cluster of malignant biliary tumors that tend to have a poor prognosis, ranking as the second most prevalent type of liver cancer, and their incidence rate has increased globally recently. The high-frequency driving mutations of cholangiocarcinoma, such as KRAS/IDH1/ARID1A/P53, imply the epigenetic instability of cholangiocarcinoma, leading to the dysregulation of various related transcription factors, thus affecting the occurrence and development of cholangiocarcinoma. Increasingly evidence indicates that the high heterogeneity and malignancy of cholangiocarcinoma are closely related to the dysregulation of transcription factors which promote cell proliferation, invasion, migration, angiogenesis, and drug resistance through reprogrammed transcriptional networks. It is of great significance to further explore and summarize the role of transcription factors in cholangiocarcinoma. AREAS COVERED This review summarizes the oncogenic or tumor suppressive roles of key transcription factors in regulating cholangiocarcinoma progression and the potential targeting strategies of transcription factors in cholangiocarcinoma. EXPERT OPINION Cholangiocarcinoma is a type of cancer highly influenced by transcriptional regulation, specifically transcription factors and epigenetic regulatory factors. Targeting transcription factors could be a potential and important strategy that is likely to impact future cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Jiao Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
5
|
Liu Z, Pan L, Yan X, Duan X. The long noncoding RNA DLGAP1-AS2 facilitates cholangiocarcinoma progression via miR-505 and GALNT10. FEBS Open Bio 2021; 11:413-422. [PMID: 33301605 PMCID: PMC7876506 DOI: 10.1002/2211-5463.13061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly invasive malignant tumor with high mortality. Most cases of CCA are already advanced when they are detected, resulting in poor prognosis. As such, there is an ongoing need for the identification of effective biomarkers for CCA. The long noncoding RNA DLGAP1-AS2 has been reported to have prognostic value in glioma and Wilms' tumor. Here, we investigated the function of DLGAP1-AS2 in CCA. The differential expression of DLGAP1-AS2 in CCA tissues and normal tissues was first examined using data from the The Cancer Genome Atlas database and then in CCA cell lines by quantitative RT-PCR (qRT-PCR). The target gene was predicted by bioinformatics analysis, and the binding sites were confirmed using luciferase assay. DLGAP1-AS2 is up-regulated in CCA, and high DLGAP1-AS2 expression promotes cell viability and is associated with poor prognosis. Notably, DLGAP1-AS2 acts as a sponge to suppress miR-505 expression, and miR-505 reduces the expression of N-acetylgalactosaminyltransferase 10 (GALNT10) in CCA cells. Biofunctional experiments revealed that a miR-505 inhibitor almost completely removed the inhibitory effect of si-DLGAP1-AS2 on CCA cell malignant progression, whereas the malignant phenotype of cells cotransfected with si-DLGAP1-AS2 and si-GALNT10 was significantly reduced as compared with the control. In summary, the DLGAP1-AS2/miR-505/GALNT10 axis may contribute to regulating the malignant progression of CCA and may have potential as a novel target for CCA therapy.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lili Pan
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaofang Yan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| | - Xiuna Duan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| |
Collapse
|
6
|
Qin Y, Zhang Z, Zheng L, Wu H, Dai X, Dong Y, Cui Y, Ren Y. Impact of Wortmannilactone F and G31P on Clonorchis Sinensis-infected mice. Int Immunopharmacol 2020; 85:106512. [PMID: 32454418 DOI: 10.1016/j.intimp.2020.106512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
Clonorchis sinensis could induce inflammation, epithelial hyperplasia and fibrosis in the intrahepatic bile duct as a food-borne parasite, which was associated with the development of cholangiocarcinoma (CCA). Praziquantel was the most effective drug on treatment of this kind of parasite. However, new drugs with minimal toxicity to the host were urgently needed due to the side effects of Praziquantel and its CCA risk. In this study, helminth mitochondria respiratory chain blocker Wortmannilatone F (WF) and IL-8 analogue CXCL8 (3-72) K11R/G31P were used to treat BALB/C mice infected by Clonorchis sinensis. We investigated the gross and histopathological morphology of the liver, inflammation-associated cytokine IL-6, lipid peroxidation-related proteins cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), collagen fiber accumulation and fibroblast-specific protein 1 (FSP1), malignant markers proliferating cell nuclear antigen (PCNA) and cytokeratin 19 (CK19), as well as the disinfection effect on these parasites in vitro. WF inhibited and killed the worms dramatically, and the combination of WF with G31P improved the condition of the hepatobiliary duct tissue greatly. These outcomes indicated that the combination of WF and G31P was a potential therapeutic method to treat the Clonorchis sinensis infection.
Collapse
Affiliation(s)
- Yuanhua Qin
- Department of Parasitology, Basic Medical College, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Zhongpei Zhang
- Wuhan Fourth Hospital: Puai Hospital, Tongi Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Lili Zheng
- Department of Parasitology, Basic Medical College, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Haiyan Wu
- Department of Medical Oncology, Lvshun People's Hospital, Dalian 116041, Liaoning, China
| | - Xiaodong Dai
- Department of Parasitology, Basic Medical College, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Yu Cui
- Department of Parasitology, Basic Medical College, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Yixin Ren
- Department of Parasitology, Basic Medical College, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
7
|
Lendvai G, Szekerczés T, Illyés I, Dóra R, Kontsek E, Gógl A, Kiss A, Werling K, Kovalszky I, Schaff Z, Borka K. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis. Pathol Oncol Res 2020; 26:3-15. [PMID: 30448973 DOI: 10.1007/s12253-018-0491-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CC) is the second most common tumor of the liver, originating from the biliary system with increasing incidence and mortality worldwide. Several new classifications review the significance of tumor localization, site of origin, proliferation and biomarkers in the intrahepatic, perihilar and distal forms of the lesion. Based on growth pattern mass-forming, periductal-infiltrating, intraductal, undefined and mixed types are differentiated. There are further subclassifications which are applied for the histological features, in particular for intrahepatic CC. Recognition of the precursors and early lesions of CC including biliary intraepithelial neoplasia (BilIN), intraductal papillary neoplasm of the bile ducts (IPNB), biliary mucinous cystic neoplasm (MCNB) and the candidate precursors, such as bile duct adenoma and von Meyenburg complex is of increasing significance. In addition to the previously used biliary markers detected by immunohistochemistry, several new markers have been added to the differentiation of both the benign and malignant lesions, which can be used to aid in the subclassification in association with the outcome of CC. Major aspects of biliary carcinogenesis have been revealed, yet, the exact way of this diverse process is still unclear. The factors contributing to molecular cholangiocarcinogenesis include various risk factors, different anatomical localizations, multiple cellular origins, genetic and epigenetic alterations, tumor microenvironment, heterogeneity and clonal evolution. Driver mutations have been identified, implying that they are optimal candidates for targeted therapy. The most promising therapeutic candidates have entered clinical trials.
Collapse
Affiliation(s)
- Gábor Lendvai
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Tímea Szekerczés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Idikó Illyés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Réka Dóra
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Endre Kontsek
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Alíz Gógl
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Klára Werling
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, 1085, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, 1085, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary.
| | - Katalin Borka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| |
Collapse
|
8
|
Su L, Zhang X, Zheng L, Wang M, Zhu Z, Li P. Mutation of Isocitrate Dehydrogenase 1 in Cholangiocarcinoma Impairs Tumor Progression by Inhibiting Isocitrate Metabolism. Front Endocrinol (Lausanne) 2020; 11:189. [PMID: 32373065 PMCID: PMC7187788 DOI: 10.3389/fendo.2020.00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Aim: Isocitrate dehydrogenase 1 (IDH1) is key enzyme involved in cellular metabolism and DNA repair. Mutations in IDH1 occur in up to 25% of cholangiocarcinomas. The present study aimed to explore the features of cellosaurus REB cells with mutant and wide-type IDH1. Methods: To compare the features of IDH1 knockout and mutation in cholangiocarcinoma, we firstly constructed the IDH1 knockout and IDH1 mutation cell lines. We then evaluated the viability of these cell lines using the cell count assay and MTT assay. Next, we determined cell migration and invasion using the Transwell assay. Additionally, to evaluate the effects of IDH1 on cellular metabolism, the levels of α-ketoglutarate (α-KG) and nicotinamide adenine dinucleotide phosphate (NADPH) were determined using enzyme-linked immunosorbent assay. We then applied ChIPbase dataset to explore the genes that were regulated by IDH1. Results: High frequency of mutated IDH1 was observed in the cholangiocarcinoma and IDH1 R132C was presented in more than 80% of mutations. The results showed that IDH1 knockout decreased cell proliferation, migration and invasion, whereas the overexpression of IDH1 in IDH1 knockout cell line recovered its proliferation, migration and invasion capacities. Additionally, IDH1 mutation reduced the levels of NADPH and α-KG. Furthermore, investigation into the underlying mechanisms revealed that IDH1 overexpression induced the expression of aldehyde dehydrogenase 1 thereby promoting cell proliferation, migration and invasion. Conclusion:IDH1 plays an important role in cholangiocarcinoma and its mutation impairs tumor progression in part by inhibition of isocitrate metabolism.
Collapse
Affiliation(s)
- Li Su
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinglong Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Zheng
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Miaomiao Wang
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhifa Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Li
- Department of Integrated Traditional and Western Medicine in Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ping Li
| |
Collapse
|
9
|
The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis 2019; 8:61. [PMID: 31641101 PMCID: PMC6805921 DOI: 10.1038/s41389-019-0171-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a particularly aggressive hepatobiliary malignancy, for which the molecular mechanisms underlying the malignant phenotype are still poorly understood, and novel and effective therapeutic strategies are limited. The pro-survival protein kinase CK2 is frequently overexpressed in cancer and is receiving increasing interest as an anti-tumor drug target. Its precise role in CCA biology is still largely unknown. Here we show that expression of the CK2α and α' catalytic subunits and of the β regulatory subunit is increased in human CCA samples. Increased expression of CK2 subunits was shown in CCA cell lines compared to non-transformed cholangiocytes. We used chemical inhibition of CK2 and genetic modification by CRISPR/Cas9 to explore the contribution of CK2 to the malignant phenotype of CCA cells. Disruption of CK2 activity results in cell death through apoptosis, reduced invasion and migration potential, and G0/G1 cell cycle arrest. Importantly, CCA cells with a reduced CK2 activity are more sensitive to chemotherapy. Altogether, our results demonstrate that CK2 significantly contributes to increased proliferative potential and augmented growth of CCA cells and indicate the rationale for its targeting as a promising pharmacologic strategy for cholangiocarcinoma.
Collapse
|
10
|
Overexpression of polycomb repressive complex 2 key components EZH2/SUZ12/EED as an unfavorable prognostic marker in cholangiocarcinoma. Pathol Res Pract 2019; 215:152451. [PMID: 31126817 DOI: 10.1016/j.prp.2019.152451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal liver cancer arising from bile duct epithelium. Polycomb repressive complex 2 (PRC2) is a histone methyltransferase enzyme that catalyzes trimethylation of histone H3 on lysine 27, resulting transcriptional gene silencing. The key components of PRC2 are EZH2, SUZ12 and EED, which EZH2 is a catalytic subunit. The defect of individual PRC2 components has been shown to enhance carcinogenesis and cancer progression. The aim of this study was to determine the expression of individual PRC2 components and evaluate its association with clinicopathological data in CCA patients. METHODS The expression of PRC2 components including EZH2, SUZ12 and EED was determined by immunohistochemistry in 40 CCA tissue samples. RESULTS The expression of EZH2 and SUZ12 in CCA tissue was significantly higher than that in adjacent non-cancerous tissue (P < 0.001). The high cytoplasmic EZH2 expression was significantly associated with short overall survival in CCA (P = 0.030). Interestingly, a combined high nuclear and cytoplasmic expression of EZH2 was found to be a worse prognostic marker for overall survival (P = 0.015). Moreover, combined high expression of EZH2 and SUZ12/EED was also associated with short overall survival (P < 0.05). CONCLUSIONS Our findings suggest that overexpression of the PRC2 key components especially EZH2 in both nucleus and cytoplasm can be potentially used as a prognostic marker for CCA.
Collapse
|
11
|
Edwards SW, Spofford EM, Price C, Wright HL, Salao K, Suttiprapa S, Sripa B. Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer. ADVANCES IN PARASITOLOGY 2018; 101:149-176. [PMID: 29907253 DOI: 10.1016/bs.apar.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA.
Collapse
Affiliation(s)
- Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edward M Spofford
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Jain A, Kwong LN, Javle M. Genomic Profiling of Biliary Tract Cancers and Implications for Clinical Practice. Curr Treat Options Oncol 2017; 17:58. [PMID: 27658789 DOI: 10.1007/s11864-016-0432-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OPINION STATEMENT Biliary tract cancers are relatively uncommon, have an aggressive disease course and a dismal clinical outcome. Until recently, there have been very few clinical advances in the management of these patients and gemcitabine-based chemotherapy has been the only widely accepted systemic therapy. The advent of next generation sequencing technologies can potentially change the treatment paradigm of this disease. Targeted therapy directed against actionable mutations and identification of molecular subsets with distinct prognostic significance is now feasible in clinical practice. Mutation profiling has highlighted the genomic differences between the intra, extrahepatic cholangiocarcinoma, and gallbladder cancer. The mutational spectrum of intrahepatic cholangiocarcinoma differs according to geographic location and ethnicity. There is a higher incidence of chromatin modulating gene mutations in Western patients as compared with Asian patients with liver fluke-associated cholangiocarcinoma. KRAS and p53 mutations are associated with an aggressive disease prognosis while FGFR mutations may signify a relatively indolent disease course of intrahepatic cholangiocarcinoma. FGFR and IDH mutations have promising agents in clinical trials at this time. An estimated 15 % of gallbladder cancers have Her2/neu amplification and can be targeted by trastuzumab. On the other hand, an estimated 10-15 % of cholangiocarcinomas have DNA repair mutations and may be candidates for immune therapies with checkpoint inhibitors. The promise of targeted therapies for biliary tract cancers can be fulfilled with well-designed, prospective, and multi-center clinical trials.
Collapse
Affiliation(s)
- Apurva Jain
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX, 77030, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 426, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Ahn DH, Ozer HG, Hancioglu B, Lesinski GB, Timmers C, Bekaii-Saab T. Whole-exome tumor sequencing study in biliary cancer patients with a response to MEK inhibitors. Oncotarget 2017; 7:5306-12. [PMID: 26683364 PMCID: PMC4868687 DOI: 10.18632/oncotarget.6632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/12/2015] [Indexed: 12/13/2022] Open
Abstract
We previously conducted a phase-II study with selumetinib (AZD6244), a small molecule inhibitor of MEK1/2, in advanced biliary tract cancers (BTC), where the primary endpoint was response rate. Several patients experienced objective response. These findings were confirmed with MEK162 in a similar patient population. To assess for tumor-specific genetic variants that mediate sensitivity to MEK inhibition in BTC, we performed whole-exome sequencing in patients with an objective response to selumetinib. Normal and tumor DNA from FFPE tissue from two patients who experienced an objective response underwent whole-exome sequencing. Raw sequence reads were processed with GATK workflow and tumor specific variants were identified using MuTect and VarScan2. Ensemble Variant Effect Predictor was used to determine functional consequences of these variants. Copy number changes and potential gene fusion events were also screened. Findings were compared to assess for any commonality between the two tumor samples, and whether the identified variants were intrinsic to the MAPK pathway. 1169 and 628 tumor-specific variants were identified in the two samples. Further analysis demonstrated 60 and 53 functional and novel variants, respectively. Of the identified tumor-specific variants, fusion events or copy number changes, no commonality was seen. Several variants in genes associated with ERK signaling were present in each tumor sample. Although there were no common tumor-specific variants in the two patients who exhibited an objective response to selumetinib, several genes associated with ERK signaling were identified. Confirmatory studies investigating the role of the identified genes and other potential tumor independent factors need further investigation.
Collapse
Affiliation(s)
- Daniel H Ahn
- Department of Internal Medicine, Divison of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Baris Hancioglu
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Gregory B Lesinski
- Department of Internal Medicine, Divison of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Cynthia Timmers
- Department of Internal Medicine, Divison of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Tanios Bekaii-Saab
- Department of Internal Medicine, Divison of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
14
|
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol 2016; 7:797-803. [PMID: 27747093 DOI: 10.21037/jgo.2016.09.01] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biliary tract cancers (BTCs) are relatively uncommon orphan tumors that have an aggressive disease course and a poor clinical outcome. Surgery is the only curative treatment, but most patients present with advanced disease and therefore have a limited survival. Gemcitabine and cisplatin based chemotherapy has been the only widely accepted standard systemic therapy regimen in these patients but these tumors can be chemoresistant, further complicating their management. In recent times, there has been considerable research in the genetics of BTC and with the advent of new, advanced technologies like next-generation sequencing (NGS) we are achieving a greater understanding of its disease biology. With the help of NGS, we have now been able to identify actionable mutations such as in the isocitrate dehydrogenase 1 (IDH1), FGFR2, BRAF and HER2/neu genes for targeted therapeutics and correlate the genetic variations with distinct clinical prognoses. This recent genetic information has the potential to make precision medicine a part of routine clinical practice for the management of BTC patients.
Collapse
Affiliation(s)
- Apurva Jain
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Jiang Y, Chen J, Yue C, Zhang H, Chen T. Trichloroethylene-Induced DNA Methylation Changes in Male F344 Rat Liver. Chem Res Toxicol 2016; 29:1773-1777. [DOI: 10.1021/acs.chemrestox.6b00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Jiang
- Department of Physiology, School of Biology
and Basic Medical Sciences, ‡Jiangsu Key Laboratory
of Preventive and Translational Medicine for Geriatric Diseases, §Department of Toxicology,
School of Public Health, Soochow University, Suzhou 215123, China
| | - Jiahong Chen
- Department of Physiology, School of Biology
and Basic Medical Sciences, ‡Jiangsu Key Laboratory
of Preventive and Translational Medicine for Geriatric Diseases, §Department of Toxicology,
School of Public Health, Soochow University, Suzhou 215123, China
| | - Cong Yue
- Department of Physiology, School of Biology
and Basic Medical Sciences, ‡Jiangsu Key Laboratory
of Preventive and Translational Medicine for Geriatric Diseases, §Department of Toxicology,
School of Public Health, Soochow University, Suzhou 215123, China
| | - Hang Zhang
- Department of Physiology, School of Biology
and Basic Medical Sciences, ‡Jiangsu Key Laboratory
of Preventive and Translational Medicine for Geriatric Diseases, §Department of Toxicology,
School of Public Health, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Department of Physiology, School of Biology
and Basic Medical Sciences, ‡Jiangsu Key Laboratory
of Preventive and Translational Medicine for Geriatric Diseases, §Department of Toxicology,
School of Public Health, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Wu C, Zhang J, Cao X, Yang Q, Xia D. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression. Med Sci Monit 2016; 22:2685-90. [PMID: 27472451 PMCID: PMC4976756 DOI: 10.12659/msm.896404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Bile duct carcinoma is a common digestive tract tumor with high morbidity and mortality. As a kind of important non-coding RNA, microRNA (miR) plays an important role in post-transcriptional regulation. MiR-122 is the most abundant miR in the liver. Multiple studies have shown that miR-122 level is reduced in a variety of liver tumors and can be used as a specific marker for liver injury. P53 is a classic tumor suppressor gene that can induce tumor cell apoptosis through various pathways. Whether miR-122 affects p53 in bile duct carcinoma still needs investigation. Material/Methods miR inhibitor or mimics was transfected to bile duct carcinoma cells to evaluate its function on proliferation, invasion, apoptosis, and p53 expression. Results MiR-122 overexpression reduced cell invasion and migration ability, and inhibited cell apoptosis and p53 expression. Inhibiting miR-122 caused the opposite results. Conclusions Upregulating miR-122 can suppress bile duct carcinoma cell proliferation and induce apoptosis. MiR-122 could be used as a target for bile duct carcinoma treatment, which provides a new strategy for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Cuiping Wu
- Department of Infectious Diseases, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Jinmei Zhang
- Department of Infectious Diseases, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Xiangang Cao
- Department of Infectious Diseases, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Qian Yang
- Department of Infectious Diseases, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| | - Dequan Xia
- Department of Infectious Diseases, Yidu Central Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
17
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 942] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|