1
|
Raungrut P, Jirapongsak J, Tanyapattrapong S, Bunsong T, Ruklert T, Kueakool K, Thongsuksai P, Nakwan N. Fibrinogen Alpha Chain as a Potential Serum Biomarker for Predicting Response to Cisplatin and Gemcitabine Doublet Chemotherapy in Lung Adenocarcinoma: Integrative Transcriptome and Proteome Analyses. Int J Mol Sci 2025; 26:1010. [PMID: 39940778 PMCID: PMC11817752 DOI: 10.3390/ijms26031010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cisplatin combined with gemcitabine, a doublet regimen, is the first-line treatment for patients with advanced lung adenocarcinoma (ADC); however, the treatment response remains poor. This study aimed to identify potential biomarkers for predicting response to cisplatin and gemcitabine. Tissue transcriptome and blood proteome analyses were conducted on 27 patients with lung ADC. Blood-derived proteins that reflected tissue-specific biomarkers were obtained using Venn diagrams. The candidate proteins were validated by Western blotting. Lentivirus-mediated short hairpin RNA interference was used to verify the functional roles of the candidate proteins in human A549 cells. We identified 417 differentially expressed genes, including 52 upregulated and 365 downregulated genes, and 31 differentially expressed proteins, including 26 upregulated and 5 downregulated proteins. Integrative analysis revealed the presence of alpha-1-acid glycoprotein 1 (A1AG1) and fibrinogen alpha chain (FGA or FIBA) in both the tissue and serum. FGA levels were elevated in responders compared to non-responders, and reduced serum FGA levels were correlated with resistance to this regimen. Moreover, FGA knockdown in A549 cells resulted in resistance to the doublet regimen. Our findings indicate that FGA is a tissue-specific serum protein that may function as a blood-based biomarker to predict the response of patients with lung ADC to cisplatin plus gemcitabine chemotherapy.
Collapse
Affiliation(s)
- Pritsana Raungrut
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Jirapon Jirapongsak
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Suchanan Tanyapattrapong
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Thitaya Bunsong
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| | - Thidarat Ruklert
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| | - Kannika Kueakool
- Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Narongwit Nakwan
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| |
Collapse
|
2
|
Endo M, Yazawa S, Sano R, Yokobori T, Shirabe K, Saeki H. α 1-Acid Glycoprotein with Highly Fucosylated Glycans as a Potential Diagnostic Marker for Early Detection of Hepatobiliary and Pancreatic Cancers. Diagnostics (Basel) 2024; 15:40. [PMID: 39795568 PMCID: PMC11720321 DOI: 10.3390/diagnostics15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Previously, we reported elevated levels of fucosylated α1-acid glycoprotein (fAGP) in plasma samples from patients with diverse types of cancers. Accordingly, fAGP was assumed to be a potential biomarker for the early detection of cancers. Methods: The fAGP level was retrospectively measured in preoperative plasma samples from 213 patients with either hepatic, biliary tract, or pancreatic cancer and was analyzed together with levels of six existing tumor markers determined as reference standards. Results: When the cutoff value was set at 25.45 U/μg, elevated levels of fAGP were significantly observed in cancer patients. The sensitivity, specificity, and accuracy for the detection of malignancy in these diseases were determined to be 70.79, 51.72, and 68.12, respectively. In contrast, all the tumor markers exhibited low sensitivity and accuracy, even though they commonly had extremely high (≥80%) specificity. Further, a significant number of patients in both early and advanced clinical stages were found to be false negative in these tumor makers but were found to be positive in the fAGP level. A dramatic improvement in the diagnosis by tumor markers in such patients with all clinical stages was found by the determination of the fAGP level. This indicated that fAGP could serve to correct false-negative diagnosis with tumor markers. Conclusions: It is believed that fAGP could be a relevant, unique, and highly sensitive biomarker for early diagnosis of hepatobiliary and pancreatic cancers.
Collapse
Affiliation(s)
- Mizuki Endo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (M.E.); (K.S.); (H.S.)
| | - Shin Yazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (M.E.); (K.S.); (H.S.)
| | - Rie Sano
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (M.E.); (K.S.); (H.S.)
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (M.E.); (K.S.); (H.S.)
| |
Collapse
|
3
|
Yoo J, Yoon T, Park YB, Ahn SS, Lee SW. The Clinical Utility of Serum Alpha-1-Acid Glycoprotein in Reflecting the Cross-Sectional Activity of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Single-Centre Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1212. [PMID: 39202493 PMCID: PMC11356503 DOI: 10.3390/medicina60081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study investigated whether serum alpha-1-acid glycoprotein (AGP) at diagnosis could reflect the cross-sectional activity represented by the Birmingham vasculitis activity score (BVAS) and further predict poor outcomes during follow-up in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Materials and Methods: This study included 70 patients with AAV. Clinical data at diagnosis, including AAV-specific indices and acute-phase reactants such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), were reviewed. All-cause mortality, relapse, end-stage kidney disease (ESKD), cerebrovascular accident, and acute coronary syndrome were evaluated as poor outcomes of AAV. Serum AGP was measured using the sera obtained and stored at diagnosis. Results: The median age of the patients was 63.0 years, with 29 male and 41 female patients. The median serum AGP was 150.9 μg/mL. At diagnosis, serum AGP was significantly correlated with BVAS and ESR but not CRP or serum albumin. Additionally, serum AGP showed significant correlations with the sum scores of ear-nose-throat and pulmonary manifestations; however, no significant differences in serum AGP according to each poor outcome were observed. Although serum AGP at diagnosis tended to be associated with ESKD occurrence during follow-up, serum AGP at AAV diagnosis was not significantly useful in predicting the future occurrence of poor outcomes of AAV during follow-up. Conclusions: In this study, we demonstrated the clinical utility of serum AGP at AAV diagnosis in assessing the cross-sectional activity represented by BVAS in patients with AAV for the first time.
Collapse
Affiliation(s)
- Juyoung Yoo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.Y.); (Y.-B.P.)
| | - Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.Y.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Gyeonggi-do, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.Y.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Watanabe Y, Hirao Y, Kasuga K, Kitamura K, Nakamura K, Yamamoto T. Urinary proteome profiles associated with cognitive decline in community elderly residents—A pilot study. Front Neurol 2023; 14:1134976. [PMID: 37006491 PMCID: PMC10061132 DOI: 10.3389/fneur.2023.1134976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Non-invasive and simple methods enabling easy identification of individuals at high risk of cognitive decline are needed as preventive measures against dementia. This pilot study aimed to explore protein biomarkers that can predict cognitive decline using urine, which can be collected non-invasively. Study subjects were selected from participants in a cohort study of middle-aged and older community-dwelling adults who underwent cognitive testing using the Mini-Mental State Examination and provided spot urine samples at two time points with an interval of approximately 5 years. Seven participants whose cognitive function declined 4 or more points from baseline (Group D) and 7 sex- and age-matched participants whose cognitive function remained within the normal range during the same period (Group M) were selected. Urinary proteomics using mass spectrometry was performed and discriminant models were created using orthogonal partial least squares-discriminant analysis (OPLS-DA). OPLS-DA yielded two models that significantly discriminated between the two groups at baseline and follow-up. Both models had ORM1, ORM2, and SERPINA3 in common. A further OPLS-DA model using baseline ORM1, ORM2, and SERPINA3 data showed similar predictive performance for data at follow-up as it did for baseline data (sensitivity: 0.85, specificity: 0.85), with the receiver operating characteristic curve analysis yielding an area under the curve of 0.878. This prospective study demonstrated the potential for using urine to identify biomarkers of cognitive decline.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Yumi Watanabe
| | - Yoshitoshi Hirao
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tadashi Yamamoto
- Biofluid and Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Kandikattu HK, Upparahalli Venkateshaiah S, Kumar S, Yadavalli CS, Mishra A. IL-18-mediated neutrophil recruitment promotes acute lung injury in inflammation-mediated chronic pancreatitis. Mol Immunol 2023; 155:100-109. [PMID: 36758469 DOI: 10.1016/j.molimm.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Lung injury is the most common secondary complication of pancreatitis and pancreatic malignancy. Around 60-70% of pancreatitis-related deaths are caused by lung injury; however, there is no animal model of the inflammation-mediated progressive pulmonary pathological events that contribute to acute lung injury in chronic pancreatitis (CP). Hence, we developed an inflammation-mediated mouse model and studied the pathological events that have a critical role in promoting the pathogenesis of lung injury. Our proteomic analysis of lung tissue revealed neutrophil-associated induction of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase enzyme, further supporting a role for neutrophils in promoting IL-18-associated lung injury. We show that neutrophils released IL-18-induced p-NF-κB along with profibrotic and oncogenic proteins like TTF1, PDX1, and SOX9 in lung tissues of a mouse model of chronic pancreatitis. We also show that neutrophil infiltration induces TGF-β and SMAD4 and activates epithelial cells to produce other profibrotic proteins like ZO-1 and MUC2, along with the fibroblast markers FGF-1 and αSMA, that cause mesenchymal transition and accumulation of extracellular matrix collagen. Most importantly, we present evidence that IL-18 inhibition significantly alleviates CP-induced lung injury. This was further established by the finding that IL-18 gene-deficient mice showed improved lung injury by inhibition of TGF-β and fibroblast to mesenchymal transition and reduced collagen accumulation. The present study suggests that inhibition of IL-18 may be a novel treatment for CP-associated induced acute lung injury.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sandeep Kumar
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
7
|
Li X, Wang C, Yang H, Pei D, Liu Y, Yan S, Li Y. Screening and verification of genes related to polycystic ovary syndrome. J Int Med Res 2023; 51:3000605221147444. [PMID: 36628439 PMCID: PMC9837284 DOI: 10.1177/03000605221147444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To identify key genes involved in occurrence and development of polycystic ovary syndrome (PCOS). METHODS By downloading the GSE85932 dataset from the GEO database, we used bioinformatical analysis to analyse differentially expressed genes (DEGs) from blood samples of eight women with PCOS and eight matched controls. Following bioinformatic analysis, we performed a cross-sectional study of serum samples taken from 79 women with PCOS and 36 healthy controls. RESULTS From the 178 DEGs identified by bioinformatical analysis, 15 genes were identified as significant, and of these, ORM1 and ORM2 were selected for further verification as potential biomarkers for PCOS. Serum ORM1 and ORM2 levels were significantly increased in women with PCOS, and had a high diagnostic value. ORM1 and ORM2 were positively correlated with testosterone, cholesterol, and triglycerides. ORM1 levels were negatively correlated with high density lipoprotein (HDL) while ORM2 levels showed no significant correlation. CONCLUSIONS ORM may be an effective biomarker for the diagnosis of PCOS and its monitoring may be a useful therapeutic strategy.
Collapse
Affiliation(s)
| | - Chunxia Wang
- Chunxia Wang, Department of Medical Laboratory, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), 6 Dongfeng Road, Jinshui, Zhengzhou, Henan 450002, China.
| | | | | | | | | | | |
Collapse
|
8
|
Kasahara K, Narumi R, Nagayama S, Masuda K, Esaki T, Obama K, Tomonaga T, Sakai Y, Shimizu Y, Adachi J. A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer. Cancer Med 2022; 12:7616-7626. [PMID: 36394150 PMCID: PMC10067095 DOI: 10.1002/cam4.5442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance. EXPERIMENTAL DESIGN Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann-Whitney-Wilcoxon test and random forest model were applied in cohort 1 to select promising markers. Consensus clustering was applied to classify patients with CRC in cohort 2. The Kaplan-Meier method and Cox regression analysis were performed to identify potential molecular factors contributing to the overall survival (OS) of patients. RESULTS In the analysis of cohort 1, 99 proteins were associated with CRC. The analysis of cohort 2 revealed two clusters showing significant differences in OS (p = 0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), were suggested to be associated with the identified CRC subtypes, and ORM1 was shown to significantly contribute to OS, suggesting that ORM1 might be one of the factors closely related to the OS. CONCLUSIONS The study identified two novel subtypes of CRC, which exhibit differences in OS, as well as important biomarker proteins that are closely related to the identified subtypes. Liquid biopsy assessment with targeted proteomics analysis was proposed to be crucial for predicting the CRC prognosis.
Collapse
Affiliation(s)
- Keiko Kasahara
- Department of SurgeryKyoto University Graduate School of MedicineKyotoJapan
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Clinical and Analytical ChemistryCollaborative Research Center for Health and Medicine, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | - Satoshi Nagayama
- Department of Gastroenterological SurgeryGastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of SurgeryUji‐Tokusyukai Medical CenterKyotoJapan
| | - Keiko Masuda
- Laboratory for Cell‐Free Protein SynthesisRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Tsuyoshi Esaki
- The Center for Data Science Education and ResearchShiga UniversityShigaJapan
| | - Kazutaka Obama
- Department of SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| | | | - Yoshihiro Shimizu
- Laboratory for Cell‐Free Protein SynthesisRIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Proteomics for Drug DiscoveryCenter for Drug Design Research, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
- Laboratory of Clinical and Analytical ChemistryCollaborative Research Center for Health and Medicine, National Institute of Biomedical Innovation, Health and NutritionOsakaJapan
| |
Collapse
|
9
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
10
|
Liu S, Wang H, Jiang X, Ji Y, Wang Z, Zhang Y, Wang P, Xiao H. Integrated N-glycoproteomics Analysis of Human Saliva for Lung Cancer. J Proteome Res 2022; 21:1589-1602. [PMID: 35715216 DOI: 10.1021/acs.jproteome.1c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant protein N-glycosylation is a cancer hallmark, which has great potential for cancer detection. However, large-scale and in-depth analysis of N-glycosylation remains challenging because of its high heterogeneity, complexity, and low abundance. Human saliva is an attractive diagnostic body fluid, while few efforts explored its N-glycoproteome for lung cancer. Here, we utilized a zwitterionic-hydrophilic interaction chromatography-based strategy to specifically enrich salivary glycopeptides. Through quantitative proteomics analysis, 1492 and 1234 intact N-glycopeptides were confidently identified from pooled saliva samples of 10 subjects in the nonsmall-cell lung cancer group and 10 subjects in the normal control group. Accordingly, 575 and 404 N-glycosites were revealed for the lung cancer group and normal control group. In particular, 154 N-glycosites and 259 site-specific glycoforms were significantly dysregulated in the lung cancer group. Several N-glycosites located at the same glycoprotein and glycans attached to the same N-glycosites were observed with differential expressions, including haptoglobin, Mucin-5B, lactotransferrin, and α-1-acid glycoprotein 1. These N-glycoproteins were mainly related to inflammatory responses, infectious diseases, and cancers. Our study achieved comprehensive characterization of salivary N-glycoproteome, and dysregulated site-specific glycoforms hold promise for noninvasive detection of lung cancer.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Vellan CJ, Jayapalan JJ, Yoong BK, Abdul-Aziz A, Mat-Junit S, Subramanian P. Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review. Int J Mol Sci 2022; 23:2093. [PMID: 35216204 PMCID: PMC8879036 DOI: 10.3390/ijms23042093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive malignancy with a poor prognosis is usually detected at the advanced stage of the disease. The only US Food and Drug Administration-approved biomarker that is available for PDAC, CA 19-9, is most useful in monitoring treatment response among PDAC patients rather than for early detection. Moreover, when CA 19-9 is solely used for diagnostic purposes, it has only a recorded sensitivity of 79% and specificity of 82% in symptomatic individuals. Therefore, there is an urgent need to identify reliable biomarkers for diagnosis (specifically for the early diagnosis), ascertain prognosis as well as to monitor treatment response and tumour recurrence of PDAC. In recent years, proteomic technologies are growing exponentially at an accelerated rate for a wide range of applications in cancer research. In this review, we discussed the current status of biomarker research for PDAC using various proteomic technologies. This review will explore the potential perspective for understanding and identifying the unique alterations in protein expressions that could prove beneficial in discovering new robust biomarkers to detect PDAC at an early stage, ascertain prognosis of patients with the disease in addition to monitoring treatment response and tumour recurrence of patients.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon-Koon Yoong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azlina Abdul-Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Sarni Mat-Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India;
| |
Collapse
|
12
|
Schneider MA, Rozy A, Wrenger S, Christopoulos P, Muley T, Thomas M, Meister M, Welte T, Chorostowska-Wynimko J, Janciauskiene S. Acute Phase Proteins as Early Predictors for Immunotherapy Response in Advanced NSCLC: An Explorative Study. Front Oncol 2022; 12:772076. [PMID: 35174082 PMCID: PMC8841510 DOI: 10.3389/fonc.2022.772076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
In the last decade, targeting the immune system became a promising therapy in advanced lung cancer stages. However, in a clinical follow-up, patient responses to immune checkpoint inhibitors widely differ. Peripheral blood is a minimally invasive source of potential biomarkers to explain these differences. We blindly analyzed serum samples from 139 patients with non-small cell lung cancer prior to anti-PD-1 or anti-PD-L1 therapies to assess whether baseline levels of albumin (ALB), alpha-1 acid glycoprotein (AGP), alpha1-antitrypsin (AAT), alpha2-macroglobulin (A2M), ceruloplasmin (CP), haptoglobin (HP), alpha1-antichymotrypsin (ACT), serum amyloid A (SAA), and high-sensitivity C-reactive protein (hs-CRP), have a predictive value for immunotherapy success. Disease progression-free survival (PFS) was calculated based on RECIST 1.1 criteria. A multivariate Cox regression analysis, including serum levels of acute-phase proteins and clinical parameters, revealed that higher pre-therapeutic levels of HP and CP are independent predictors of a worse PFS. Moreover, a combined panel of HP and CP stratified patients into subgroups. We propose to test this panel as a putative biomarker for assessing the success of immunotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Adriana Rozy
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Petros Christopoulos
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabina Janciauskiene
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- *Correspondence: Sabina Janciauskiene,
| |
Collapse
|
13
|
Pedersen S, Jensen KP, Honoré B, Kristensen SR, Pedersen CH, Szejniuk WM, Maltesen RG, Falkmer U. Circulating microvesicles and exosomes in small cell lung cancer by quantitative proteomics. Clin Proteomics 2022; 19:2. [PMID: 34996345 PMCID: PMC8903681 DOI: 10.1186/s12014-021-09339-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. METHODS Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. RESULTS Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p < 0.05), we identified 10 common and 16 and 17 unique proteins for microvesicles and exosomes, respectively. Among these proteins, we found dysregulation of coagulation factor XIII A (Log2 FC = - 1.1, p = 0.0003, AUC = 0.82, 95% CI: 0.69-0.96) and complement factor H-related protein 4 (Log2 FC = 1.2, p = 0.0005, AUC = 0.82, 95% CI; 0.67-0.97) in SCLC patients compared to healthy individuals. Our data may indicate a novel tumor-suppressing role of blood coagulation and involvement of complement activation in SCLC pathogenesis. CONCLUSIONS In comparing SCLC patients and healthy individuals, several differentially expressed proteins were identified. This is the first study showing that circulating extracellular vesicles may encompass specific proteins with potential diagnostic attributes for SCLC, thereby opening new opportunities as novel non-invasive markers.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
| | - Katrine Papendick Jensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | | | - Weronika Maria Szejniuk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, 2145, Australia
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
14
|
Liu Y, Xia Y, Smollar J, Mao W, Wan Y. The roles of small extracellular vesicles in lung cancer: Molecular pathology, mechanisms, diagnostics, and therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188539. [PMID: 33892051 DOI: 10.1016/j.bbcan.2021.188539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Small extracellular vesicles (sEVs) are submicron-sized, lipid-bilayer-enclosed particles that are released from cells. A variety of tissue-specific molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively encapsulated into sEVs and delivered to nearby and distant recipient cells. Incontestable and growing evidence shows the important biological roles and the clinical relevance of sEVs in tumors. In particular, recent studies validate sEVs can be used for early tumor diagnostics, staging, and treatment monitoring. Moreover, sEVs have been used as drug delivery nanocarriers, cancer vaccines, and antigen conferrers. While still in its infancy, the field of sEV-based fundamental and translational studies has been rapidly advancing. This review comprehensively examines the latest sEV-related studies in lung cancers, encompassing extracellular vesicles and their roles in lung cancer pathophysiology, diagnostics, and therapeutics. The state-of-the-art technologies for sEV isolation, downstream molecular analyses, and sEV-based therapies indicate their potency as tools for understanding the pathology and promising clinical management of lung cancers.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Jillian Smollar
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| |
Collapse
|
15
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
16
|
Boyle CA, Coatney RW, Wickham A, Mukherjee SK, Meunier LD. Alpha-1 Acid Glycoprotein as a Biomarker for Subclinical Illness and Altered Drug Binding in Rats. Comp Med 2021; 71:123-132. [PMID: 33789781 DOI: 10.30802/aalas-cm-20-000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification, and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague-Dawley rats with or without implants of catheter material. A model validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days). A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108 CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 10³ CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16. h × ng/mL, respectively. The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.
Collapse
Affiliation(s)
- Catherine A Boyle
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania;,
| | - Robert W Coatney
- Translational Sciences, Galvani Bioelectronics, Collegeville, Pennsylvania
| | - Alexandra Wickham
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - Suman K Mukherjee
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - LaVonne D Meunier
- Global Laboratory Animal Medicine, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
17
|
Kim SM, Rampogu S, Vetrivel P, Kulkarni AM, Ha SE, Kim HH, Lee KW, Kim GS. Transcriptome analysis of sinensetin-treated liver cancer cells guided by biological network analysis. Oncol Lett 2021; 21:355. [PMID: 33747212 PMCID: PMC7968004 DOI: 10.3892/ol.2021.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma is recognized as one of the most frequently occurring malignant types of liver cancer globally, making the identification of biomarkers critically important. The aim of the present study was to identify the genes involved in the anticancer effects of flavonoid compounds so that they may be used as targets for cancer treatment. Sinensetin (SIN), an isolated polymethoxyflavone monomer compound, possesses broad antitumor activities in vitro. Therefore, the identification of a transcriptome profile on the condition of cells treated with SIN may aid to better understand the genes involved and its mechanism of action. Genomic profiling studies of cancer are increasing rapidly in order to provide gene expression data that can reveal prognostic biomarkers to combat liver cancer. In the present study, high-throughput RNA sequencing (RNA-seq) was performed to reveal differential gene expression patterns between SIN-treated and SIN-untreated human liver cancer HepG2 cells. A total of 43 genes were identified to be differentially expressed (39 downregulated and 4 upregulated in the SIN-treated group compared with the SIN-untreated group). An extensive network analysis for these 43 genes resulted in the identification of 10 upregulated highly interconnected hub genes that contributed to the progression of cancer. Functional enrichment analysis of these 10 hub genes revealed their involvement in the regulation of apoptotic processes, immune response and tumor necrosis factor production. Additionally, the mRNA expression levels of these 10 genes were evaluated using reverse transcription-quantitative PCR, and the results were consistent with the RNA-seq data. Overall, the results of the present study revealed differentially expressed genes involved in cancer after SIN treatment in HepG2 cells and may help to develop strategies targeting these genes for treating liver cancer.
Collapse
Affiliation(s)
- Seong Min Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Apoorva M Kulkarni
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 52828, Republic of Korea
| |
Collapse
|
18
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
19
|
Kang M, Seong Y, Mahmud J, Nguyen BT. Obscurin and Clusterin Elevation in Serum of Acute Myocardial Infarction Patients. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min‐Jung Kang
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Yunseo Seong
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Joyeta Mahmud
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Binh Thanh Nguyen
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| |
Collapse
|
20
|
Elek Z, Kovács Z, Keszler G, Szabó M, Csanky E, Luo J, Guttman A, Rónai Z. High Throughput Multiplex SNP-analysis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Curr Mol Med 2020; 20:185-193. [DOI: 10.2174/1566524019666191017123446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Background:
A number of human inflammatory diseases and tumors have
been shown to cause alterations in the glycosylation pattern of plasma proteins in a specific
manner. These highly variable and versatile post-translational modifications finetune
protein functions by influencing sorting, folding, enzyme activity and subcellular
localization. However, relatively little is known about regulatory factors of this procedure
and about the accurate causative connection between glycosylation and disease.
Objective:
The aim of the present study was to investigate whether certain single nucleotide
polymorphisms (SNPs) in genes encoding glycosyltransferases and glycosidases
could be associated with elevated risk for chronic obstructive pulmonary disease
(COPD) and lung adenocarcinoma.
Methods:
A total of 32 SNPs localized in genes related to N-glycosylation were selected
for the association analysis. Polymorphisms with putative biological functions (missense
or regulatory variants) were recruited. SNPs were genotyped by a TaqMan OpenArray
platform. A single base extension-based method in combination with capillary gel electrophoresis
was used for verification.
Results:
The TaqMan OpenArray approach provided accurate and reliable genotype
data (global call rate: 94.9%, accuracy: 99.6%). No significant discrepancy was detected
between the obtained and expected genotype frequency values (Hardy–Weinberg equilibrium)
in the healthy control sample group in case of any SNP confirming reliable sampling
and genotyping. Allele frequencies of the rs3944508 polymorphism localized in the
3’ UTR of the MGAT5 gene significantly differed between the sample groups compared.
Conclusion:
Our results suggest that the rs34944508 SNP might modulate the risk for
lung cancer by influencing the expression of MGAT5. This enzyme catalyzes the addition
of N-acetylglucosamine (GlcNAc) in beta 1-6 linkage to the alpha-linked mannose of
biantennary N-linked oligosaccharides, thus, increasing branching that is the characteristic
of invasive malignancies.
Collapse
Affiliation(s)
- Zsuzsanna Elek
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Kovács
- Horvath Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | - Jane Luo
- SCIEX Separations, Brea, CA 92821, United States
| | | | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Zhan Z, Guan Y, Mew K, Zeng W, Peng M, Hu P, Yang Y, Lu Y, Ren H. Urine α-fetoprotein and orosomucoid 1 as biomarkers of hepatitis B virus-associated hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2020; 318:G305-G312. [PMID: 31736338 DOI: 10.1152/ajpgi.00267.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth common malignant tumor worldwide, but current efficient and convenient screening methods remain lacking. This study aimed to discover a diagnostic or a screening biomarker from the urine of hepatitis B virus (HBV)-related HCC patients. We used iTRAQ coupled with mass spectrometry to identify candidate urinary proteins in a discovery cohort (n = 40). The selected proteins were confirmed using ELISA in a validation cohort (n = 140). Diagnostic performance of the selected proteins was assessed using receiver operating characteristic (ROC) and qualitative diagnostic analysis. A total of 96 differentially expressed proteins were identified. Urinary α-fetoprotein (u-AFP) and orosomucoid 1 (u-ORM1) were selected as target proteins by bioinformatics analysis and were significantly higher in HCC than in non-HCC patients, as validated by Western blot analysis and ELISA. u-AFP had a strong correlation with serum AFP-L3 (Pearson's r = 0.944, P < 0.0001), indicating that u-AFP may be derived from circulating blood. The area under the curve (AUC) of u-AFP was 0.795 with a sensitivity of 62.5% and a specificity of 95.4%, which showed no significantly difference with serum AFP (se-AFP). The AUC was 0.864 as u-AFP and u-ORM1 were combined, and they performed much better than u-AFP or u-ORM1 alone. Qualitative diagnostic analysis showed that the positive predictive value of u-AFP was 90.1% and the diagnostic sensitivity of parallel combination of u-AFP and u-ORM1 was 85.1%. Taken together, AFP and ORM1 in the urine may be used as a diagnostic or screening biomarker of HCC, and studies on large samples are needed to validate the result.NEW & NOTEWORTHY This study provides a novel way to find biomarkers of hepatocellular carcinoma (HCC) and a new perspective of α-fetoprotein clinical application. The urine reagent strips may be helpful in high epidemic areas of HCC and in low-resource settings.
Collapse
Affiliation(s)
- Zhu Zhan
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yalan Guan
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kenley Mew
- Department of Foreign Language, Chongqing Medical University, Chongqing, China
| | - Weiqiong Zeng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Lu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Gupta R, Radicioni G, Abdelwahab S, Dang H, Carpenter J, Chua M, Mieczkowski PA, Sheridan JT, Randell SH, Kesimer M. Intercellular Communication between Airway Epithelial Cells Is Mediated by Exosome-Like Vesicles. Am J Respir Cell Mol Biol 2019; 60:209-220. [PMID: 30230353 DOI: 10.1165/rcmb.2018-0156oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium structure/function can be altered by local inflammatory/immune signals, and this process is called epithelial remodeling. The mechanism by which this innate response is regulated, which causes mucin/mucus overproduction, is largely unknown. Exosomes are nanovesicles that can be secreted and internalized by cells to transport cellular cargo, such as proteins, lipids, and miRNA. The objective of this study was to understand the role exosomes play in airway remodeling through cell-cell communication. We used two different human airway cell cultures: primary human tracheobronchial (HTBE) cells, and a cultured airway epithelial cell line (Calu-3). After intercellular exosomal transfer, comprehensive proteomic and genomic characterization of cell secretions and exosomes was performed. Quantitative proteomics and exosomal miRNA analysis profiles indicated that the two cell types are fundamentally distinct. HTBE cell secretions were typically dominated by fundamental innate/protective proteins, including mucin MUC5B, and Calu-3 cell secretions were dominated by pathology-associated proteins, including mucin MUC5AC. After exosomal transfer/intake, approximately 20% of proteins, including MUC5AC and MUC5B, were significantly altered in HTBE secretions. After exosome transfer, approximately 90 miRNAs (∼4%) were upregulated in HTBE exosomes, whereas Calu-3 exosomes exhibited a preserved miRNA profile. Together, our data suggest that the transfer of exosomal cargo between airway epithelial cells significantly alters the qualitative and quantitative profiles of airway secretions, including mucin hypersecretion, and the miRNA cargo of exosomes in target cells. This finding indicates that cellular information can be carried between airway epithelial cells via exosomes, which may play an important role in airway biology and epithelial remodeling.
Collapse
Affiliation(s)
- Richa Gupta
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| | - Giorgia Radicioni
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| | - Sabri Abdelwahab
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| | | | - Jerome Carpenter
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| | | | | | - John T Sheridan
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| | - Scott H Randell
- 2 Marsico Lung Institute.,4 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- 1 Department of Pathology and Laboratory Medicine.,2 Marsico Lung Institute
| |
Collapse
|
23
|
Wei J, Ni N, Meng W, Gao Y. Early urine proteome changes in the Walker-256 tail-vein injection rat model. Sci Rep 2019; 9:13804. [PMID: 31551472 PMCID: PMC6760176 DOI: 10.1038/s41598-019-50301-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Detection of cancer at its early stage is important for treatment. Urine, which is not regulated by homeostatic mechanisms, reflects early systemic changes throughout the whole body and can be used for the early detection of cancer. In this study, the Walker-256 tail-vein injection rat model was established to find whether the urine proteome could reflect early changes if tumor grown in lung. Urine samples from the control group (n = 7) and Walker-256 tail-vein injection group (n = 7) on days 2, 4, 6 and 9 were analyzed by label-free proteomic quantitative methods. On day 2, when lung tumor nodules did not appear, 62 differential proteins were identified. They were associated with epithelial cell differentiation, regulation of immune system processes and the classical complement activation pathway. On day 4, when lung tumor nodules appeared, 72 differential proteins were identified. They were associated with the innate immune response and positive regulation of phagocytosis. On day 6, when body weight began to decrease, 117 differential proteins were identified. On day 9, the identified 125 differential proteins were associated with the B cell receptor signaling pathway and the positive regulation of B cell activation. Our results indicate that (1) the urine proteome changed even on the second day after tail-vein injection of Walker-256 cells and that (2) compared to previous studies, the urine proteomes were different when the same cancer cells were grown in different organs.
Collapse
Affiliation(s)
- Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China
| | - Na Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenshu Meng
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China.
| |
Collapse
|
24
|
Ye X, Zhang N, Jin Y, Xu B, Guo C, Wang X, Su Y, Yang Q, Song J, Yu W, Cheng P, Cheng L, Gong Y, Fu X, Sun H. Dramatically changed immune-related molecules as early diagnostic biomarkers of non-small cell lung cancer. FEBS J 2019; 287:783-799. [PMID: 31482685 DOI: 10.1111/febs.15051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the main type of lung cancer, with a low 5-year survival rate because of the absence of effective clinical biomarkers for early diagnosis. Based on the immunosurveillance theory, we proposed that changes in the immune system are more pronounced than tumour-associated antigens during the early stage of cancer. Therefore, a new strategy was designed to screen early diagnostic biomarkers from peripheral leukocytes in early-stage NSCLCs with transcriptome sequencing. A total of 358 immune-related differentially expressed genes were identified between early-NSCLC patients and healthy individuals. Orosomucoid-1 (ORM1, a acute phase protein), the total ORM and chitotriosidase-1 (involved in degradation of chitobiose) were selected for further verification in 210 serum samples by western blotting, ELISA and nephelometry immunoassay (based on immuno-scatter turbidmetry). Receiver operating characteristic curve analysis show that ORM1 and total ORM have excellent diagnostic efficacies, with area under the curve of 0.862 and 0.920, respectively, which significantly distinguished very early-NSCLC (IA) from healthy samples. Flow cytometry results showed that CD15+ neutrophils made up 73% of ORM1+ peripheral leukocytes. In mouse lung cancer model, serum ORM1, but not liver ORM1, changed significantly in the early stage of NSCLC. ORM1 expression in peripheral leukocytes was regulated by TGF-β and mediated by the TGF-β/Smad signalling pathway. Our results indicated that combined ORM and TGF-β could be a promising clinical biomarker in the diagnosis of early NSCLC.
Collapse
Affiliation(s)
- Xiangdong Ye
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Jin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Bo Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Chanyuan Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Xueqing Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yanting Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Qing Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Jiaqi Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Wenhui Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Pengfei Cheng
- Department of Laboratory Medicine, Wuhan University Hospital, Wuhan University, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Gong
- Department of Thoracic-Cardiovascular Surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China.,Hubei Province Key Laboratory of Allergy and Immunology, College of Life Sciences, Wuhan University, China
| |
Collapse
|
25
|
Xu YF, Xu Y, Li X, Yang XM. Serum α-1 Acid Glycoprotein is a Biomarker for the Prediction of Targeted Therapy Resistance in Advanced EGFR-positive Lung Adenocarcinoma. Comb Chem High Throughput Screen 2019; 21:755-759. [PMID: 30663564 DOI: 10.2174/1386207322666190119163024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine the levels of α-1 acid glycoprotein (ORM1) in the sera of advanced lung adenocarcinoma (LUAD) patients with epidermal growth factor receptor (EGFR) mutation before treatment and after acquirement of EGFR tyrosine kinase inhibitor (EGFR-TKI) resistance, and to explore the clinical cut off value of ORM1 for targeted therapy resistance in LUAD. METHODS Enzyme-linked immunosorbent assay was used to determine serum ORM1 levels. Receiver operating characteristic curve was applied to evaluate the serum ORM1 level in the resistance of EGFR-TKI and the cut off value of ORM1 for the diagnosis of EGFR-TKI resistance. RESULTS The serum ORM1 concentrations in the healthy group, before and after drug resistance were 1.687 ± 0.103, 1.868 ± 0.101, and 1.731 ± 0.088 µg/ml, respectively. The serum ORM1 concentrations before and after drug resistance were higher than that of the healthy group, whereas the serum ORM1 concentrations in the resistant group were lower than those before drug treatment. In comparison to healthy group, the area under curve (AUC) of the serum ORM1 concentration was 0.918 ± 0.029 with sensitivity of 90.5% and specificity of 78.6% in the patient before EGFR-TKI treatment, while the AUC was 0.644 ± 0.062 with sensitivity of 69.0% and specificity of 66.7% in the resistance group. When compared to those before treatment, the AUC of serum ORM1 concentration was 0.880 ± 0.038 with a sensitivity of 92.9% and specificity of 73.8% in the resistance group. The cutoff value of serum ORM1 was 1.778 µg/ml for advanced EGFR-positive LUAD and 1.723 µg/ml after resistance to EGFR-TKI. CONCLUSION Serum ORM1 has an important diagnostic value for the diagnosis of EGFR-positive LUAD and EGFR-TKI resistance in patients especially with advanced EGFR-positive LUAD. Our findings suggest that serum ORM1 is a biomarker in the prediction of EGFR-TKI resistance in EGFR-positive LUAD.
Collapse
Affiliation(s)
- Yu-Fen Xu
- Department of Oncology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, China
| | - Yao Xu
- Department of Oncology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, China
| | - Xia Li
- Department of Oncology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, China
| | - Xin-Mei Yang
- Department of Oncology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, China
| |
Collapse
|
26
|
Betancourt LH, Pawłowski K, Eriksson J, Szasz AM, Mitra S, Pla I, Welinder C, Ekedahl H, Broberg P, Appelqvist R, Yakovleva M, Sugihara Y, Miharada K, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Wieslander E, Horvatovich P, Malm J, Jönsson G, Marko-Varga G. Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Sci Rep 2019; 9:5154. [PMID: 30914758 PMCID: PMC6435712 DOI: 10.1038/s41598-019-41625-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.
Collapse
Affiliation(s)
| | - Krzysztof Pawłowski
- Lund University, Lund, Sweden.
- Warsaw University of Life Sciences SGGW, Warszawa, Poland.
| | | | - A Marcell Szasz
- Lund University, Lund, Sweden
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Horvatovich
- Lund University, Lund, Sweden
- University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
27
|
FOSB⁻PCDHB13 Axis Disrupts the Microtubule Network in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11010107. [PMID: 30658436 PMCID: PMC6357195 DOI: 10.3390/cancers11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is among the leading causes of human mortality. One reason for high rates of NSCLC mortality is that drug resistance is a major problem for both conventional chemotherapies and less-toxic targeted therapies. Thus, novel mechanistic insights into disease pathogenesis may benefit the development of urgently needed therapies. Here we show that FBJ murine osteosarcoma viral oncogene homolog B (FOSB) was induced by an antimicrobial peptide, tilapia piscidin-4 (TP4), through the dysregulation of mitochondrial Ca2+ homeostasis in NSCLC cells. Transcriptomic, chromatin immunoprecipitation quantitative PCR, and immunocytochemical studies reveal that protocadherin-β13 (PCDHB13) as a target of FOSB that was functionally associated with microtubule. Overexpression of either PCDHB13 or FOSB attenuated NSCLC growth and survival in vitro and in vivo. Importantly, downregulation of both FOSB and PCDHB13 was observed in NSCLC patients and was negatively correlated with pathological grade. These findings introduce the FOSB⁻PCDHB13 axis as a novel tumor suppressive pathway in NSCLC.
Collapse
|
28
|
Nile Tilapia Derived TP4 Shows Broad Cytotoxicity Toward to Non-Small-Cell Lung Cancer Cells. Mar Drugs 2018; 16:md16120506. [PMID: 30551662 PMCID: PMC6316113 DOI: 10.3390/md16120506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is among the leading causes of human mortality due to a lack of effective treatments. Conventional chemotherapies affect healthy cells and cause multidrug resistance, while tumors may eventually develop resistance to less-toxic targeted therapies. Thus, the need to develop novel therapies for NSCLC is urgent. Here, we show that Nile tilapia-derived Tilapia piscidin (TP) 4 is cytotoxic to a panel of NSCLC cells with different genetic profiles. We observed that TP4 triggers NSCLC cell death through the necrosis and combining TP4 with potent Epidermal growth factor receptor (EGFR)- tyrosine kinase inhibitors (TKI)s, Erlotinib, and Gefitinib, improved drug responses in EGFR-mutated NSCLC cells, but not in EGFR-wild-type NSCLC cells. This work provides novel insights into potential NSCLC treatments, which may utilize antimicrobial peptide TP4 as monotherapy or in combination with EGFR-TKIs.
Collapse
|
29
|
Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes. EBioMedicine 2017; 24:257-266. [PMID: 28927749 PMCID: PMC5652006 DOI: 10.1016/j.ebiom.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023] Open
Abstract
The acute phase protein orosomucoid-1 (Orm1) is mainly expressed by hepatocytes (HPCs) under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH). Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs. Serum Orm1 levels increased approximately 1.3- to 2.5-folds in both humans and mice after partial hepatectomy. Transcriptome analysis revealed that Orm1 mostly induced in hepatocytes as a regulator of mouse liver regeneration. Orm1 knockdown in mice impaired liver regeneration with poor hepatocyte growth and suppressed cell cycle signaling.
Orosomucoid-1 (Orm1) is an acute phase protein mainly expressed by hepatocytes under stress conditions. Beginning from the finding that Orm1 was induced after partial hepatectomy in humans and mice, we showed enrichment of Orm1 in regenerating hepatocytes of hepatectomized mice by transcriptome analysis and following culture and animal experiments. Knockdown of Orm1 in mice resulted in decreases in hepatocyte growth accompanying suppressed signaling in controlling chromatin replication. Therefore, Orm1 would be a potential therapeutic and prognostic biomarker for liver diseases, especially after surgical resection of cancer-bearing liver, through its newly found ability to stimulate the cell cycle in regenerating hepatocytes.
Collapse
|
30
|
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX, Xiao H. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta 2017; 982:84-95. [DOI: 10.1016/j.aca.2017.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/22/2022]
|
31
|
Zhang D, Huang J, Luo D, Feng X, Liu Y, Liu Y. Glycosylation change of alpha-1-acid glycoprotein as a serum biomarker for hepatocellular carcinoma and cirrhosis. Biomark Med 2017. [PMID: 28621608 DOI: 10.2217/bmm-2016-0284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: This research is to explore the glycosylation change of alpha-1-acid glycoprotein (AGP) in hepatocellular carcinoma (HCC), cirrhosis and controls. Methods: The affinity chromatography and lectin affinity techniques were used to separate and enrich glycosylated AGP, and combined with mass spectrometry to identify and relatively quantify the glycopeptides from AGP. Results: The sialylation and fucosylation of AGP were different among HCC, cirrhosis and controls. The highly sialylated and fucosylated peptides from AGP were found in HCC and cirrhosis compared with controls. These glycopeptides showed excellent diagnostic ability to differentiate HCC from cirrhosis (area under the curve >0.9). In addition, these glycopeptides showed significantly different among four HCC stages. Conclusion: The sialylation and fucosylation change of AGP may serve as serum biomarker for HCC and cirrhosis.
Collapse
Affiliation(s)
- Delin Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianzhao Huang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dan Luo
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xinfu Feng
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
32
|
Sajid MS, Jabeen F, Hussain D, Ashiq MN, Najam-ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal Bioanal Chem 2017; 409:3135-3143. [DOI: 10.1007/s00216-017-0254-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
33
|
Zhang J, Qi L, Zheng WT, Tian YL, Chi AP, Zhang ZQ. Novel functionalized poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres for the solid-phase extraction of glycopeptides/glycoproteins. J Sep Sci 2017; 40:1107-1114. [DOI: 10.1002/jssc.201600780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry and Chemical engineering; Shaanxi Normal University; Xi'an China
- Institute of Sports Biology; School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Liang Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry and Chemical engineering; Shaanxi Normal University; Xi'an China
| | - Wei-Ting Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry and Chemical engineering; Shaanxi Normal University; Xi'an China
| | - Yong-Le Tian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry and Chemical engineering; Shaanxi Normal University; Xi'an China
| | - Ai-Ping Chi
- Institute of Sports Biology; School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry and Chemical engineering; Shaanxi Normal University; Xi'an China
| |
Collapse
|
34
|
Lee JY, Lee HK, Park GW, Hwang H, Jeong HK, Yun KN, Ji ES, Kim KH, Kim JS, Kim JW, Yun SH, Choi CW, Kim SI, Lim JS, Jeong SK, Paik YK, Lee SY, Park J, Kim SY, Choi YJ, Kim YI, Seo J, Cho JY, Oh MJ, Seo N, An HJ, Kim JY, Yoo JS. Characterization of Site-Specific N-Glycopeptide Isoforms of α-1-Acid Glycoprotein from an Interlaboratory Study Using LC-MS/MS. J Proteome Res 2016; 15:4146-4164. [PMID: 27760464 DOI: 10.1021/acs.jproteome.5b01159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC-MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Heeyoun Hwang
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Hoi Keun Jeong
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Ki Na Yun
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Department of Chemistry, Sogang University , Seoul 04107, Republic of Korea
| | - Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Department of Chemistry, Hannam University , Daejeon 34430, Republic of Korea
| | - Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jun Seok Kim
- Department of Biomedical Systems Engineering, Korea Polytechnics , Gyeonggi 13590, Republic of Korea
| | - Jong Won Kim
- New Drug Development Center, Osong Medical Innovation Foundation , Cheongju 28160, Republic of Korea
| | - Sung Ho Yun
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Chi-Won Choi
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Seung Il Kim
- Drug & Disease Target Group, Korea Basic Science Institute , Daejeon 34133, Republic of Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Seul-Ki Jeong
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 03722, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory & Genetics, Samsung Medical Center, Sungkyunkwan University of Medicine , Seoul 06351, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul 06351, Republic of Korea
| | - Su Yeon Kim
- Department of Clinical Research Supporting Team, Clinical Research Institute, Samsung Medical Center , Seoul 06351, Republic of Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Yong-In Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Jawon Seo
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 08826, Republic of Korea
| | - Myoung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute , Ochang 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Republic of Korea
| |
Collapse
|